Research Finder JSON Publications - Stand Up To Cancer

Research Finder JSON Publications

{“posts”:[{“title”:”Wang Y, Johnson DB, Lu S, Diaz LA Jr, Xu Y, Balko JM. Tumor genomic alterations in severe-combined immunodeficiency bare-lymphocyte syndrome genes are associated with high mutational burden and disproportional neo-antigen rates. J Immunother Cancer. 2019 May 7;7(1):123.”,”type”:”publication”,”url”:”https://jitc.biomedcentral.com/articles/10.1186/s40425-019-0584-2″,”cancer_type_terms_string”:”Non – site Specific”,”treatment_type_terms_string”:”Immunotherapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C Colorectal Cancer Dream Team: Targeting Genomic, Metabolic, and Immunological Vulnerabilities of Colorectal Cancer”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/colorectal-cancer-vulnerabilities-dream-team/”,”publisher_year”:”Journal for Immunotherapy of Cancer, 2021″,”pub_med_id”:”31064401″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=31064401″},{“title”:”van der Meer D, Barthorpe S, Yang W, Lightfoot H, Hall C, Gilbert J, Francies HE, Garnett MJ. Cell Model Passports-a hub for clinical, genetic and functional datasets of preclinical cancer models. Nucleic Acids Res. 2019 Jan 8;47(D1):D923-D929.”,”type”:”publication”,”url”:”https://academic.oup.com/nar/article/47/D1/D923/5107576/”,”cancer_type_terms_string”:”Non – site Specific”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–Dutch Cancer Society Tumor Organoids Dream Team: A New Preclinical Model for Drug Sensitivity Analysis”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/tumor-organoids-preclinical-models-dream-team/”,”publisher_year”:”Nucleic Acids Research, 2019″,”pub_med_id”:”30260411″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=30260411″},{“title”:”Sachs N, Papaspyropoulos A, Zomer-van Ommen DD, Heo I, Böttinger L, Klay D, Weeber F, Huelsz-Prince G, Iakobachvili N, Amatngalim GD, de Ligt J, van Hoeck A, Proost N, Viveen MC, Lyubimova A, Teeven L, Derakhshan S, Korving J, Begthel H, Dekkers JF, Kumawat K, Ramos E, van Oosterhout MF, Offerhaus GJ, Wiener DJ, Olimpio EP, Dijkstra KK, Smit EF, van der Linden M, Jaksani S, van de Ven M, Jonkers J, Rios AC, Voest EE, van Moorsel CH, van der Ent CK, Cuppen E, van Oudenaarden A, Coenjaerts FE, Meyaard L, Bont LJ, Peters PJ, Tans SJ, van Zon JS, Boj SF, Vries RG, Beekman JM, Clevers H. Long-term expanding human airway organoids for disease modeling. EMBO J. 2019 Feb 15;38(4).”,”type”:”publication”,”url”:”https://www.embopress.org/doi/full/10.15252/embj.2018100300″,”cancer_type_terms_string”:”Non – site Specific”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–Dutch Cancer Society Tumor Organoids Dream Team: A New Preclinical Model for Drug Sensitivity Analysis”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/tumor-organoids-preclinical-models-dream-team/”,”publisher_year”:”EMBO Journal, 2019″,”pub_med_id”:”30643021″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=30643021″},{“title”:”Phallen J, Leal A, Woodward BD, Forde PM, Naidoo J, Marrone KA, Brahmer JR, Fiksel J, Medina JE, Cristiano S, Palsgrove DN, Gocke CD, Bruhm DC, Keshavarzian P, Adleff V, Weihe E, Anagnostou V, Scharpf RB, Velculescu VE, Husain H. Early Noninvasive Detection of Response to Targeted Therapy in Non-Small Cell Lung Cancer. Cancer Res. 2019 Mar 15;79(6):1204-1213.”,”type”:”publication”,”url”:”https://cancerres.aacrjournals.org/content/79/6/1204″,”cancer_type_terms_string”:”Lung”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–Dutch Cancer Society Colorectal Cancer Early Detection Dream Team: Molecular Early Detection of Colorectal Cancer”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/colorectal-cancer-early-detection-dream-team/”,”publisher_year”:”Cancer Research, 2019″,”pub_med_id”:”30573519″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=30573519″},{“title”:”Anagnostou V, Forde PM, White JR, Niknafs N, Hruban C, Naidoo J, Marrone K, Sivakumar IKA, Bruhm DC, Rosner S, Phallen J, Leal A, Adleff V, Smith KN, Cottrell TR, Rhymee L, Palsgrove DN, Hann CL, Levy B, Feliciano J, Georgiades C, Verde F, Illei P, Li QK, Gabrielson E, Brock MV, Isbell JM, Sauter JL, Taube J, Scharpf RB, Karchin R, Pardoll DM, Chaft JE, Hellmann MD, Brahmer JR, Velculescu VE. Dynamics of Tumor and Immune Responses during Immune Checkpoint Blockade in Non-Small Cell Lung Cancer.Cancer Res. 2019 Mar 15;79(6):1214-1225.”,”type”:”publication”,”url”:”https://cancerres.aacrjournals.org/content/79/6/1214″,”cancer_type_terms_string”:”Lung”,”treatment_type_terms_string”:”Immunotherapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–Dutch Cancer Society Colorectal Cancer Early Detection Dream Team: Molecular Early Detection of Colorectal Cancer”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/colorectal-cancer-early-detection-dream-team/”,”publisher_year”:”Cancer Research, 2019″,”pub_med_id”:”30541742″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=30541742″},{“title”:”Lin KK, Harrell MI, Oza AM, Oaknin A, Ray-Coquard I, Tinker AV, Helman E, Radke MR, Say C, Vo LT, Mann E, Isaacson JD, Maloney L, O’Malley DM, Chambers SK, Kaufmann SH, Scott CL, Konecny GE, Coleman RL, Sun JX, Giordano H, Brenton JD, Harding TC, McNeish IA, Swisher EM. BRCA Reversion Mutations in Circulating Tumor DNA Predict Primary and Acquired Resistance to the PARP Inhibitor Rucaparib in High-Grade Ovarian Carcinoma. Cancer Discov. 2019 Feb;9(2):210-219.”,”type”:”publication”,”url”:”https://cancerdiscovery.aacrjournals.org/content/9/2/210″,”cancer_type_terms_string”:”Ovarian”,”treatment_type_terms_string”:”Screening/ Early Detection, Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–Ovarian Cancer Research Alliance–National Ovarian Cancer Coalition Ovarian Cancer Dream Team: DNA Repair Therapies for Ovarian Cancer”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/dna-repair-thearpies-for-ovarian-cancer-dream-team/”,”publisher_year”:”Cancer Discovery, 2019″,”pub_med_id”:”30425037″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=30425037″},{“title”:”Konstantinopoulos PA, Barry WT, Birrer M, Westin SN, Cadoo KA, Shapiro GI, Mayer EL, O’Cearbhaill RE, Coleman RL, Kochupurakkal B, Whalen C, Curtis J, Farooq S, Luo W, Eismann J, Buss MK, Aghajanian C, Mills GB, Palakurthi S, Kirschmeier P, Liu J, Cantley LC, Kaufmann SH, Swisher EM, D’Andrea AD, Winer E, Wulf GM, Matulonis UA. Olaparib and α-specific PI3K inhibitor alpelisib for patients with epithelial ovarian cancer: a dose-escalation and dose-expansion phase 1b trial. Lancet Oncol. 2019 Mar 14. pii: S1470-2045(18)30905-7.”,”type”:”publication”,”url”:”https://www.thelancet.com/journals/lanonc/article/PIIS1470-2045(18)30905-7/fulltext”,”cancer_type_terms_string”:”Ovarian”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–Ovarian Cancer Research Alliance–National Ovarian Cancer Coalition Ovarian Cancer Dream Team: DNA Repair Therapies for Ovarian Cancer”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/dna-repair-thearpies-for-ovarian-cancer-dream-team/”,”publisher_year”:”The Lancet, 2019″,”pub_med_id”:”30880072″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=30880072″},{“title”:”Latham A, Srinivasan P, Kemel Y, Shia J, Bandlamudi C, Mandelker D, Middha S, Hechtman J, Zehir A, Dubard-Gault M, Tran C, Stewart C, Sheehan M, Penson A, DeLair D, Yaeger R, Vijai J, Mukherjee S, Galle J, Dickson MA, Janjigian Y, O’Reilly EM, Segal N, Saltz LB, Reidy-Lagunes D, Varghese AM, Bajorin D, Carlo MI, Cadoo K, Walsh MF, Weiser M, Aguilar JG, Klimstra DS, Diaz LA Jr, Baselga J, Zhang L, Ladanyi M, Hyman DM, Solit DB, Robson ME, Taylor BS, Offit K, Berger MF, Stadler ZK. Microsatellite Instability Is Associated With the Presence of Lynch Syndrome Pan-Cancer. J Clin Oncol. 2019 Feb 1;37(4):286-295.”,”type”:”publication”,”url”:”https://ascopubs.org/doi/10.1200/JCO.18.00283″,”cancer_type_terms_string”:”Non – site Specific”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C Colorectal Cancer Dream Team: Targeting Genomic, Metabolic, and Immunological Vulnerabilities of Colorectal Cancer”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/colorectal-cancer-vulnerabilities-dream-team/”,”publisher_year”:”Journal of Clinical Oncology, 2019″,”pub_med_id”:”30376427″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=30376427″},{“title”:”Smith JJ, Strombom P, Chow OS, Roxburgh CS, Lynn P, Eaton A, Widmar M, Ganesh K, Yaeger R, Cercek A, Weiser MR, Nash GM, Guillem JG, Temple LKF, Chalasani SB, Fuqua JL, Petkovska I, Wu AJ, Reyngold M, Vakiani E, Shia J, Segal NH, Smith JD, Crane C, Gollub MJ, Gonen M, Saltz LB, Garcia-Aguilar J, Paty PB. Assessment of a Watch-and-Wait Strategy for Rectal Cancer in Patients With a Complete Response After Neoadjuvant Therapy. JAMA Oncol. 2019 Jan 10:e185896.”,”type”:”publication”,”url”:”https://oncology.jamanetwork.com/article.aspx?doi=10.1001/jamaoncol.2018.5896″,”cancer_type_terms_string”:”Colorectal”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C Colorectal Cancer Dream Team: Targeting Genomic, Metabolic, and Immunological Vulnerabilities of Colorectal Cancer”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/colorectal-cancer-vulnerabilities-dream-team/”,”publisher_year”:”JAMA Oncology, 2019″,”pub_med_id”:”30629084″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=30629084″},{“title”:”Hamada T, Nowak JA, Masugi Y, Drew DA, Song M, Cao Y, Kosumi K, Mima K, Twombly TS, Liu L, Shi Y, da Silva A, Gu M, Li W, Nosho K, Keum N, Giannakis M, Meyerhardt JA, Wu K, Wang M, Chan AT, Giovannucci EL, Fuchs CS, Nishihara R, Zhang X, Ogino S. Smoking and Risk of Colorectal Cancer Sub-Classified by Tumor-Infiltrating T Cells. J Natl Cancer Inst. 2019 Jan 1;111(1):42-51.”,”type”:”publication”,”url”:”https://academic.oup.com/jnci/article/111/1/42/5127125″,”cancer_type_terms_string”:”Colorectal”,”treatment_type_terms_string”:”Immunotherapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C Colorectal Cancer Dream Team: Targeting Genomic, Metabolic, and Immunological Vulnerabilities of Colorectal Cancer”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/colorectal-cancer-vulnerabilities-dream-team/”,”publisher_year”:”Journal of the National Cancer Institute, 2019″,”pub_med_id”:”30312431″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=30312431″},{“title”:”Bolton KL, Gillis NK, Coombs CC, Takahashi K, Zehir A, Bejar R, Garcia-Manero G, Futreal A, Jensen BC, Diaz LA Jr, Gupta D, Mantha S, Klimek V, Papaemmanuil E, Levine R, Padron E. Managing Clonal Hematopoiesis in Patients With Solid Tumors. J Clin Oncol. 2019 Jan 1;37(1):7-11.”,”type”:”publication”,”url”:”https://ascopubs.org/doi/10.1200/JCO.18.00331″,”cancer_type_terms_string”:”Non – site Specific”,”treatment_type_terms_string”:”Immunotherapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C Colorectal Cancer Dream Team: Targeting Genomic, Metabolic, and Immunological Vulnerabilities of Colorectal Cancer”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/colorectal-cancer-vulnerabilities-dream-team/”,”publisher_year”:”Journal of Clinical Oncology, 2019″,”pub_med_id”:”30403571″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=30403571″},{“title”:”Gruosso T, Gigoux M, Manem VSK, Bertos N, Zuo D, Perlitch I, Saleh SMI, Zhao H, Souleimanova M, Johnson RM, Monette A, Ramos VM, Hallett MT, Stagg J, Lapointe R, Omeroglu A, Meterissian S, Buisseret L, Van den Eynden G, Salgado R, Guiot MC, Haibe-Kains B, Park M. Spatially distinct tumor immune microenvironments stratify triple-negative breast cancers. J Clin Invest. 2019 Apr 1;129(4):1785-1800.”,”type”:”publication”,”url”:”https://www.jci.org/articles/view/96313″,”cancer_type_terms_string”:”Breast”,”treatment_type_terms_string”:”Immunotherapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C Canada–Canadian Cancer Society Breast Cancer Dream Team: Translational Development of Novel Drugs Targeting Tumor Vulnerabilities”,”research_project_url”:”http://www.standuptocancer.ca/en/dream_teams/view/cbcf_breast_cancer_dream_team”,”publisher_year”:”Journal of Clinical Investigation, 2019″,”pub_med_id”:”30753167″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=30753167″},{“title”:”Yurgelun MB, Chittenden AB, Morales-Oyarvide V, Rubinson DA, Dunne RF, Kozak MM, Qian ZR, Welch MW, Brais LK, Da Silva A, Bui JL, Yuan C, Li T, Li W, Masuda A, Gu M, Bullock AJ, Chang DT, Clancy TE, Linehan DC, Findeis-Hosey JJ, Doyle LA, Thorner AR, Ducar MD, Wollison BM, Khalaf N, Perez K, Syngal S, Aguirre AJ, Hahn WC, Meyerson ML, Fuchs CS, Ogino S, Hornick JL, Hezel AF, Koong AC, Nowak JA, Wolpin BM. Germline cancer susceptibility gene variants, somatic second hits, and survival outcomes in patients with resected pancreatic cancer. Genet Med. 2019 Jan;21(1):213-223.”,”type”:”publication”,”url”:”https://www.nature.com/articles/s41436-018-0009-5″,”cancer_type_terms_string”:”Pancreatic”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–Lustgarten Foundation Pancreatic Cancer Interception Dream Team: Intercepting Pancreatic Cancer in High-Risk Cohorts”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/pancreatic-interception-high-risk-cohorts-dream-team/”,”publisher_year”:”Genetics in Medicine, 2019″,”pub_med_id”:”29961768″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=29961768″},{“title”:”Stoffel EM, McKernin SE, Brand R, Canto M, Goggins M, Moravek C, Nagarajan A, Petersen GM, Simeone DM, Yurgelun M, Khorana AA. Evaluating Susceptibility to Pancreatic Cancer: ASCO Provisional Clinical Opinion. J Clin Oncol. 2019 Jan 10;37(2):153-164.”,”type”:”publication”,”url”:”https://ascopubs.org/doi/10.1200/JCO.18.01489″,”cancer_type_terms_string”:”Pancreatic”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–Lustgarten Foundation Pancreatic Cancer Interception Dream Team: Intercepting Pancreatic Cancer in High-Risk Cohorts”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/pancreatic-interception-high-risk-cohorts-dream-team/”,”publisher_year”:”Journal of Clinical Oncology, 2019″,”pub_med_id”:”30457921″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=30457921″},{“title”:”Foster JB, Choudhari N, Perazzelli J, Storm J, Hofmann TJ, Jain P, Storm PB, Pardi N, Weissman D, Waanders AJ, Grupp SA, Karikó K, Resnick AC, Barrett DM. Purification of mRNA Encoding Chimeric Antigen Receptor Is Critical for Generation of a Robust T-Cell Response. Hum Gene Ther. 2019 Feb;30(2):168-178.”,”type”:”publication”,”url”:”https://www.liebertpub.com/doi/10.1089/hum.2018.145″,”cancer_type_terms_string”:”Non – site Specific”,”treatment_type_terms_string”:”Immunotherapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”St. Baldrick’s Foundation–SU2C Pediatric Cancer Dream Team: Immunogenomics to Create New Therapies for High-Risk Childhood Cancers”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/intractable-pediatric-cancers-dream-team/”,”publisher_year”:”Human Gene Therapy, 2019″,”pub_med_id”:”30024272″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=30024272″},{“title”:”Künkele A, Brown C, Beebe A, Mgebroff S, Johnson AJ, Taraseviciute A, Rolczynski LS, Chang CA, Finney OC, Park JR, Jensen MC. Manufacture of Chimeric Antigen Receptor T Cells from Mobilized Cyropreserved Peripheral Blood Stem Cell Units Depends on Monocyte Depletion. Biol Blood Marrow Transplant. 2019 Feb;25(2):223-232.”,”type”:”publication”,”url”:”https://www.bbmt.org/article/S1083-8791(18)30613-X/fulltext”,”cancer_type_terms_string”:”Non – site Specific”,”treatment_type_terms_string”:”Immunotherapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”St. Baldrick’s Foundation–SU2C Pediatric Cancer Dream Team: Immunogenomics to Create New Therapies for High-Risk Childhood Cancers”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/intractable-pediatric-cancers-dream-team/”,”publisher_year”:”Biology of Blood and Marrow Transplantation, 2019″,”pub_med_id”:”30315942″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=30315942″},{“title”:”Heitzeneder S, Sotillo E, Shern JF, Sindiri S, Xu P, Jones R, Pollak M, Noer PR, Lorette J, Fazli L, Alag A, Meltzer P, Lau C, Conover CA, Oxvig C, Sorensen PH, Maris JM, Khan J, Mackall CL. Pregnancy-Associated Plasma Protein-A (PAPP-A) in Ewing Sarcoma: Role in Tumor Growth and Immune Evasion. J Natl Cancer Inst. 2019 Jan 30.”,”type”:”publication”,”url”:”https://academic.oup.com/jnci/article-abstract/111/9/970/5304460?redirectedFrom=fulltext”,”cancer_type_terms_string”:”Sarcoma”,”treatment_type_terms_string”:”Immunotherapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”St. Baldrick’s Foundation–SU2C Pediatric Cancer Dream Team: Immunogenomics to Create New Therapies for High-Risk Childhood Cancers”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/intractable-pediatric-cancers-dream-team/”,”publisher_year”:”Journal of the National Cancer Institute, 2019″,”pub_med_id”:”30698726″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=30698726″},{“title”:”Majzner RG, Theruvath JL, Nellan A, Heitzeneder S, Cui Y, Mount CW, Rietberg SP, Linde MH, Xu P, Rota C, Sotillo E, Labanieh L, Lee DW, Orentas RJ, Dimitrov DS, Zhu Z, St Croix B, Delaidelli A, Sekunova A, Bonvini E, Mitra SS, Quezado MM, Majeti R, Monje M, Sorensen PH, Maris JM, Mackall CL. CAR T cells targeting B7-H3, a Pan-Cancer Antigen, Demonstrate Potent Preclinical Activity Against Pediatric Solid Tumors and Brain Tumors. Clin Cancer Res. 2019 Jan 17.”,”type”:”publication”,”url”:”https://clincancerres.aacrjournals.org/content/25/8/2560″,”cancer_type_terms_string”:”Brain/Nervous System, Pediatric – Solid Tumor”,”treatment_type_terms_string”:”Immunotherapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”St. Baldrick’s Foundation–SU2C Pediatric Cancer Dream Team: Immunogenomics to Create New Therapies for High-Risk Childhood Cancers”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/intractable-pediatric-cancers-dream-team/”,”publisher_year”:”Clinical Cancer Research, 2019″,”pub_med_id”:”30655315″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=30655315″},{“title”:”Blundell JR, Schwartz K, Francois D, Fisher DS, Sherlock G, Levy SF. The dynamics of adaptive genetic diversity during the early stages of clonal evolution. Nat Ecol Evol. 2019 Feb;3(2):293-301.”,”type”:”publication”,”url”:”https://www.nature.com/articles/s41559-018-0758-1″,”cancer_type_terms_string”:”Non – site Specific”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Convergence Team”,”research_project”:”SU2C–National Science Foundation Lung Cancer Convergence Research Team: Genetic, Epigenetic, and Immunological Underpinnings of Cancer Evolution Through Treatment”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/convergence-teams/cancer-evolution-convergence-team/”,”publisher_year”:”Nature Ecology & Evolution, 2019″,”pub_med_id”:”30598529″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=30598529″},{“title”:”Zhao J, Chen AX, Gartrell RD, Silverman AM, Aparicio L, Chu T, Bordbar D, Shan D, Samanamud J, Mahajan A, Filip I, Orenbuch R, Goetz M, Yamaguchi JT, Cloney M, Horbinski C, Lukas RV, Raizer J, Rae AI, Yuan J, Canoll P, Bruce JN, Saenger YM, Sims P, Iwamoto FM, Sonabend AM, Rabadan R. Immune and genomic correlates of response to anti-PD-1 immunotherapy in glioblastoma. Nat Med. 2019 Mar;25(3):462-469.”,”type”:”publication”,”url”:”https://www.nature.com/articles/s41591-019-0349-y”,”cancer_type_terms_string”:”Brain/Nervous System, Pediatric – Solid Tumor”,”treatment_type_terms_string”:”Immunotherapy”,”grant_type_terms_string”:”Convergence Team”,”research_project”:”SU2C–National Science Foundation Drug Combinations Convergence Research Team: Rational Design of Anticancer Drug Combinations with Dynamic Multi-Dimensional Input”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/convergence-teams/rational-design-of-anticancer-drug-combinations-convergence-research-team/”,”publisher_year”:”Nature Medicine, 2019″,”pub_med_id”:”30742119″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=30742119″},{“title”:”Nogalski MT, Solovyov A, Kulkarni AS, Desai N, Oberstein A, Levine AJ, Ting DT, Shenk T, Greenbaum BD. A tumor-specific endogenous repetitive element is induced by herpesviruses. Nat Commun. 2019 Jan 9;10(1):90.”,”type”:”publication”,”url”:”https://www.nature.com/articles/s41467-018-07944-x”,”cancer_type_terms_string”:”Non – site Specific”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Convergence Team”,”research_project”:”SU2C–National Science Foundation–Lustgarten Foundation Pancreatic Cancer Convergence Research Team: Liberating T-Cell Mediated Immunity to Pancreatic Cancer”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/convergence-teams/mediated-immunity-in-pancreatic-cancer-convergence-team/”,”publisher_year”:”Nature Communications, 2019″,”pub_med_id”:”30626867″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=30626867″},{“title”:”Sethna Z, Elhanati Y, Callan CG Jr, Walczak AM, Mora T. OLGA: fast computation of generation probabilities of B- and T-cell receptor amino acid sequences and motifs. Bioinformatics. 2019 Jan 18.”,”type”:”publication”,”url”:”https://academic.oup.com/bioinformatics/article/35/17/2974/5292315″,”cancer_type_terms_string”:”Non – site Specific”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Convergence Team”,”research_project”:”SU2C–National Science Foundation–Lustgarten Foundation Pancreatic Cancer Convergence Research Team: Liberating T-Cell Mediated Immunity to Pancreatic Cancer”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/convergence-teams/mediated-immunity-in-pancreatic-cancer-convergence-team/”,”publisher_year”:”Bioinformatics, 2019″,”pub_med_id”:”30657870″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=30657870″},{“title”:”Shi Y, Gao W, Lytle NK, Huang P, Yuan X, Dann AM, Ridinger-Saison M, DelGiorno KE, Antal CE, Liang G, Atkins AR, Erikson G, Sun H, Meisenhelder J, Terenziani E, Woo G, Fang L, Santisakultarm TP, Manor U, Xu R, Becerra CR, Borazanci E, Von Hoff DD, Grandgenett PM, Hollingsworth MA, Leblanc M, Umetsu SE, Collisson EA, Scadeng M, Lowy AM, Donahue TR, Reya T, Downes M, Evans RM, Wahl GM, Pawson T, Tian R, Hunter T. Targeting LIF-mediated paracrine interaction for pancreatic cancer therapy and monitoring. Nature. 2019 May;569(7754):131-135.”,”type”:”publication”,”url”:”https://www.nature.com/articles/s41586-019-1130-6″,”cancer_type_terms_string”:”Pancreatic”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–Cancer Research UK–Lustgarten Foundation Pancreatic Cancer Dream Team: Reprogramming of Transcriptional Circuitry to Control Pancreatic Cancer”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/reprogramming-of-pancreatic-cancer-dream-team/”,”publisher_year”:”Nature, 2019″,”pub_med_id”:”30996350″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=30996350″},{“title”:”Lytle NK, Ferguson LP, Rajbhandari N, Gilroy K, Fox R, Deshpande, Schürch CM, Hamilton M, Robertson N, Lin W, Noel P, Wartenberg M, Zlobec I, Eichmann M, Galván JA, Karamitopoulou E, Gilderman T, Esparza LA, Shima Y, Spahn P, French R, Lewis NE, Fisch KM, Sasik R, Rosenthal SB, Kritzik M, Von Hoff D, Han H, Ideker T, Deshpande AJ, Lowy AM, Adams PD, Reya T. A Multiscale Map of the Stem Cell State in Pancreatic Adenocarcinoma. Cell. 2019 Apr 18;177(3):572-586.e22.”,”type”:”publication”,”url”:”https://www.cell.com/cell/fulltext/S0092-8674(19)30272-7?_returnURL=https%3A%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2FS0092867419302727%3Fshowall%3Dtrue”,”cancer_type_terms_string”:”Pancreatic”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–Cancer Research UK–Lustgarten Foundation Pancreatic Cancer Dream Team: Reprogramming of Transcriptional Circuitry to Control Pancreatic Cancer”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/reprogramming-of-pancreatic-cancer-dream-team/”,”publisher_year”:”Cell, 2019″,”pub_med_id”:”30955884″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=30955884″},{“title”:”García-Cañaveras JC, Chen L, Rabinowitz JD. The Tumor Metabolic Microenvironment: Lessons from Lactate. Cancer Res. 2019 Jul 1;79(13):3155-3162.”,”type”:”publication”,”url”:”https://cancerres.aacrjournals.org/content/79/13/3155″,”cancer_type_terms_string”:”Non – site Specific”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–Cancer Research UK–Lustgarten Foundation Pancreatic Cancer Dream Team: Reprogramming of Transcriptional Circuitry to Control Pancreatic Cancer”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/reprogramming-of-pancreatic-cancer-dream-team/”,”publisher_year”:”Cancer Research, 2019″,”pub_med_id”:”31171526″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=31171526″},{“title”:”Noel P, Von Hoff DD, Saluja AK, Velagapudi M, Borazanci E, Han H. Triptolide and Its Derivatives as Cancer Therapies. Trends Pharmacol Sci. 2019 May;40(5):327-341.”,”type”:”publication”,”url”:”https://www.cell.com/trends/pharmacological-sciences/fulltext/S0165-6147(19)30044-6?_returnURL=https%3A%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2FS0165614719300446%3Fshowall%3Dtrue”,”cancer_type_terms_string”:”Non – site Specific”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–Cancer Research UK–Lustgarten Foundation Pancreatic Cancer Dream Team: Reprogramming of Transcriptional Circuitry to Control Pancreatic Cancer”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/reprogramming-of-pancreatic-cancer-dream-team/”,”publisher_year”:”Trends in Pharmacological Science, 2019″,”pub_med_id”:”30975442″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=30975442″},{“title”:”Ma HS, Poudel B, Torres ER, Sidhom JW, Robinson TM, Christmas B, Scott B, Cruz K, Woolman S, Wall VZ, Armstrong T, Jaffee EM. A CD40 Agonist and PD-1 Antagonist Antibody Reprogram the Microenvironment of Nonimmunogenic Tumors to Allow T-cell-Mediated Anticancer Activity. Cancer Immunol Res. 2019 Mar;7(3):428-442.”,”type”:”publication”,”url”:”https://cancerimmunolres.aacrjournals.org/content/7/3/428″,”cancer_type_terms_string”:”Non – site Specific”,”treatment_type_terms_string”:”Immunotherapy”,”grant_type_terms_string”:””,”research_project”:”SU2C–Lustgarten Foundation Pancreatic Cancer Dream Team: Transforming Pancreatic Cancer to Treatable Disease”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/transforming-pancreatic-cancer-dream-team/”,”publisher_year”:”Cancer Immunology Research, 2019″,”pub_med_id”:”30642833″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=30642833″},{“title”:”Abe T, Blackford AL, Tamura K, Ford M, McCormick P, Chuidian M, Almario JA, Borges M, Lennon AM, Shin EJ, Klein AP, Hruban RH, Canto MI, Goggins M. Deleterious Germline Mutations Are a Risk Factor for Neoplastic Progression Among High-Risk Individuals Undergoing Pancreatic Surveillance. J Clin Oncol. 2019 May 1;37(13):1070-1080.”,”type”:”publication”,”url”:”https://ascopubs.org/doi/10.1200/JCO.18.01512″,”cancer_type_terms_string”:”Pancreatic”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–Lustgarten Foundation Pancreatic Cancer Interception Dream Team: Intercepting Pancreatic Cancer in High-Risk Cohorts”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/pancreatic-interception-high-risk-cohorts-dream-team/”,”publisher_year”:”Journal of Clinical Oncology, 2019″,”pub_med_id”:”30883245″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=30883245″},{“title”:”Chu LC, Park S, Kawamoto S, Fouladi DF, Shayesteh S, Zinreich ES, Graves JS, Horton KM, Hruban RH, Yuille AL, Kinzler KW, Vogelstein B, Fishman EK. Utility of CT Radiomics Features in Differentiation of Pancreatic Ductal Adenocarcinoma From Normal Pancreatic Tissue. AJR Am J Roentgenol. 2019 Aug;213(2):349-357.”,”type”:”publication”,”url”:”https://www.ajronline.org/doi/10.2214/AJR.18.20901″,”cancer_type_terms_string”:”Pancreatic”,”treatment_type_terms_string”:”Screening/ Early Detection”,”grant_type_terms_string”:””,”research_project”:”SU2C–Lustgarten Foundation Pancreatic Cancer Interception Dream Team: Intercepting Pancreatic Cancer in High-Risk Cohorts”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/pancreatic-interception-high-risk-cohorts-dream-team/”,”publisher_year”:”AJR American Journal of Roentgenology, 2019″,”pub_med_id”:”31012758″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=31012758″},{“title”:”Beane JE, Mazzilli SA, Campbell JD, Duclos G, Krysan K, Moy C, Perdomo C, Schaffer M, Liu G, Zhang S, Liu H, Vick J, Dhillon SS, Platero SJ, Dubinett SM, Stevenson C, Reid ME, Lenburg ME, Spira AE. Molecular subtyping reveals immune alterations associated with progression of bronchial premalignant lesions. Nat Commun. 2019 Apr 23;10(1):1856.”,”type”:”publication”,”url”:”https://www.nature.com/articles/s41467-019-09834-2″,”cancer_type_terms_string”:”Lung”,”treatment_type_terms_string”:”Immunotherapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–LUNGevity Foundation–American Lung Association Lung Cancer Interception Dream Team: Intercept Lung Cancer Through Immune, Imaging, and Molecular Evaluation (InTIME)”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/lung-cancer-interception-intime-dream-team/”,”publisher_year”:”Nature Communications, 2019″,”pub_med_id”:”31015447″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=31015447″},{“title”:”Rosenthal R, Cadieux EL, Salgado R, Bakir MA, Moore DA, Hiley CT, Lund T, Tanić M, Reading JL, Joshi K, Henry JY, Ghorani E, Wilson GA, Birkbak NJ, Jamal-Hanjani M, Veeriah S, Szallasi Z, Loi S, Hellmann MD, Feber A, Chain B, Herrero J, Quezada SA, Demeulemeester J, Van Loo P, Beck S, McGranahan N, Swanton C; TRACERx consortium. Neoantigen-directed immune escape in lung cancer evolution. Nature. 2019 Mar;567(7749):479-485.”,”type”:”publication”,”url”:”https://www.nature.com/articles/s41586-019-1032-7″,”cancer_type_terms_string”:”Lung”,”treatment_type_terms_string”:”Immunotherapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–LUNGevity Foundation–American Lung Association Lung Cancer Interception Dream Team: Intercept Lung Cancer Through Immune, Imaging, and Molecular Evaluation (InTIME)”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/lung-cancer-interception-intime-dream-team/”,”publisher_year”:”Nature, 2019″,”pub_med_id”:”30894752″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=30894752″},{“title”:”Teixeira VH, Pipinikas CP, Pennycuick A, Lee-Six H, Chandrasekharan D, Beane J, Morris TJ, Karpathakis A, Feber A, Breeze CE, Ntolios P, Hynds RE, Falzon M, Capitanio A, Carroll B, Durrenberger PF, Hardavella G, Brown JM, Lynch AG, Farmery H, Paul DS, Chambers RC, McGranahan N, Navani N, Thakrar RM, Swanton C, Beck S, George PJ, Spira A, Campbell P, Thirlwell C, Janes SM. Deciphering the genomic, epigenomic, and transcriptomic landscapes of pre-invasive lung cancer lesions. Nat Med. 2019 Mar;25(3):517-525.”,”type”:”publication”,”url”:”https://www.nature.com/articles/s41591-018-0323-0″,”cancer_type_terms_string”:”Lung”,”treatment_type_terms_string”:”Epigenetic Therapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–LUNGevity Foundation–American Lung Association Lung Cancer Interception Dream Team: Intercept Lung Cancer Through Immune, Imaging, and Molecular Evaluation (InTIME)”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/lung-cancer-interception-intime-dream-team/”,”publisher_year”:”Nature Medicine, 2019″,”pub_med_id”:”30664780″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=30664780″},{“title”:”Cristiano S, Leal A, Phallen J, Fiksel J, Adleff V, Bruhm DC, Jensen SØ, Medina JE, Hruban C, White JR, Palsgrove DN, Niknafs N, Anagnostou V, Forde P, Naidoo J, Marrone K, Brahmer J, Woodward BD, Husain H, van Rooijen KL, Ørntoft MW, Madsen AH, van de Velde CJH, Verheij M, Cats A, Punt CJA, Vink GR, van Grieken NCT, Koopman M, Fijneman RJA, Johansen JS, Nielsen HJ, Meijer GA, Andersen CL, Scharpf RB, Velculescu VE. Genome-wide cell-free DNA fragmentation in patients with cancer. Nature. 2019 Jun;570(7761):385-389.”,”type”:”publication”,”url”:”https://www.nature.com/articles/s41586-019-1272-6″,”cancer_type_terms_string”:”Non – site Specific”,”treatment_type_terms_string”:”Screening/ Early Detection”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–LUNGevity Foundation–American Lung Association Lung Cancer Interception Dream Team: Intercept Lung Cancer Through Immune, Imaging, and Molecular Evaluation (InTIME)”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/lung-cancer-interception-intime-dream-team/”,”publisher_year”:”Nature, 2019″,”pub_med_id”:”31142840″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=31142840″},{“title”:”Anagnostou V, Forde PM, White JR, Niknafs N, Hruban C, Naidoo J, Marrone K, Sivakumar IKA, Bruhm DC, Rosner S, Phallen J, Leal A, Adleff V, Smith KN, Cottrell TR, Rhymee L, Palsgrove DN, Hann CL, Levy B, Feliciano J, Georgiades C, Verde F, Illei P, Li QK, Gabrielson E, Brock MV, Isbell JM, Sauter JL, Taube J, Scharpf RB, Karchin R, Pardoll DM, Chaft JE, Hellmann MD, Brahmer JR, Velculescu VE. Dynamics of Tumor and Immune Responses during Immune Checkpoint Blockade in Non-Small Cell Lung Cancer. Cancer Res. 2019 Mar 15;79(6):1214-1225.”,”type”:”publication”,”url”:”https://cancerres.aacrjournals.org/content/79/6/1214″,”cancer_type_terms_string”:”Lung”,”treatment_type_terms_string”:”Immunotherapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–LUNGevity Foundation–American Lung Association Lung Cancer Interception Dream Team: Intercept Lung Cancer Through Immune, Imaging, and Molecular Evaluation (InTIME)”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/lung-cancer-interception-intime-dream-team/”,”publisher_year”:”Cancer Research, 2019″,”pub_med_id”:”30541742″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=30541742″},{“title”:”Schalper KA, Rodriguez-Ruiz ME, Diez-Valle R, López-Janeiro A, Porciuncula A, Idoate MA, Inogés S, de Andrea C, López-Diaz de Cerio A, Tejada S, Berraondo P, Villarroel-Espindola F, Choi J, Gúrpide A, Giraldez M, Goicoechea I, Gallego Perez-Larraya J, Sanmamed MF, Perez-Gracia JL, Melero I. Neoadjuvant nivolumab modifies the tumor immune microenvironment in resectable glioblastoma. Nat Med. 2019 Mar;25(3):470-476.”,”type”:”publication”,”url”:”https://www.nature.com/articles/s41591-018-0339-5″,”cancer_type_terms_string”:”Brain/Nervous System”,”treatment_type_terms_string”:”Immunotherapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C Colorectal Cancer Dream Team: Targeting Genomic, Metabolic, and Immunological Vulnerabilities of Colorectal Cancer”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/colorectal-cancer-vulnerabilities-dream-team/”,”publisher_year”:”Nature Medicine, 2019″,”pub_med_id”:”30742120″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=30742120″},{“title”:”Smith JJ, Strombom P, Chow OS, Roxburgh CS, Lynn P, Eaton A, Widmar M, Ganesh K, Yaeger R, Cercek A, Weiser MR, Nash GM, Guillem JG, Temple LKF, Chalasani SB, Fuqua JL, Petkovska I, Wu AJ, Reyngold M, Vakiani E, Shia J, Segal NH, Smith JD, Crane C, Gollub MJ, Gonen M, Saltz LB, Garcia-Aguilar J, Paty PB. Assessment of a Watch-and-Wait Strategy for Rectal Cancer in Patients With a Complete Response After Neoadjuvant Therapy. JAMA Oncol. 2019 Apr 1;5(4):e185896.”,”type”:”publication”,”url”:”https://jamanetwork.com/journals/jamaoncology/fullarticle/2720474″,”cancer_type_terms_string”:”Colorectal”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C Colorectal Cancer Dream Team: Targeting Genomic, Metabolic, and Immunological Vulnerabilities of Colorectal Cancer”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/colorectal-cancer-vulnerabilities-dream-team/”,”publisher_year”:”JAMA Oncology, 2019″,”pub_med_id”:”30629084″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=30629084″},{“title”:”Ngo B, Van Riper JM, Cantley LC, Yun J. Targeting cancer vulnerabilities with high-dose vitamin C. Nat Rev Cancer. 2019 May;19(5):271-282.”,”type”:”publication”,”url”:”https://www.nature.com/articles/s41568-019-0135-7″,”cancer_type_terms_string”:”Non – site Specific”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C Colorectal Cancer Dream Team: Targeting Genomic, Metabolic, and Immunological Vulnerabilities of Colorectal Cancer”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/colorectal-cancer-vulnerabilities-dream-team/”,”publisher_year”:”Nature Review Cancer, 2019″,”pub_med_id”:”30967651″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=30967651″},{“title”:”Goncalves MD, Lu C, Tutnauer J, Hartman TE, Hwang SK, Murphy CJ, Pauli C, Morris R, Taylor S, Bosch K, Yang S, Wang Y, Van Riper J, Lekaye HC, Roper J, Kim Y, Chen Q, Gross SS, Rhee KY, Cantley LC, Yun J. High-fructose corn syrup enhances intestinal tumor growth in mice. Science. 2019 Mar 22;363(6433):1345-1349.”,”type”:”publication”,”url”:”https://science.sciencemag.org/content/363/6433/1345″,”cancer_type_terms_string”:”Other”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C Colorectal Cancer Dream Team: Targeting Genomic, Metabolic, and Immunological Vulnerabilities of Colorectal Cancer”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/colorectal-cancer-vulnerabilities-dream-team/”,”publisher_year”:”Science, 2019″,”pub_med_id”:”30898933″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=30898933″},{“title”:”Wasserman I, Lee LH, Ogino S, Marco MR, Wu C, Chen X, Datta J, Sadot E, Szeglin B, Guillem JG, Paty PB, Weiser MR, Nash GM, Saltz L, Barlas A, Manova-Todorova K, Uppada SPB, Elghouayel AE, Ntiamoah P, Glickman JN, Hamada T, Kosumi K, Inamura K, Chan AT, Nishihara R, Cercek A, Ganesh K, Kemeny NE, Dhawan P, Yaeger R, Sawyers CL, Garcia-Aguilar J, Giannakis M, Shia J, Smith JJ. SMAD4 Loss in Colorectal Cancer Patients Correlates with Recurrence, Loss of Immune Infiltrate, and Chemoresistance. Clin Cancer Res. 2019 Mar 15;25(6):1948-1956.”,”type”:”publication”,”url”:”https://clincancerres.aacrjournals.org/content/25/6/1948″,”cancer_type_terms_string”:”Colorectal”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C Colorectal Cancer Dream Team: Targeting Genomic, Metabolic, and Immunological Vulnerabilities of Colorectal Cancer”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/colorectal-cancer-vulnerabilities-dream-team/”,”publisher_year”:”Clinical Cancer Research, 2019″,”pub_med_id”:”30587545″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=30587545″},{“title”:”Yang W, Liu L, Keum N, Qian ZR, Nowak JA, Hamada T, Song M, Cao Y, Nosho K, Smith-Warner SA, Zhang S, Masugi Y, Ng K, Kosumi K, Ma Y, Garrett WS, Wang M, Nan H, Giannakis M, Meyerhardt JA, Chan AT, Fuchs CS, Nishihara R, Wu K, Giovannucci EL, Ogino S, Zhang X. Calcium Intake and Risk of Colorectal Cancer According to Tumor-infiltrating T Cells. Cancer Prev Res (Phila). 2019 May;12(5):283-294.”,”type”:”publication”,”url”:”https://cancerpreventionresearch.aacrjournals.org/content/12/5/283″,”cancer_type_terms_string”:”Colorectal”,”treatment_type_terms_string”:”Immunotherapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C Colorectal Cancer Dream Team: Targeting Genomic, Metabolic, and Immunological Vulnerabilities of Colorectal Cancer”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/colorectal-cancer-vulnerabilities-dream-team/”,”publisher_year”:”Cancer Prevention Research, 2019″,”pub_med_id”:”30760501″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=30760501″},{“title”:”Bolton KL, Gillis NK, Coombs CC, Takahashi K, Zehir A, Bejar R, Garcia-Manero G, Futreal A, Jensen BC, Diaz LA Jr, Gupta D, Mantha S, Klimek V, Papaemmanuil E, Levine R, Padron E. Managing Clonal Hematopoiesis in Patients With Solid Tumors. J Clin Oncol. 2019 Jan 1;37(1):7-11.”,”type”:”publication”,”url”:”https://ascopubs.org/doi/10.1200/JCO.18.00331″,”cancer_type_terms_string”:”Non – site Specific”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C Colorectal Cancer Dream Team: Targeting Genomic, Metabolic, and Immunological Vulnerabilities of Colorectal Cancer”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/colorectal-cancer-vulnerabilities-dream-team/”,”publisher_year”:”Journal of Clinical Oncology, 2019″,”pub_med_id”:”30403571″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=30403571″},{“title”:”Smith KN, Llosa NJ, Cottrell TR, Siegel N, Fan H, Suri P, Chan HY, Guo H, Oke T, Awan AH, Verde F, Danilova L, Anagnostou V, Tam AJ, Luber BS, Bartlett BR, Aulakh LK, Sidhom JW, Zhu Q, Sears CL, Cope L, Sharfman WH, Thompson ED, Riemer J, Marrone KA, Naidoo J, Velculescu VE, Forde PM, Vogelstein B, Kinzler KW, Papadopoulos N, Durham JN, Wang H, Le DT, Justesen S, Taube JM, Diaz LA Jr, Brahmer JR, Pardoll DM, Anders RA, Housseau F. Persistent mutant oncogene specific T cells in two patients benefitting from anti-PD-1. J Immunother Cancer. 2019 Feb 11;7(1):40.”,”type”:”publication”,”url”:”https://jitc.biomedcentral.com/articles/10.1186/s40425-018-0492-x”,”cancer_type_terms_string”:”Lung”,”treatment_type_terms_string”:”Immunotherapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C Colorectal Cancer Dream Team: Targeting Genomic, Metabolic, and Immunological Vulnerabilities of Colorectal Cancer”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/colorectal-cancer-vulnerabilities-dream-team/”,”publisher_year”:”Journal for Immunotherapy of Cancer, 2019″,”pub_med_id”:”30744692″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=30744692″},{“title”:”Ganesh K, Stadler ZK, Cercek A, Mendelsohn RB, Shia J, Segal NH, Diaz LA Jr. Immunotherapy in colorectal cancer: rationale, challenges and potential. Nat Rev Gastroenterol Hepatol. 2019 Jun;16(6):361-375.”,”type”:”publication”,”url”:”https://www.nature.com/articles/s41575-019-0126-x”,”cancer_type_terms_string”:”Colorectal”,”treatment_type_terms_string”:”Immunotherapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C Colorectal Cancer Dream Team: Targeting Genomic, Metabolic, and Immunological Vulnerabilities of Colorectal Cancer”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/colorectal-cancer-vulnerabilities-dream-team/”,”publisher_year”:”Nature Reviews. Gastroenterology & Hepatology, 2019″,”pub_med_id”:”30886395″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=30886395″},{“title”:”Middha S, Yaeger R, Shia J, Stadler ZK, King S, Guercio S, Paroder V, Bates DDB, Rana S, Diaz LA Jr, Saltz L, Segal N, Ladanyi M, Zehir A, Hechtman JF. Majority of B2M-Mutant and -Deficient Colorectal Carcinomas Achieve Clinical Benefit From Immune Checkpoint Inhibitor Therapy and Are Microsatellite Instability-High. JCO Precis Oncol. 2019;3.”,”type”:”publication”,”url”:”https://ascopubs.org/doi/10.1200/PO.18.00321″,”cancer_type_terms_string”:”Colorectal”,”treatment_type_terms_string”:”Immunotherapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C Colorectal Cancer Dream Team: Targeting Genomic, Metabolic, and Immunological Vulnerabilities of Colorectal Cancer”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/colorectal-cancer-vulnerabilities-dream-team/”,”publisher_year”:”JCO Precision Oncology, 2019″,”pub_med_id”:”31008436″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=31008436″},{“title”:”Mandal R, Samstein RM, Lee KW, Havel JJ, Wang H, Krishna C, Sabio EY, Makarov V, Kuo F, Blecua P, Ramaswamy AT, Durham JN, Bartlett B, Ma X, Srivastava R, Middha S, Zehir A, Hechtman JF, Morris LG, Weinhold N, Riaz N, Le DT, Diaz LA Jr, Chan TA. Genetic diversity of tumors with mismatch repair deficiency influences anti-PD-1 immunotherapy response. Science. 2019 May 3;364(6439):485-491.”,”type”:”publication”,”url”:”https://science.sciencemag.org/content/364/6439/485″,”cancer_type_terms_string”:”Non – site Specific”,”treatment_type_terms_string”:”Immunotherapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C Colorectal Cancer Dream Team: Targeting Genomic, Metabolic, and Immunological Vulnerabilities of Colorectal Cancer”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/colorectal-cancer-vulnerabilities-dream-team/”,”publisher_year”:”Science, 2019″,”pub_med_id”:”31048490″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=31048490″},{“title”:”Negri GL, Grande BM, Delaidelli A, El-Naggar A, Cochrane D, Lau CC, Triche TJ, Moore RA, Jones SJ, Montpetit A, Marra MA, Malkin D, Morin RD, Sorensen PH. Integrative genomic analysis of matched primary and metastatic pediatric osteosarcoma. J Pathol. 2019 Jun 24.”,”type”:”publication”,”url”:”https://onlinelibrary.wiley.com/doi/abs/10.1002/path.5319″,”cancer_type_terms_string”:”Pediatric – Solid Tumor”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”St. Baldrick’s Foundation–SU2C Pediatric Cancer Dream Team: Immunogenomics to Create New Therapies for High-Risk Childhood Cancers”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/intractable-pediatric-cancers-dream-team/”,”publisher_year”:”Journal of Pathology, 2019″,”pub_med_id”:”31236944″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=31236944″},{“title”:”Hernandez R, Walker KL, Grudzinski JJ, Aluicio-Sarduy E, Patel R, Zahm CD, Pinchuk AN, Massey CF, Bitton AN, Brown RJ, Sondel PM, Morris ZS, Engle JW, Capitini CM, Weichert JP. 90Y-NM600 targeted radionuclide therapy induces immunologic memory in syngeneic models of T-cell Non-Hodgkin’s Lymphoma. Commun Biol. 2019 Feb 26;2:79.”,”type”:”publication”,”url”:”https://www.nature.com/articles/s42003-019-0327-4″,”cancer_type_terms_string”:”Lymphoma”,”treatment_type_terms_string”:”Radiation Therapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”St. Baldrick’s Foundation–SU2C Pediatric Cancer Dream Team: Immunogenomics to Create New Therapies for High-Risk Childhood Cancers”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/intractable-pediatric-cancers-dream-team/”,”publisher_year”:”Communications Biology, 2019″,”pub_med_id”:”30820474″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=30820474″},{“title”:”Voeller J, Sondel PM. Advances in Anti-GD2 Immunotherapy for Treatment of High-risk Neuroblastoma. J Pediatr Hematol Oncol. 2019 Apr;41(3):163-169.”,”type”:”publication”,”url”:”https://insights.ovid.com/crossref?an=00043426-201904000-00001″,”cancer_type_terms_string”:”Pediatric – Solid Tumor”,”treatment_type_terms_string”:”Immunotherapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”St. Baldrick’s Foundation–SU2C Pediatric Cancer Dream Team: Immunogenomics to Create New Therapies for High-Risk Childhood Cancers”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/intractable-pediatric-cancers-dream-team/”,”publisher_year”:”Journal of Pediatric Hematology/Oncology, 2019″,”pub_med_id”:”30897608″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=30897608″},{“title”:”Vladoiu MC, El-Hamamy I, Donovan LK, Farooq H, Holgado BL, Sundaravadanam Y, Ramaswamy V, Hendrikse LD, Kumar S, Mack SC, Lee JJY, Fong V, Juraschka K, Przelicki D, Michealraj A, Skowron P, Luu B, Suzuki H, Morrissy AS, Cavalli FMG, Garzia L, Daniels C, Wu X, Qazi MA, Singh SK, Chan JA, Marra MA, Malkin D, Dirks P, Heisler L, Pugh T, Ng K, Notta F, Thompson EM, Kleinman CL, Joyner AL, Jabado N, Stein L, Taylor MD. Childhood cerebellar tumours mirror conserved fetal transcriptional programs. Nature. 2019 Aug;572(7767):67-73.”,”type”:”publication”,”url”:”https://www.nature.com/articles/s41586-019-1158-7″,”cancer_type_terms_string”:”Pediatric – Solid Tumor”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”St. Baldrick’s Foundation–SU2C Pediatric Cancer Dream Team: Immunogenomics to Create New Therapies for High-Risk Childhood Cancers”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/intractable-pediatric-cancers-dream-team/”,”publisher_year”:”Nature, 2019″,”pub_med_id”:”31043743″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=31043743″},{“title”:”Shusterman S, Naranjo A, Van Ryn C, Hank JA, Parisi MT, Shulkin BL, Servaes S, London WB, Shimada H, Gan J, Gillies SD, Maris JM, Park JR, Sondel PM. Antitumor Activity and Tolerability of hu14.18-IL2 with GMCSF and Isotretinoin in Recurrent or Refractory Neuroblastoma: A Children’s Oncology Group Phase II Study. Clin Cancer Res. 2019 Jul 29.”,”type”:”publication”,”url”:”https://clincancerres.aacrjournals.org/content/25/20/6044″,”cancer_type_terms_string”:”Pediatric – Solid Tumor”,”treatment_type_terms_string”:”Immunotherapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”St. Baldrick’s Foundation–SU2C Pediatric Cancer Dream Team: Immunogenomics to Create New Therapies for High-Risk Childhood Cancers”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/intractable-pediatric-cancers-dream-team/”,”publisher_year”:”Clinical Cancer Research, 2019″,”pub_med_id”:”31358541″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=31358541″},{“title”:”Erbe AK, Wang W, Carmichael L, Hoefges A, Grzywacz B, Reville PK, Ranheim EA, Hank JA, Kim K, Seo S, Mendonca EA, Song Y, Kenkre VP, Hong F, Gascoyne RD, Paietta E, Horning SJ, Miller JS, Kahl B, Sondel PM. Follicular lymphoma patients with KIR2DL2 and KIR3DL1 and their ligands (HLA-C1 and HLA-Bw4) show improved outcome when receiving rituximab. J Immunother Cancer. 2019 Mar 12;7(1):70.”,”type”:”publication”,”url”:”https://jitc.biomedcentral.com/articles/10.1186/s40425-019-0538-8″,”cancer_type_terms_string”:”Lymphoma”,”treatment_type_terms_string”:”Immunotherapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”St. Baldrick’s Foundation–SU2C Pediatric Cancer Dream Team: Immunogenomics to Create New Therapies for High-Risk Childhood Cancers”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/intractable-pediatric-cancers-dream-team/”,”publisher_year”:”Journal for Immunotherapy of Cancer, 2019″,”pub_med_id”:”30871628″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=30871628″},{“title”:”El-Naggar AM, Clarkson PW, Negri GL, Turgu B, Zhang F, Anglesio MS, Sorensen PH. HACE1 is a potential tumor suppressor in osteosarcoma. Cell Death Dis. 2019 Jan 8;10(1):21.”,”type”:”publication”,”url”:”https://www.nature.com/articles/s41419-018-1276-4″,”cancer_type_terms_string”:”Sarcoma”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”St. Baldrick’s Foundation–SU2C Pediatric Cancer Dream Team: Immunogenomics to Create New Therapies for High-Risk Childhood Cancers”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/intractable-pediatric-cancers-dream-team/”,”publisher_year”:”Cell Death & Disease, 2019″,”pub_med_id”:”30622235″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=30622235″},{“title”:”Grigor EJM, Fergusson D, Kekre N, Montroy J, Atkins H, Seftel MD, Daugaard M, Presseau J, Thavorn K, Hutton B, Holt RA, Lalu MM. Risks and Benefits of Chimeric Antigen Receptor T-Cell (CAR-T) Therapy in Cancer: A Systematic Review and Meta-Analysis. Transfus Med Rev. 2019 Apr;33(2):98-110.”,”type”:”publication”,”url”:”https://www.sciencedirect.com/science/article/pii/S088779631830172X?via%3Dihub”,”cancer_type_terms_string”:””,”treatment_type_terms_string”:”Immunotherapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”St. Baldrick’s Foundation–SU2C Pediatric Cancer Dream Team: Immunogenomics to Create New Therapies for High-Risk Childhood Cancers”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/intractable-pediatric-cancers-dream-team/”,”publisher_year”:”Transfusion Medicine Reviews, 2019″,”pub_med_id”:”30948292″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=30948292″},{“title”:”Misale S, Fatherree JP, Cortez E, Li C, Bilton S, Timonina D, Myers DT, Lee D, Gomez-Caraballo M, Greenberg M, Nangia V, Greninger P, Egan RK, McClanaghan J, Stein GT, Murchie E, Zarrinkar PP, Janes MR, Li LS, Liu Y, Hata AN, Benes CH. KRAS G12C NSCLC Models Are Sensitive to Direct Targeting of KRAS in Combination with PI3K Inhibition. Clin Cancer Res. 2019 Jan 15;25(2):796-807.”,”type”:”publication”,”url”:”https://clincancerres.aacrjournals.org/content/25/2/796″,”cancer_type_terms_string”:”Lung”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–American Cancer Society Lung Cancer Dream Team: Targeting KRAS Mutant Lung Cancers”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/targeting-kras-mutant-lung-cancers-dream-team/”,”publisher_year”:”Clinical Cancer Research, 2019″,”pub_med_id”:”30327306″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=30327306″},{“title”:”Anagnostou V, Forde PM, White JR, Niknafs N, Hruban C, Naidoo J, Marrone K, Sivakumar IKA, Bruhm DC, Rosner S, Phallen J, Leal A, Adleff V, Smith KN, Cottrell TR, Rhymee L, Palsgrove DN, Hann CL, Levy B, Feliciano J, Georgiades C, Verde F, Illei P, Li QK, Gabrielson E, Brock MV, Isbell JM, Sauter JL, Taube J, Scharpf RB, Karchin R, Pardoll DM, Chaft JE, Hellmann MD, Brahmer JR, Velculescu VE. Dynamics of Tumor and Immune Responses during Immune Checkpoint Blockade in Non-Small Cell Lung Cancer. Cancer Res. 2019 Mar 15;79(6):1214-1225.”,”type”:”publication”,”url”:”https://cancerres.aacrjournals.org/content/79/6/1214″,”cancer_type_terms_string”:”Lung”,”treatment_type_terms_string”:”Immunotherapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–American Cancer Society Lung Cancer Dream Team: Targeting KRAS Mutant Lung Cancers”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/targeting-kras-mutant-lung-cancers-dream-team/”,”publisher_year”:”Cancer Research, 2019″,”pub_med_id”:”30541742″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=30541742″},{“title”:”Datar I, Sanmamed MF, Wang J, Henick BS, Choi J, Badri T, Dong W, Mani N, Toki M, Mejías LD, Lozano MD, Perez-Gracia JL, Velcheti V, Hellmann MD, Gainor JF, McEachern K, Jenkins D, Syrigos K, Politi K, Gettinger S, Rimm DL, Herbst RS, Melero I, Chen L, Schalper KA. Expression Analysis and Significance of PD-1, LAG-3, and TIM-3 in Human Non-Small Cell Lung Cancer Using Spatially Resolved and Multiparametric Single-Cell Analysis. Clin Cancer Res. 2019 Aug 1;25(15):4663-4673.”,”type”:”publication”,”url”:”https://clincancerres.aacrjournals.org/content/25/15/4663″,”cancer_type_terms_string”:”Lung”,”treatment_type_terms_string”:”Immunotherapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–American Cancer Society Lung Cancer Dream Team: Targeting KRAS Mutant Lung Cancers”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/targeting-kras-mutant-lung-cancers-dream-team/”,”publisher_year”:”Clinical Cancer Research, 2019″,”pub_med_id”:”31053602″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=31053602″},{“title”:”Galan-Cobo A, Sitthideatphaiboon P, Qu X, Poteete A, Pisegna MA, Tong P, Chen PH, Boroughs LK, Rodriguez MLM, Zhang W, Parlati F, Wang J, Gandhi V, Skoulidis F, DeBerardinis RJ, Minna JD, Heymach JV. LKB1 and KEAP1/NRF2 Pathways Cooperatively Promote Metabolic Reprogramming with Enhanced Glutamine Dependence in KRAS-Mutant Lung Adenocarcinoma. Cancer Res. 2019 Jul 1;79(13):3251-3267.”,”type”:”publication”,”url”:”https://cancerres.aacrjournals.org/content/79/13/3251″,”cancer_type_terms_string”:”Lung”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–American Cancer Society Lung Cancer Dream Team: Targeting KRAS Mutant Lung Cancers”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/targeting-kras-mutant-lung-cancers-dream-team/”,”publisher_year”:”Cancer Research, 2019″,”pub_med_id”:”31040157″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=31040157″},{“title”:”Lou K, Steri V, Ge AY, Hwang YC, Yogodzinski CH, Shkedi AR, Choi ALM, Mitchell DC, Swaney DL, Hann B, Gordan JD, Shokat KM, Gilbert LA. KRASG12C inhibition produces a driver-limited state revealing collateral dependencies. Sci Signal. 2019 May 28;12(583).”,”type”:”publication”,”url”:”https://stke.sciencemag.org/content/12/583/eaaw9450″,”cancer_type_terms_string”:”Lung, Pancreatic”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:””,”research_project”:”SU2C–American Cancer Society Lung Cancer Dream Team: Targeting KRAS Mutant Lung Cancers”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/targeting-kras-mutant-lung-cancers-dream-team/”,”publisher_year”:”Science Signaling, 2019″,”pub_med_id”:”31138768″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=31138768″},{“title”:”Carvajal-Hausdorf D, Altan M, Velcheti V, Gettinger SN, Herbst RS, Rimm DL, Schalper KA. Expression and clinical significance of PD-L1, B7-H3, B7-H4 and TILs in human small cell lung Cancer (SCLC). J Immunother Cancer. 2019 Mar 8;7(1):65.”,”type”:”publication”,”url”:”https://jitc.biomedcentral.com/articles/10.1186/s40425-019-0540-1″,”cancer_type_terms_string”:”Lung”,”treatment_type_terms_string”:”Immunotherapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–American Cancer Society Lung Cancer Dream Team: Targeting KRAS Mutant Lung Cancers”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/targeting-kras-mutant-lung-cancers-dream-team/”,”publisher_year”:”Journal of Immunotherapy of Cancer, 2019″,”pub_med_id”:”30850021″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=30850021″},{“title”:”Choi H, Deng J, Li S, Silk T, Dong L, Brea EJ, Houghton S, Redmond D, Zhong H, Boiarsky J, Akbay EA, Smith PD, Merghoub T, Wong KK, Wolchok JD. Pulsatile MEK Inhibition Improves Anti-tumor Immunity and T Cell Function in Murine Kras Mutant Lung Cancer. Cell Rep. 2019 Apr 16;27(3):806-819.e5.”,”type”:”publication”,”url”:”https://www.cell.com/cell-reports/fulltext/S2211-1247(19)30396-1?_returnURL=https%3A%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2FS2211124719303961%3Fshowall%3Dtrue”,”cancer_type_terms_string”:”Lung”,”treatment_type_terms_string”:”Immunotherapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–American Cancer Society Lung Cancer Dream Team: Targeting KRAS Mutant Lung Cancers”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/targeting-kras-mutant-lung-cancers-dream-team/”,”publisher_year”:”Cell Reports, 2019″,”pub_med_id”:”30995478″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=30995478″},{“title”:”Yao Z, Gao Y, Su W, Yaeger R, Tao J, Na N, Zhang Y, Zhang C, Rymar A, Tao A, Timaul NM, Mcgriskin R, Outmezguine NA, Zhao H, Chang Q, Qeriqi B, Barbacid M, de Stanchina E, Hyman DM, Bollag G, Rosen N. RAF inhibitor PLX8394 selectively disrupts BRAF dimers and RAS-independent BRAF-mutant-driven signaling. Nat Med. 2019 Feb;25(2):284-291.”,”type”:”publication”,”url”:”https://www.nature.com/articles/s41591-018-0274-5″,”cancer_type_terms_string”:””,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–American Cancer Society Lung Cancer Dream Team: Targeting KRAS Mutant Lung Cancers”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/targeting-kras-mutant-lung-cancers-dream-team/”,”publisher_year”:”Nature Medicine, 2019″,”pub_med_id”:”30559419″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=30559419″},{“title”:”Deng Y , Bao F, Dai Q, Wu LF, Altschuler SJ. Scalable analysis of cell-type composition from single-cell transcriptomics using deep recurrent learning. Nat Methods. 2019 Apr;16(4):311-314.”,”type”:”publication”,”url”:”https://www.nature.com/articles/s41592-019-0353-7″,”cancer_type_terms_string”:”Non – site Specific”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Convergence Team”,”research_project”:”SU2C–National Science Foundation Lung Cancer Convergence Research Team: Genetic, Epigenetic, and Immunological Underpinnings of Cancer Evolution Through Treatment”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/convergence-teams/cancer-evolution-convergence-team/”,”publisher_year”:”Nature Methods, 2019″,”pub_med_id”:”30886411″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=30886411″},{“title”:”Raoof S, Mulford IJ, Frisco-Cabanos H, Nangia V, Timonina D, Labrot E, Hafeez N, Bilton SJ, Drier Y, Ji F, Greenberg M, Williams A, Kattermann K, Damon L, Sovath S, Rakiec DP, Korn JM, Ruddy DA, Benes CH, Hammerman PS, Piotrowska Z, Sequist LV, Niederst MJ, Barretina J, Engelman JA, Hata AN. Targeting FGFR overcomes EMT-mediated resistance in EGFR mutant non-small cell lung cancer. Oncogene. 2019 Sep;38(37):6399-6413.”,”type”:”publication”,”url”:”https://www.nature.com/articles/s41388-019-0887-2″,”cancer_type_terms_string”:”Lung”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Convergence Team”,”research_project”:”SU2C–National Science Foundation Lung Cancer Convergence Research Team: Genetic, Epigenetic, and Immunological Underpinnings of Cancer Evolution Through Treatment”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/convergence-teams/cancer-evolution-convergence-team/”,”publisher_year”:”Oncogene, 2019″,”pub_med_id”:”31324888″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=31324888″},{“title”:”Toska E, Castel P, Chhangawala S, Arruabarrena-Aristorena A, Chan C, Hristidis VC, Cocco E, Sallaku M, Xu G, Park J, Minuesa G, Shifman SG, Socci ND, Koche R, Leslie CS, Scaltriti M, Baselga J. PI3K Inhibition Activates SGK1 via a Feedback Loop to Promote Chromatin-Based Regulation of ER-Dependent Gene Expression. Cell Rep. 2019 Apr 2;27(1):294-306.e5.”,”type”:”publication”,”url”:”https://www.cell.com/cell-reports/fulltext/S2211-1247(19)30297-9?_returnURL=https%3A%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2FS2211124719302979%3Fshowall%3Dtrue”,”cancer_type_terms_string”:”Breast”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Convergence Team”,”research_project”:”SU2C–National Science Foundation Drug Combinations Convergence Research Team: Rational Design of Anticancer Drug Combinations with Dynamic Multi-Dimensional Input”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/convergence-teams/rational-design-of-anticancer-drug-combinations-convergence-research-team/”,”publisher_year”:”Cell Reports, 2019″,”pub_med_id”:”30943409″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=30943409″},{“title”:”Togami K, Pastika T, Stephansky J, Ghandi M, Christie AL, Jones KL, Johnson CA, Lindsay RW, Brooks CL, Letai A, Craig JW, Pozdnyakova O, Weinstock DM, Montero J, Aster JC, Johannessen CM, Lane AA. DNA methyltransferase inhibition overcomes diphthamide pathway deficiencies underlying CD123-targeted treatment resistance. J Clin Invest. 2019 Oct 14. pii: 128571.”,”type”:”publication”,”url”:”https://www.jci.org/articles/view/128571″,”cancer_type_terms_string”:”Leukemia (all types)”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Convergence Team”,”research_project”:”SU2C–National Science Foundation Drug Combinations Convergence Research Team: Rational Design of Anticancer Drug Combinations with Dynamic Multi-Dimensional Input”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/convergence-teams/rational-design-of-anticancer-drug-combinations-convergence-research-team/”,”publisher_year”:”Journal of Clinical Investigation, 2019″,”pub_med_id”:”31437130″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=31437130″},{“title”:”Stover EH, Baco MB, Cohen O, Li YY, Christie EL, Bagul M, Goodale A, Lee Y, Pantel S, Rees MG, Wei G, Presser AG, Gelbard MK, Zhang W, Zervantonakis IK, Bhola PD, Ryan J, Guerriero JL, Montero J, Liang FJ, Cherniack AD, Piccioni F, Matulonis UA, Bowtell DDL, Sarosiek KA, Letai A, Garraway LA, Johannessen CM, Meyerson M. Pooled Genomic Screens Identify Anti-apoptotic Genes as Targetable Mediators of Chemotherapy Resistance in Ovarian Cancer. Mol Cancer Res. 2019 Aug 28.”,”type”:”publication”,”url”:”https://mcr.aacrjournals.org/content/17/11/2281″,”cancer_type_terms_string”:”Ovarian”,”treatment_type_terms_string”:”Chemotherapy, Other”,”grant_type_terms_string”:”Convergence Team”,”research_project”:”SU2C–National Science Foundation Drug Combinations Convergence Research Team: Rational Design of Anticancer Drug Combinations with Dynamic Multi-Dimensional Input”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/convergence-teams/rational-design-of-anticancer-drug-combinations-convergence-research-team/”,”publisher_year”:”Molecular Cancer Research, 2019″,”pub_med_id”:”31462500″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=31462500″},{“title”:”Zhao J, Chen AX, Gartrell RD, Silverman AM, Aparicio L, Chu T, Bordbar D, Shan D, Samanamud J, Mahajan A, Filip I, Orenbuch R, Goetz M, Yamaguchi JT, Cloney M, Horbinski C, Lukas RV, Raizer J, Rae AI, Yuan J, Canoll P, Bruce JN, Saenger YM, Sims P, Iwamoto FM, Sonabend AM, Rabadan R. Immune and genomic correlates of response to anti-PD-1 immunotherapy in glioblastoma. Nat Med. 2019 Mar;25(3):462-469.”,”type”:”publication”,”url”:”https://www.nature.com/articles/s41591-019-0349-y”,”cancer_type_terms_string”:”Brain/Nervous System”,”treatment_type_terms_string”:”Immunotherapy”,”grant_type_terms_string”:”Convergence Team”,”research_project”:”SU2C–National Science Foundation Drug Combinations Convergence Research Team: Rational Design of Anticancer Drug Combinations with Dynamic Multi-Dimensional Input”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/convergence-teams/rational-design-of-anticancer-drug-combinations-convergence-research-team/”,”publisher_year”:”Nature Medicine, 2019″,”pub_med_id”:”30742119″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=30742119″},{“title”:”Ligorio M, Sil S, Malagon-Lopez J, Nieman LT, Misale S, Di Pilato M, Ebright RY, Karabacak MN, Kulkarni AS, Liu A, Vincent Jordan N, Franses JW, Philipp J, Kreuzer J, Desai N, Arora KS, Rajurkar M, Horwitz E, Neyaz A, Tai E, Magnus NKC, Vo KD, Yashaswini CN, Marangoni F, Boukhali M, Fatherree JP, Damon LJ, Xega K, Desai R, Choz M, Bersani F, Langenbucher A, Thapar V, Morris R, Wellner UF, Schilling O, Lawrence MS, Liss AS, Rivera MN, Deshpande V, Benes CH, Maheswaran S, Haber DA, Fernandez-Del-Castillo C, Ferrone CR, Haas W, Aryee MJ, Ting DT. Stromal Microenvironment Shapes the Intratumoral Architecture of Pancreatic Cancer. Cell. 2019 Jun 27;178(1):160-175.e27.”,”type”:”publication”,”url”:”https://www.cell.com/cell/fulltext/S0092-8674(19)30510-0?_returnURL=https%3A%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2FS0092867419305100%3Fshowall%3Dtrue”,”cancer_type_terms_string”:”Pancreatic”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Convergence Team”,”research_project”:”SU2C–National Science Foundation–Lustgarten Foundation Pancreatic Cancer Convergence Research Team: Liberating T-Cell Mediated Immunity to Pancreatic Cancer”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/convergence-teams/mediated-immunity-in-pancreatic-cancer-convergence-team/”,”publisher_year”:”Cell, 2019″,”pub_med_id”:”31155233″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=31155233″},{“title”:”Mahadevan KK, Arora KS, Amzallag A, Williams E, Kulkarni AS, Fernandez-Del Castillo C, Lillemoe KD, Bardeesy N, Hong TS, Ferrone CR, Ting DT, Deshpande V. Quasimesenchymal phenotype predicts systemic metastasis in pancreatic ductal adenocarcinoma. Mod Pathol. 2019 Jun;32(6):844-854.”,”type”:”publication”,”url”:”https://www.nature.com/articles/s41379-018-0196-2″,”cancer_type_terms_string”:”Pancreatic”,”treatment_type_terms_string”:”Screening/ Early Detection”,”grant_type_terms_string”:”Convergence Team”,”research_project”:”SU2C–National Science Foundation–Lustgarten Foundation Pancreatic Cancer Convergence Research Team: Liberating T-Cell Mediated Immunity to Pancreatic Cancer”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/convergence-teams/mediated-immunity-in-pancreatic-cancer-convergence-team/”,”publisher_year”:”Modern Pathology, 2019″,”pub_med_id”:”30683911″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=30683911″},{“title”:”Wang L, Simons DL, Lu X, Tu TY, Solomon S, Wang R, Rosario A, Avalos C, Schmolze D, Yim J, Waisman J, Lee PP. Connecting blood and intratumoral Treg cell activity in predicting future relapse in breast cancer. Nat Immunol. 2019 Sep;20(9):1220-1230.”,”type”:”publication”,”url”:”https://www.nature.com/articles/s41590-019-0429-7″,”cancer_type_terms_string”:”Brain/Nervous System”,”treatment_type_terms_string”:”Immunotherapy”,”grant_type_terms_string”:”Convergence Team”,”research_project”:”SU2C–Breast Cancer Research Foundation Breast Cancer Convergence Research Team: Ecology of the Tumor Microenvironment in Breast Cancer”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/convergence-teams/breast-cancer-tumor-microenvironment/”,”publisher_year”:”Nature Immunology, 2019″,”pub_med_id”:”31285626″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=31285626″},{“title”:”Li X, Gruosso T, Zuo D, Omeroglu A, Meterissian S, Guiot MC, Salazar A, Park M, Levine H. Infiltration of CD8+ T cells into tumor cell clusters in triple-negative breast cancer. Proc Natl Acad Sci U S A. 2019 Feb 26;116(9):3678-3687.”,”type”:”publication”,”url”:”https://www.pnas.org/content/116/9/3678″,”cancer_type_terms_string”:”Breast”,”treatment_type_terms_string”:”Immunotherapy”,”grant_type_terms_string”:”Convergence Team”,”research_project”:”SU2C–Breast Cancer Research Foundation Breast Cancer Convergence Research Team: Ecology of the Tumor Microenvironment in Breast Cancer”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/convergence-teams/breast-cancer-tumor-microenvironment/”,”publisher_year”:”PNAS USA, 2019″,”pub_med_id”:”30733298″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=30733298″},{“title”:”Li X, Jolly MK, George JT, Pienta KJ, Levine H. Computational Modeling of the Crosstalk Between Macrophage Polarization and Tumor Cell Plasticity in the Tumor Microenvironment. Front Oncol. 2019 Jan 23;9:10.”,”type”:”publication”,”url”:”https://www.frontiersin.org/articles/10.3389/fonc.2019.00010/full”,”cancer_type_terms_string”:”Non – site Specific”,”treatment_type_terms_string”:”Immunotherapy”,”grant_type_terms_string”:”Convergence Team”,”research_project”:”SU2C–Breast Cancer Research Foundation Breast Cancer Convergence Research Team: Ecology of the Tumor Microenvironment in Breast Cancer”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/convergence-teams/breast-cancer-tumor-microenvironment/”,”publisher_year”:”Frontiers in Oncology, 2019″,”pub_med_id”:”30729096″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=30729096″},{“title”:”Harutyunyan AS, Krug B, Chen H, Papillon-Cavanagh S, Zeinieh M, De Jay N, Deshmukh S, Chen CCL, Belle J, Mikael LG, Marchione DM, Li R, Nikbakht H, Hu B, Cagnone G, Cheung WA, Mohammadnia A, Bechet D, Faury D, McConechy MK, Pathania M, Jain SU, Ellezam B, Weil AG, Montpetit A, Salomoni P, Pastinen T, Lu C, Lewis PW, Garcia BA, Kleinman CL, Jabado N, Majewski J. H3K27M induces defective chromatin spread of PRC2-mediated repressive H3K27me2/me3 and is essential for glioma tumorigenesis. Nat Commun. 2019 Mar 19;10(1):1262.”,”type”:”publication”,”url”:”https://www.nature.com/articles/s41467-019-09140-x”,”cancer_type_terms_string”:”Brain/Nervous System”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C Canada Cancer Stem Cell Dream Team: Targeting Brain Tumour Stem Cell Epigenetic and Molecular Networks”,”research_project_url”:”http://www.standuptocancer.ca/en/dream_teams/view/cancer_stem_cell_dream_team”,”publisher_year”:”Nature Communications, 2019″,”pub_med_id”:”30890717″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=30890717″},{“title”:”MacLeod G, Bozek DA, Rajakulendran N, Monteiro V, Ahmadi M, Steinhart Z, Kushida MM, Yu H, Coutinho FJ, Cavalli FMG, Restall I, Hao X, Hart T, Luchman HA, Weiss S, Dirks PB, Angers S. Genome-Wide CRISPR-Cas9 Screens Expose Genetic Vulnerabilities and Mechanisms of Temozolomide Sensitivity in Glioblastoma Stem Cells. Cell Rep. 2019 Apr 16;27(3):971-986.e9.”,”type”:”publication”,”url”:”https://www.cell.com/cell-reports/fulltext/S2211-1247(19)30363-8?_returnURL=https%3A%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2FS2211124719303638%3Fshowall%3Dtrue”,”cancer_type_terms_string”:”Brain/Nervous System”,”treatment_type_terms_string”:”Chemotherapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C Canada Cancer Stem Cell Dream Team: Targeting Brain Tumour Stem Cell Epigenetic and Molecular Networks”,”research_project_url”:”http://www.standuptocancer.ca/en/dream_teams/view/cancer_stem_cell_dream_team”,”publisher_year”:”Cell Reports, 2019″,”pub_med_id”:”30995489″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=30995489″},{“title”:”Krug B, De Jay N, Harutyunyan AS, Deshmukh S, Marchione DM, Guilhamon P, Bertrand KC, Mikael LG, McConechy MK, Chen CCL, Khazaei S, Koncar RF, Agnihotri S, Faury D, Ellezam B, Weil AG, Ursini-Siegel J, De Carvalho DD, Dirks PB, Lewis PW, Salomoni P, Lupien M, Arrowsmith C, Lasko PF, Garcia BA, Kleinman CL, Jabado N, Mack SC. Pervasive H3K27 Acetylation Leads to ERV Expression and a Therapeutic Vulnerability in H3K27M Gliomas. Cancer Cell. 2019 May 13;35(5):782-797.e8.”,”type”:”publication”,”url”:”https://www.cell.com/cancer-cell/fulltext/S1535-6108(19)30199-0″,”cancer_type_terms_string”:”Brain/Nervous System”,”treatment_type_terms_string”:”Epigenetic Therapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C Canada Cancer Stem Cell Dream Team: Targeting Brain Tumour Stem Cell Epigenetic and Molecular Networks”,”research_project_url”:”http://www.standuptocancer.ca/en/dream_teams/view/cancer_stem_cell_dream_team”,”publisher_year”:”Cancer Cell, 2019″,”pub_med_id”:”31085178″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=31085178″},{“title”:”Hoffman M, Gillmor AH, Kunz DJ, Johnston MJ, Nikolic A, Narta K, Zarrei M, King J, Ellestad K, Dang NH, Cavalli FMG, Kushida MM, Coutinho FJ, Zhu Y, Luu B, Ma Y, Mungall AJ, Moore R, Marra MA, Taylor MD, Pugh TJ, Dirks PB, Strother D, Lafay-Cousin L, Resnick AC, Scherer S, Senger DL, Simons BD, Chan JA, Morrissy AS, Gallo M. Intratumoral Genetic and Functional Heterogeneity in Pediatric Glioblastoma. Cancer Res. 2019 May 1;79(9):2111-2123.”,”type”:”publication”,”url”:”https://cancerres.aacrjournals.org/content/79/9/2111″,”cancer_type_terms_string”:”Brain/Nervous System, Pediatric – Solid Tumor”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C Canada Cancer Stem Cell Dream Team: Targeting Brain Tumour Stem Cell Epigenetic and Molecular Networks”,”research_project_url”:”http://www.standuptocancer.ca/en/dream_teams/view/cancer_stem_cell_dream_team”,”publisher_year”:”Cancer Research, 2019″,”pub_med_id”:”30877103″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=30877103″},{“title”:”Rajakulendran N, Rowland KJ, Selvadurai HJ, Ahmadi M, Park NI, Naumenko S, Dolma S, Ward RJ, So M, Lee L, MacLeod G, Pasiliao C, Brandon C, Clarke ID, Cusimano MD, Bernstein M, Batada N, Angers S, Dirks PB. Wnt and Notch signaling govern self-renewal and differentiation in a subset of human glioblastoma stem cells. Genes Dev. 2019 May 1;33(9-10):498-510.”,”type”:”publication”,”url”:”http://genesdev.cshlp.org/content/33/9-10/498″,”cancer_type_terms_string”:”Brain/Nervous System”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C Canada Cancer Stem Cell Dream Team: Targeting Brain Tumour Stem Cell Epigenetic and Molecular Networks”,”research_project_url”:”http://www.standuptocancer.ca/en/dream_teams/view/cancer_stem_cell_dream_team”,”publisher_year”:”Genes & Development, 2019″,”pub_med_id”:”30842215″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=30842215″},{“title”:”Johnston MJ, Nikolic A, Ninkovic N, Guilhamon P, Cavalli FMG, Seaman S, Zemp FJ, Lee J, Abdelkareem A, Ellestad K, Murison A, Kushida MM, Coutinho FJ, Ma Y, Mungall AJ, Moore R, Marra MA, Taylor MD, Dirks PB, Pugh TJ, Morrissy S, St Croix B, Mahoney DJ, Lupien M, Gallo M. High-resolution structural genomics reveals new therapeutic vulnerabilities in glioblastoma. Genome Res. 2019 Aug;29(8):1211-1222.”,”type”:”publication”,”url”:”https://genome.cshlp.org/content/29/8/1211″,”cancer_type_terms_string”:”Brain/Nervous System”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C Canada Cancer Stem Cell Dream Team: Targeting Brain Tumour Stem Cell Epigenetic and Molecular Networks”,”research_project_url”:”http://www.standuptocancer.ca/en/dream_teams/view/cancer_stem_cell_dream_team”,”publisher_year”:”Genome Research, 2019″,”pub_med_id”:”31249064″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=31249064″},{“title”:”Cristiano S, Leal A, Phallen J, Fiksel J, Adleff V, Bruhm DC, Jensen SØ, Medina JE, Hruban C, White JR, Palsgrove DN, Niknafs N, Anagnostou V, Forde P, Naidoo J, Marrone K, Brahmer J, Woodward BD, Husain H, van Rooijen KL, Ørntoft MW, Madsen AH, van de Velde CJH, Verheij M, Cats A, Punt CJA, Vink GR, van Grieken NCT, Koopman M, Fijneman RJA, Johansen JS, Nielsen HJ, Meijer GA, Andersen CL, Scharpf RB, Velculescu VE. Genome-wide cell-free DNA fragmentation in patients with cancer. Nature. 2019 Jun;570(7761):385-389.”,”type”:”publication”,”url”:”https://www.nature.com/articles/s41586-019-1272-6″,”cancer_type_terms_string”:”Bile Duct, Breast, Colorectal, Lung, Ovarian, Pancreatic, Stomach”,”treatment_type_terms_string”:”Screening/ Early Detection”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–Dutch Cancer Society Colorectal Cancer Early Detection Dream Team: Molecular Early Detection of Colorectal Cancer”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/colorectal-cancer-early-detection-dream-team/”,”publisher_year”:”Nature, 2019″,”pub_med_id”:”31142840″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=31142840″},{“title”:”Georgiadis A, Durham JN, Keefer LA, Bartlett BR, Zielonka M, Murphy D, White JR, Lu S, Verner EL, Ruan F, Riley D, Anders RA, Gedvilaite E, Angiuoli S, Jones S, Velculescu VE, Le DT, Diaz LA Jr, Sausen M. Noninvasive Detection of Microsatellite Instability and High Tumor Mutation Burden in Cancer Patients Treated with PD-1 Blockade. Clin Cancer Res. 2019 Sep 10.”,”type”:”publication”,”url”:”https://clincancerres.aacrjournals.org/content/25/23/7024″,”cancer_type_terms_string”:”Pediatric – Blood Related”,”treatment_type_terms_string”:”Screening/ Early Detection”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–Dutch Cancer Society Colorectal Cancer Early Detection Dream Team: Molecular Early Detection of Colorectal Cancer”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/colorectal-cancer-early-detection-dream-team/”,”publisher_year”:”Clinical Cancer Research, 2019″,”pub_med_id”:”31506389″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=31506389″},{“title”:”Komor MA, de Wit M, van den Berg J, Martens de Kemp SR, Delis-van Diemen PM, Bolijn AS, Tijssen M, Schelfhorst T, Piersma SR, Chiasserini D, Sanders J, Rausch C, Hoogstrate Y, Stubbs AP, de Jong M, Jenster G, Carvalho B, Meijer GA, Jimenez CR, Fijneman RJA; NGS-ProToCol Consortium. Molecular characterization of colorectal adenomas reveals POFUT1 as a candidate driver of tumor progression. Int J Cancer. 2019 Aug 14.”,”type”:”publication”,”url”:”https://onlinelibrary.wiley.com/doi/full/10.1002/ijc.32627″,”cancer_type_terms_string”:”Colorectal”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–Dutch Cancer Society Colorectal Cancer Early Detection Dream Team: Molecular Early Detection of Colorectal Cancer”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/colorectal-cancer-early-detection-dream-team/”,”publisher_year”:”International Journal of Cancer, 2019″,”pub_med_id”:”31411736″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=31411736″},{“title”:”Bhat, R.R., Yadav, P., Sahay, D. et al. Breast Cancer Res Treat (2018). GPCRs profiling and identification of GPR110 as a potential new target in HER2+ breast cancer. Breast Cancer Res Treat. 2018 Jul;170(2):279-292.”,”type”:”publication”,”url”:”https://link.springer.com/article/10.1007%2Fs10549-018-4751-9″,”cancer_type_terms_string”:”Breast”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C Breast Cancer Dream Team: An Integrated Approach to Targeting Breast Cancer Molecular Subtypes and Their Resistance Phenotypes”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/breast-cancer-resistant-phenotypes-dream-team/”,”publisher_year”:”Breat Cancer Research and Treatment, 2018″,”pub_med_id”:”29574636″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=29574636″},{“title”:”Forde PM, Chaft JE, Smith KN, Anagnostou V, Cottrell TR, Hellmann MD, Zahurak M, Yang SC, Jones DR, Broderick S, Battafarano RJ, Velez MJ, Rekhtman N, Olah Z, Naidoo J, Marrone KA, Verde F, Guo H, Zhang J, Caushi JX, Chan HY, Sidhom JW, Scharpf RB, White J, Gabrielson E, Wang H, Rosner GL, Rusch V, Wolchok JD, Merghoub T, Taube JM, Velculescu VE, Topalian SL, Brahmer JR, Pardoll DM. Neoadjuvant PD-1 blockade in resectable lung cancer. N Engl J Med. 2018 May 24;378(21):1976-1986.”,”type”:”publication”,”url”:”https://www.nejm.org/doi/10.1056/NEJMoa1716078″,”cancer_type_terms_string”:”Melanoma”,”treatment_type_terms_string”:”Immunotherapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–Cancer Research Institute Cancer Immunology Dream Team: Immunologic Checkpoint Blockade and Adoptive Cell Transfer in Cancer Therapy”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/immunologic-checkpoint-blockade-dream-team/”,”publisher_year”:”New England Journal of Medicine, 2018″,”pub_med_id”:”29658848″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=29658848″},{“title”:”Alexander BM, Ba S, Berger MS, Berry DA, Cavenee WK, Chang SM, Cloughesy TF, Jiang T, Khasraw M, Li W, Mittman R, Poste GH, Wen PY, Yung WKA, Barker AD; GBM AGILE Network. Adaptive Global Innovative Learning Environment for Glioblastoma: GBM AGILE. Clin Cancer Res. 2018 Feb 15;24(4):737-743.”,”type”:”publication”,”url”:”https://clincancerres.aacrjournals.org/content/24/4/737″,”cancer_type_terms_string”:”Brain/Nervous System”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–Cancer Research Institute Cancer Immunology Dream Team: Immunologic Checkpoint Blockade and Adoptive Cell Transfer in Cancer Therapy”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/immunologic-checkpoint-blockade-dream-team/”,”publisher_year”:”Clinical Cancer Research, 2018″,”pub_med_id”:”28814435″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=28814435″},{“title”:”Zhou J, Bethune MT, Malkova N, Sutherland AM, Comin-Anduix B, Su Y, Baltimore D, Ribas A, Heath JR. A kinetic investigation of interacting, stimulated T cells identifies conditions for rapid functional enhancement, minimal phenotype differentiation, and improved adoptive cell transfer tumor eradication. PLoS One. 2018 Jan 23;13(1):e0191634.”,”type”:”publication”,”url”:”https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0191634″,”cancer_type_terms_string”:”Melanoma”,”treatment_type_terms_string”:”Immunotherapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–Cancer Research Institute Cancer Immunology Dream Team: Immunologic Checkpoint Blockade and Adoptive Cell Transfer in Cancer Therapy”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/immunologic-checkpoint-blockade-dream-team/”,”publisher_year”:”PLoS One, 2018″,”pub_med_id”:”29360859″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=29360859″},{“title”:”Armenia J, Wankowicz SAM, Liu D, Gao J, Kundra R, Reznik E, Chatila WK, Chakravarty D, Han GC, Coleman I, Montgomery B, Pritchard C, Morrissey C, Barbieri CE, Beltran H, Sboner A, Zafeiriou Z, Miranda S, Bielski CM, Penson AV, Tolonen C, Huang FW, Robinson D, Wu YM, Lonigro R, Garraway LA, Demichelis F, Kantoff PW, Taplin ME, Abida W, Taylor BS, Scher HI, Nelson PS, de Bono JS, Rubin MA, Sawyers CL, Chinnaiyan AM; PCF/SU2C International Prostate Cancer Dream Team, Schultz N, Van Allen EM; PCF/SU2C International Prostate Cancer Dream Team. The long tail of oncogenic drivers in prostate cancer. Nat Genet. 2018 May;50(5):645-651.”,”type”:”publication”,”url”:”https://www.nature.com/articles/s41588-018-0078-z”,”cancer_type_terms_string”:”Prostate”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C−Prostate Cancer Foundation Prostate Dream Team: Precision Therapy of Advanced Prostate Cancer”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/prostate-cancer-precision-therapy-dream-team/”,”publisher_year”:”Nature Genetics, 2018″,”pub_med_id”:”29610475″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=29610475″},{“title”:”Buczacki SJA, Popova S, Biggs E, Koukorava C, Buzzelli J, Vermeulen L, Hazelwood L, Francies H, Garnett MJ, Winton DJ. Itraconazole targets cell cycle heterogeneity in colorectal cancer. J Exp Med. 2018 Jul 2;215(7):1891-1912.”,”type”:”publication”,”url”:”http://jem.rupress.org/content/215/7/1891″,”cancer_type_terms_string”:”Colorectal”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–Dutch Cancer Society Tumor Organoids Dream Team: A New Preclinical Model for Drug Sensitivity Analysis”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/tumor-organoids-preclinical-models-dream-team/”,”publisher_year”:”Journal of Experimental Medicine, 2018″,”pub_med_id”:”29853607″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=29853607″},{“title”:”Li X, Francies HE, Secrier M, Perner J, Miremadi A, Galeano-Dalmau N, Barendt WJ, Letchford L, Leyden GM, Goffin EK, Barthorpe A, Lightfoot H, Chen E, Gilbert J, Noorani A, Devonshire G, Bower L, Grantham A, MacRae S, Grehan N, Wedge DC, Fitzgerald RC, Garnett MJ. Organoid cultures recapitulate esophageal adenocarcinoma heterogeneity providing a model for clonality studies and precision therapeutics. Nat Commun. 2018 Jul 30;9(1):2983.”,”type”:”publication”,”url”:”https://www.nature.com/articles/s41467-018-05190-9″,”cancer_type_terms_string”:”Esophogeal”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–Dutch Cancer Society Tumor Organoids Dream Team: A New Preclinical Model for Drug Sensitivity Analysis”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/tumor-organoids-preclinical-models-dream-team/”,”publisher_year”:”Nature Communications, 2018″,”pub_med_id”:”30061675″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=30061675″},{“title”:”Sachs N, de Ligt J, Kopper O, Gogola E, Bounova G, Weeber F, Balgobind AV, Wind K, Gracanin A, Begthel H, Korving J, van Boxtel R, Duarte AA, Lelieveld D, van Hoeck A, Ernst RF, Blokzijl F, Nijman IJ, Hoogstraat M, van de Ven M, Egan DA, Zinzalla V, Moll J, Boj SF, Voest EE, Wessels L, van Diest PJ, Rottenberg S, Vries RGJ, Cuppen E, Clevers H. A living biobank of breast cancer organoids captures disease heterogeneity. Cell. 2018 Jan 11;172(1-2):373-386.e10.”,”type”:”publication”,”url”:”https://www.cell.com/cell/fulltext/S0092-8674(17)31319-3?_returnURL=https%3A%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2FS0092867417313193%3Fshowall%3Dtrue”,”cancer_type_terms_string”:”Breast”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Research Team”,”research_project”:”SU2C–Dutch Cancer Society Tumor Organoids Dream Team: A New Preclinical Model for Drug Sensitivity Analysis”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/tumor-organoids-preclinical-models-dream-team/”,”publisher_year”:”Cell, 2018″,”pub_med_id”:”29224780″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=29224780″},{“title”:”Yarchoan M, Hopkins A, Jaffee EM. Tumor Mutational Burden and Response Rate to PD-1 Inhibition. N Engl J Med. 2017 Dec 21;377(25):2500-2501.”,”type”:”publication”,”url”:”https://www.nejm.org/doi/10.1056/NEJMc1713444″,”cancer_type_terms_string”:”Non – site Specific”,”treatment_type_terms_string”:”Immunotherapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–Lustgarten Foundation Pancreatic Cancer Dream Team: Transforming Pancreatic Cancer to Treatable Disease”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/transforming-pancreatic-cancer-dream-team/”,”publisher_year”:”New England Journal of Medicine, 2018″,”pub_med_id”:”29262275″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=29262275″},{“title”:”Gubin MM, Esaulova E, Ward JP, Malkova ON, Runci D, Wong P, Noguchi T, Arthur CD, Meng W, Alspach E, Medrano RFV, Fronick C, Fehlings M, Newell EW, Fulton RS, Sheehan KCF, Oh ST, Schreiber RD, Artyomov MN. High-Dimensional Analysis Delineates Myeloid and Lymphoid Compartment Remodeling during Successful Immune-Checkpoint Cancer Therapy. Cell. 2018 Nov 1;175(4):1014-1030.e19.”,”type”:”publication”,”url”:”https://www.cell.com/cell/fulltext/S0092-8674(18)31242-X?_returnURL=https%3A%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2FS009286741831242X%3Fshowall%3Dtrue”,”cancer_type_terms_string”:”Non – site Specific”,”treatment_type_terms_string”:”Immunotherapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–Lustgarten Foundation Pancreatic Cancer Dream Team: Transforming Pancreatic Cancer to Treatable Disease”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/transforming-pancreatic-cancer-dream-team/”,”publisher_year”:”Cell, 2018″,”pub_med_id”:”30343900″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=30343900″},{“title”:”Medler TR, Murugan D, Horton W, Kumar S, Cotechini T, Forsyth AM, Leyshock P, Leitenberger JJ, Kulesz-Martin M, Margolin A, Werb Z, Coussens LM. (2018) Complement C5a fosters squamous carcinogenesis and limits T cell response to chemotherapy. Cancer Cell. 2018 Oct 8;34(4):561-578.e6.”,”type”:”publication”,”url”:”https://www.cell.com/cancer-cell/fulltext/S1535-6108(18)30417-3″,”cancer_type_terms_string”:”Other”,”treatment_type_terms_string”:”Immunotherapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–Lustgarten Foundation Pancreatic Cancer Dream Team: Transforming Pancreatic Cancer to Treatable Disease”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/transforming-pancreatic-cancer-dream-team/”,”publisher_year”:”Cancer Cell, 2018″,”pub_med_id”:”30300579″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=30300579″},{“title”:”Li J, Byrne KT, Yan F, Yamazoe T, Chen Z, Baslan T, Richman LP, Lin J, Sun YH, Rech AJ, Balli D, Hay CA, Sela Y, Merrell AJ, Liudahl SM, Gordon N, Norgard RJ, Yuan S, Yu S, Chao T, Ye S, Eisinger-Mathason TSK, Faryabi RB, Tobias JW, Lowe S, Coussens LM, Wherry EJ, Vonderheide RH, Stanger BZ. Tumor cell-intrinsic factors underlie immune heterogeneity and therapeutic response. Immunity. 2018 Jul 17;49(1):178-193.e7.”,”type”:”publication”,”url”:”https://www.cell.com/immunity/fulltext/S1074-7613(18)30261-9?_returnURL=https%3A%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2FS1074761318302619%3Fshowall%3Dtrue”,”cancer_type_terms_string”:”Non – site Specific”,”treatment_type_terms_string”:”Immunotherapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–Lustgarten Foundation Pancreatic Cancer Dream Team: Transforming Pancreatic Cancer to Treatable Disease”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/transforming-pancreatic-cancer-dream-team/”,”publisher_year”:”Immunity, 2018″,”pub_med_id”:”29958801″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=29958801″},{“title”:”Hopkins AC, Yarchoan M, Durham JN, Yusko EC, Rytlewski JA, Robins HS, Laheru DA, Le DT, Lutz ER, Jaffee EM. T cell receptor repertoire features associated with survival in immunotherapy-treated pancreatic ductal adenocarcinoma. JCI Insight. 2018 Jul 12;3(13). pii: 122092.”,”type”:”publication”,”url”:”https://insight.jci.org/articles/view/122092″,”cancer_type_terms_string”:”Pancreatic”,”treatment_type_terms_string”:”Immunotherapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–Lustgarten Foundation Pancreatic Cancer Dream Team: Transforming Pancreatic Cancer to Treatable Disease”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/transforming-pancreatic-cancer-dream-team/”,”publisher_year”:”JCI Insight, 2018″,”pub_med_id”:”29997287″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=29997287″},{“title”:”Binnewies M, Roberts E, Kersten K, Chan V, Fearon DF, Merad M, Coussens LM, Gabrilovich D, Ostrand-Rossenberg S, Hedrick CC, Vonderheide RH, Pittet MJ, Jain RK, Zou W, Howcroft K, Woodhouse E, Weinberg R, Krummel M. Understanding the tumor immune microenvironment (TIME) for effective therapy. Nat Med. 2018 May;24(5):541-550.”,”type”:”publication”,”url”:”https://www.nature.com/articles/s41591-018-0014-x”,”cancer_type_terms_string”:”Non – site Specific”,”treatment_type_terms_string”:”Immunotherapy, Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–Lustgarten Foundation Pancreatic Cancer Dream Team: Transforming Pancreatic Cancer to Treatable Disease”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/transforming-pancreatic-cancer-dream-team/”,”publisher_year”:”Nature Medicine, 2018″,”pub_med_id”:”29686425″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=29686425″},{“title”:”Hopkins A, Jaffee, EM. Pancreatic Cancer: Next Generation Algorithms for Neoantigen Selection. Nat Rev Gastroenterol Hepatol. 2018 Mar;15(3):135-136.”,”type”:”publication”,”url”:”https://www.nature.com/articles/nrgastro.2017.184″,”cancer_type_terms_string”:”Pancreatic”,”treatment_type_terms_string”:”Immunotherapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–Lustgarten Foundation Pancreatic Cancer Dream Team: Transforming Pancreatic Cancer to Treatable Disease”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/transforming-pancreatic-cancer-dream-team/”,”publisher_year”:”Nature Reviews. Gastroenterology & Hepatology, 2018″,”pub_med_id”:”29317775″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=29317775″},{“title”:”Burlingame EA, Margolin AA, Gray JW, and YH Chang. SHIFT: speedy histopathological-to-immunofluorescent translation of whole slide images using conditional generative adversarial networks. Proc SPIE Int Soc Opt Eng. 2018 Feb;10581. p”,”type”:”publication”,”url”:”https://www.spiedigitallibrary.org/conference-proceedings-of-spie/10581/2293249/SHIFT–speedy-histopathological-to-immunofluorescent-translation-of-whole-slide/10.1117/12.2293249.short?SSO=1″,”cancer_type_terms_string”:”Non – site Specific”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–Lustgarten Foundation Pancreatic Cancer Dream Team: Transforming Pancreatic Cancer to Treatable Disease”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/transforming-pancreatic-cancer-dream-team/”,”publisher_year”:”Proceedings of SPIE the International Society for Optical Engineering , 2018″,”pub_med_id”:”30283195″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=30283195″},{“title”:”Liudahl SM, Coussens LM (2018) B cells as biomarkers: predicting immune checkpoint therapy adverse events. J Clin Invest. 2018 Feb 1;128(2):577-579.”,”type”:”publication”,”url”:”https://www.jci.org/articles/view/99036″,”cancer_type_terms_string”:”Non – site Specific”,”treatment_type_terms_string”:”Immunotherapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–Lustgarten Foundation Pancreatic Cancer Dream Team: Transforming Pancreatic Cancer to Treatable Disease”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/transforming-pancreatic-cancer-dream-team/”,”publisher_year”:”Journal of Clinical Investigation, 2018″,”pub_med_id”:”29309049″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=29309049″},{“title”:”Gopalakrishnan V, Spencer C, Reuben A, Andrews M, Karpinets T, Prieto P, Vicente D, Nezi L, Hoffman K, Cogdill A, Zhao L, Hudgens C, Hutchinson D, Petaccia de Macedo M, Cotechini T, Kumar T, Chen WS, Reddy S, Szczepaniak Sloane R, Galloway-Pena J, Jiang H, Chen PL, Shpall E, Rezvani K, Alousi A, Chemaly R, Shelburne S, Vence L, Okhuysen P, Jensen V, Swennes A, McAllister F, Marcelo E, Sanchez R, Le Chatelier E, Zitvogel L, Pons N, Austin-Breneman J, Haydu L, Burton E, Gardner J, Sirmans E, Hu J, Lazar A, Tsujikawa T, Diab A, Tawbi H, Glitza I, Hwu WJ, Patel S, Woodman S, Amaria R, Davies M, Gershenwald J, Hwu P, Lee J, Zhang J, Coussens LM, Cooper Z, Tetzlaff M, Futreal A, Daniel-MacDougall C, Ajami N, Petrosino J, Sharma P, Allison J, Jenq R, Wargo J. Gut microbiota are associated with differential responses to PD-1 blockade in melanoma patients. Science. 2018 Jan 5;359(6371):97-103.”,”type”:”publication”,”url”:”https://science.sciencemag.org/content/359/6371/97″,”cancer_type_terms_string”:”Melanoma”,”treatment_type_terms_string”:”Immunotherapy, Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–Lustgarten Foundation Pancreatic Cancer Dream Team: Transforming Pancreatic Cancer to Treatable Disease”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/transforming-pancreatic-cancer-dream-team/”,”publisher_year”:”Science, 2018″,”pub_med_id”:”29097493″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=29097493″},{“title”:”Koch A, Joosten SC, Feng Z, de Ruijter TC, Draht MX, Melotte V, Smits KM, Veeck J, Herman JG, Van Neste L, Van Criekinge W, De Meyer T, van Engeland M. Analysis of DNA methylation in cancer:location revisited. Nat Rev Clin Oncol. 2018 Jul;15(7):459-466.”,”type”:”publication”,”url”:”https://www.nature.com/articles/s41571-018-0004-4″,”cancer_type_terms_string”:”Non – site Specific”,”treatment_type_terms_string”:”Epigenetic Therapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–Dutch Cancer Society Colorectal Cancer Early Detection Dream Team: Molecular Early Detection of Colorectal Cancer”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/colorectal-cancer-early-detection-dream-team/”,”publisher_year”:”Nature Reviews Clinical Oncology, 2018″,”pub_med_id”:”29666440″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=29666440″},{“title”:”Carvalho B, Diosdado B, Terhaar Sive Droste JS, Bolijn AS, Komor MA, de Wit M, Bosch LJW, van Burink M, Dekker E, Kuipers EJ, Coupé VMH, van Grieken NCT, Fijneman RJA, Meijer GA. Evaluation of cancer associated DNA copy number events in colorectal (advanced) adenomas. Cancer Prev Res (Phila). 2018 Jul;11(7):403-412.”,”type”:”publication”,”url”:”https://cancerpreventionresearch.aacrjournals.org/content/11/7/403″,”cancer_type_terms_string”:”Colorectal”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–Dutch Cancer Society Colorectal Cancer Early Detection Dream Team: Molecular Early Detection of Colorectal Cancer”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/colorectal-cancer-early-detection-dream-team/”,”publisher_year”:”Cancer Prevention Research, 2018″,”pub_med_id”:”29685877″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=29685877″},{“title”:”Carvalho B, Diosdado B, Terhaar Sive Droste JS, Bolijn AS, Komor MA, de Wit M, Bosch LJW, van Burink M, Dekker E, Kuipers EJ, Coupé VMH, van Grieken NCT, Fijneman RJA, Meijer GA. Evaluation of Cancer-Associated DNA Copy Number Events in Colorectal (Advanced) Adenomas. Cancer Prev Res (Phila). 2018 Jul;11(7):403-412.”,”type”:”publication”,”url”:”https://cancerpreventionresearch.aacrjournals.org/content/11/7/403″,”cancer_type_terms_string”:”Colorectal”,”treatment_type_terms_string”:”Screening/ Early Detection”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–Dutch Cancer Society Colorectal Cancer Early Detection Dream Team: Molecular Early Detection of Colorectal Cancer”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/colorectal-cancer-early-detection-dream-team/”,”publisher_year”:”Cancer Prevention Research, 2018″,”pub_med_id”:”29685877″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=29685877″},{“title”:”Kich A, Jiisten SC, Feng Z, de Ruijter TC, Draht MX, Melitte V, Smits KM, Veeck J, Herman JG, van Neste L, van Criekinge W, de Meyer T, van Engeland M. Analysis of DNA methylation in cancer: location revisited. Nature Reviews Clinical Onciligy, 2018.”,”type”:”publication”,”url”:”https://www.nature.com/articles/s41571-018-0004-4″,”cancer_type_terms_string”:”Non – site Specific”,”treatment_type_terms_string”:”Epigenetic Therapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–Dutch Cancer Society Colorectal Cancer Early Detection Dream Team: Molecular Early Detection of Colorectal Cancer”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/colorectal-cancer-early-detection-dream-team/”,”publisher_year”:”Nature Reviews Clinical Oncology, 2018″,”pub_med_id”:”29666440″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=29666440″},{“title”:”Lim KS, Li H, Roberts EA, Gaudiano EF, Clairmont C, Sambel L, Ponnienselvan K, Liu JC, Yang C, Kozono D, Parmar K, Yusufzai T, Zheng N, D’Andrea AD. USP1 is Required for Replication Fork Protection in BRCA1-Deficient Tumors. Mol Cell. 2018 Dec 20;72(6):925-941.e4.”,”type”:”publication”,”url”:”https://www.cell.com/molecular-cell/fulltext/S1097-2765(18)30939-0?_returnURL=https%3A%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2FS1097276518309390%3Fshowall%3Dtrue”,”cancer_type_terms_string”:”Non – site Specific”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–Ovarian Cancer Research Alliance–National Ovarian Cancer Coalition Ovarian Cancer Dream Team: DNA Repair Therapies for Ovarian Cancer”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/dna-repair-thearpies-for-ovarian-cancer-dream-team/”,”publisher_year”:”Molecular Cell, 2018″,”pub_med_id”:”30576655″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=30576655″},{“title”:”Hill SJ, Decker B, Roberts EA, Horowitz NS, Muto MG, Worley MJ Jr, Feltmate CM, Nucci MR, Swisher EM, Nguyen H, Yang C, Morizane R, Kochupurakkal BS, Do KT, Konstantinopoulos PA, Liu JF, Bonventre JV, Matulonis UA, Shapiro GI, Berkowitz RS, Crum CP, D’Andrea AD. Prediction of DNA Repair Inhibitor Response in Short Term Patient-derived Ovarian Cancer Organoids. Cancer Discovery, Cancer Discov. 2018 Nov;8(11):1404-1421.”,”type”:”publication”,”url”:”https://cancerdiscovery.aacrjournals.org/content/8/11/1404″,”cancer_type_terms_string”:”Ovarian”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–Ovarian Cancer Research Alliance–National Ovarian Cancer Coalition Ovarian Cancer Dream Team: DNA Repair Therapies for Ovarian Cancer”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/dna-repair-thearpies-for-ovarian-cancer-dream-team/”,”publisher_year”:”Cancer Discovery, 2018″,”pub_med_id”:”30213835″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=30213835″},{“title”:”Kondrashova O, Topp M, Nesic K, Lieschke E, Ho GY, Harrell MI, Zapparoli GV, Hadley A, Holian R, Boehm E, Heong V, Sanij E, Pearson RB, Krais JJ, Johnson N, McNally O, Ananda S, Alsop K, Hutt KJ, Kaufmann SH, Lin KK, Harding TC, Traficante N; Australian Ovarian Cancer Study (AOCS), deFazio A, McNeish IA, Bowtell DD, Swisher EM, Dobrovic A, Wakefield MJ, Scott CL. Methylation of all BRCA1 copies predicts response to the PARP inhibitor rucaparib in ovarian carcinoma. Nat Commun. 2018 Sep 28;9(1):3970.”,”type”:”publication”,”url”:”https://www.nature.com/articles/s41467-018-05564-z”,”cancer_type_terms_string”:”Ovarian”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–Ovarian Cancer Research Alliance–National Ovarian Cancer Coalition Ovarian Cancer Dream Team: DNA Repair Therapies for Ovarian Cancer”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/dna-repair-thearpies-for-ovarian-cancer-dream-team/”,”publisher_year”:”Nature Communications, 2018″,”pub_med_id”:”30266954″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=30266954″},{“title”:”Pettitt SJ, Krastev DB, Brandsma I, Dréan A, Song F, Aleksandrov R, Harrell MI, Menon M, Brough R, Campbell J, Frankum J, Ranes M, Pemberton HN, Rafiq R, Fenwick K, Swain A, Guettler S, Lee JM, Swisher EM, Stoynov S, Yusa K, Ashworth A, Lord CJ. Genome-wide and high-density CRISPR-Cas9 screens identify point mutations in PARP1 causing PARP inhibitor resistance. Nat Commun. 2018 May 10;9(1):1849.”,”type”:”publication”,”url”:”https://www.nature.com/articles/s41467-018-03917-2″,”cancer_type_terms_string”:”Non – site Specific”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–Ovarian Cancer Research Alliance–National Ovarian Cancer Coalition Ovarian Cancer Dream Team: DNA Repair Therapies for Ovarian Cancer”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/dna-repair-thearpies-for-ovarian-cancer-dream-team/”,”publisher_year”:”Nature Communications, 2018″,”pub_med_id”:”29748565″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=29748565″},{“title”:”Wahner Hendrickson AE, Menefee ME, Hartmann LC, Long HJ, Northfelt DW, Reid JM, Boakye-Agyeman F, Kayode O, Flatten KS, Harrell MI, Swisher EM, Poirer GG, Satele D, Allred J, Lensing JL, Chen A, Ji J, Zang Y, Erlichman C, Haluska P, Kaufmann SH. A Phase I Clinical Trial of the Poly(ADP-ribose) Polymerase Inhibitor Veliparib and Weekly Topotecan in Patients with Solid Tumors. Clin Cancer Res. 2018 Feb 15;24(4):744-752.”,”type”:”publication”,”url”:”https://clincancerres.aacrjournals.org/content/24/4/744″,”cancer_type_terms_string”:”Non – site Specific”,”treatment_type_terms_string”:”Chemotherapy, Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–Ovarian Cancer Research Alliance–National Ovarian Cancer Coalition Ovarian Cancer Dream Team: DNA Repair Therapies for Ovarian Cancer”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/dna-repair-thearpies-for-ovarian-cancer-dream-team/”,”publisher_year”:”Clinical Cancer Research, 2018″,”pub_med_id”:”29138343″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=29138343″},{“title”:”Bernards SS, Pennington KP, Harrell MI, Agnew KJ, Garcia RL, Norquist BM, Swisher EM. Clinical characteristics and outcomes of patients with BRCA1 or RAD51C methylated versus mutated ovarian carcinoma. Gynecol Oncol. 2018 Feb;148(2):281-285.”,”type”:”publication”,”url”:”https://www.gynecologiconcology-online.net/article/S0090-8258(17)31551-2/fulltext”,”cancer_type_terms_string”:”Ovarian”,”treatment_type_terms_string”:”Chemotherapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–Ovarian Cancer Research Alliance–National Ovarian Cancer Coalition Ovarian Cancer Dream Team: DNA Repair Therapies for Ovarian Cancer”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/dna-repair-thearpies-for-ovarian-cancer-dream-team/”,”publisher_year”:”Gynecologic Oncology, 2018″,”pub_med_id”:”29233532″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=29233532″},{“title”:”Villarroel-Espindola F, Yub X, Datar I, Mani N, Sanmamed M, Velcheti V, Syrigos K, Toki M, Zhao H, Chen L, Herbst RS, Schalper K. Spatially Resolved and Quantitative Analysis of VISTA/PD-1H as a Novel Immunotherapy Target in Human Non-Small Cell Lung Cancer. Clin Cancer Res. 2018 Apr 1;24(7):1562-1573.”,”type”:”publication”,”url”:”https://clincancerres.aacrjournals.org/content/24/7/1562″,”cancer_type_terms_string”:”Lung”,”treatment_type_terms_string”:”Immunotherapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–American Cancer Society Lung Cancer Dream Team: Targeting KRAS Mutant Lung Cancers”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/targeting-kras-mutant-lung-cancers-dream-team/”,”publisher_year”:”Clinical Cancer Research, 2018″,”pub_med_id”:”29203588″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=29203588″},{“title”:”Jenkins RW, Aref AR, Lizotte PH, Ivanova E, Stinson S, Zhou CW, Bowden M, Deng J, Liu H, Miao D, He MX, Walker W, Zhang G, Tian T, Cheng C, Wei Z, Palakurthi S, Bittinger M, Vitzthum H, Kim JW, Merlino A, Quinn M, Venkataramani C, Kaplan JA, Portell A, Gokhale PC, Phillips B, Smart A, Rotem A, Jones RE, Keogh L, Anguiano M, Stapleton L, Jia Z, Barzily-Rokni M, Cañadas I, Thai TC, Hammond MR, Vlahos R, Wang ES, Zhang H, Li S, Hanna GJ, Huang W, Hoang MP, Piris A, Eliane JP, Stemmer-Rachamimov AO, Cameron L, Su MJ, Shah P, Izar B, Thakuria M, LeBoeuf NR, Rabinowits G, Gunda V, Parangi S, Cleary JM, Miller BC, Kitajima S, Thummalapalli R, Miao B, Barbie TU, Sivathanu V, Wong J, Richards WG, Bueno R, Yoon CH, Miret J, Herlyn M, Garraway LA, Van Allen EM, Freeman GJ, Kirschmeier PT, Lorch JH, Ott PA, Hodi FS, Flaherty KT, Kamm RD, Boland GM, Wong KK, Dornan D, Paweletz CP, Barbie DA. Ex Vivo Profiling of PD-1 Blockade Using Organotypic Tumor Spheroids. Cancer Discov. 2018 Feb;8(2):196-215.”,”type”:”publication”,”url”:”https://cancerdiscovery.aacrjournals.org/content/8/2/196″,”cancer_type_terms_string”:”Non – site Specific”,”treatment_type_terms_string”:”Immunotherapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–American Cancer Society Lung Cancer Dream Team: Targeting KRAS Mutant Lung Cancers”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/targeting-kras-mutant-lung-cancers-dream-team/”,”publisher_year”:”Cancer Discovery, 2018″,”pub_med_id”:”29101162″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=29101162″},{“title”:”Arbour KC, Jordan EJ, Kim HR, Dienstag J, Yu H, Sanchez-Vega F, Lito Piro, Berger MF, Solit DB, Hellmann MD, Kris MG, Rudin CM, Ni A, Arcila ME, Ladanyi M, Riely GJ. Effects of Co-occurring Genomic Alterations on Outcomes in Patients with KRAS-Mutant Non-Small Cell Lung Cancer.Clin Cancer Res. 2018 Jan 15;24(2):334-340.”,”type”:”publication”,”url”:”https://clincancerres.aacrjournals.org/content/24/2/334″,”cancer_type_terms_string”:”Lung”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–American Cancer Society Lung Cancer Dream Team: Targeting KRAS Mutant Lung Cancers”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/targeting-kras-mutant-lung-cancers-dream-team/”,”publisher_year”:”Clinical Cancer Research, 2018″,”pub_med_id”:”29089357″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=29089357″},{“title”:”Lytle NK, Barber A and Reya T. 2018. Stem cell fate in cancer growth, progression and therapy resistance. Nat Rev Cancer. 2018 Nov;18(11):669-680.”,”type”:”publication”,”url”:”https://www.nature.com/articles/s41568-018-0056-x”,”cancer_type_terms_string”:”Non – site Specific”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–Cancer Research UK–Lustgarten Foundation Pancreatic Cancer Dream Team: Reprogramming of Transcriptional Circuitry to Control Pancreatic Cancer”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/reprogramming-of-pancreatic-cancer-dream-team/”,”publisher_year”:”Nature Reviews Cancer, 2018″,”pub_med_id”:”30228301″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=30228301″},{“title”:”Tanner, L. B., Goglia, A. G., Wei, M. H., Sehgal, T., Parsons, L. R., Park, J. O., White, E., Toetcher, J.E., Rabinowitz, J.D. (2018) Four key steps control glycolytic ux in mammalian cells. Cell Syst. 2018 Jul 25;7(1):49-62.e8.”,”type”:”publication”,”url”:”https://www.cell.com/cell-systems/fulltext/S2405-4712(18)30243-6?_returnURL=https%3A%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2FS2405471218302436%3Fshowall%3Dtrue”,”cancer_type_terms_string”:”Non – site Specific”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–Cancer Research UK–Lustgarten Foundation Pancreatic Cancer Dream Team: Reprogramming of Transcriptional Circuitry to Control Pancreatic Cancer”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/reprogramming-of-pancreatic-cancer-dream-team/”,”publisher_year”:”Cell Systems, 2018″,”pub_med_id”:”29960885″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=29960885″},{“title”:”Morscher RJ, Ducker GS, Li SH, Mayer JA, Gitai Z, Sperl W, Rabinowitz JD. Mitochondrial translation requires folate-dependent tRNA methylation. Nature. 2018 Feb 1;554(7690):128-132.”,”type”:”publication”,”url”:”https://www.nature.com/articles/nature25460″,”cancer_type_terms_string”:”Non – site Specific”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–Cancer Research UK–Lustgarten Foundation Pancreatic Cancer Dream Team: Reprogramming of Transcriptional Circuitry to Control Pancreatic Cancer”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/reprogramming-of-pancreatic-cancer-dream-team/”,”publisher_year”:”Nature, 2018″,”pub_med_id”:”29364879″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=29364879″},{“title”:”Kosumi K, Hamada T, Koh H, Borowsky J, Bullman S, Twombly TS, Nevo D, Masugi Y, Liu L, da Silva A, Chen Y, Du C, Gu M, Li C, Li W, Liu H, Shi Y, Mima K, Song M, Nosho K, Nowak JA, Nishihara R, Baba H, Zhang X, Wu K, Wang M, Huttenhower C, Garrett WS, Meyerson ML, Lennerz JK, Giannakis M, Chan AT, Meyerhardt JA, Fuchs CS, Ogino S. The Amount of Bifidobacterium Genus in Colorectal Carcinoma Tissue in Relation to Tumor Characteristics and Clinical Outcome. Am J Pathol. 2018 Dec;188(12):2839-2852.”,”type”:”publication”,”url”:”https://ajp.amjpathol.org/article/S0002-9440(18)30364-X/fulltext”,”cancer_type_terms_string”:”Colorectal”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C Colorectal Cancer Dream Team: Targeting Genomic, Metabolic, and Immunological Vulnerabilities of Colorectal Cancer”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/colorectal-cancer-vulnerabilities-dream-team/”,”publisher_year”:”American Journal of Pathology, 2018″,”pub_med_id”:”30243655″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=30243655″},{“title”:”Hamada T, Liu L, Nowak JA, Mima K, Cao Y, Ng K, Twombly TS, Song M, Jung S, Dou R, Masugi Y, Kosumi K, Shi Y, da Silva A, Gu M, Li W, Keum N, Wu K, Nosho K, Inamura K, Meyerhardt JA, Nevo D, Wang M, Giannakis M, Chan AT, Giovannucci EL, Fuchs CS, Nishihara R, Zhang X, Ogino S. Vitamin D status after colorectal cancer diagnosis and patient survival according to immune response to tumour. Eur J Cancer. 2018 Nov;103:98-107.”,”type”:”publication”,”url”:”https://www.ejcancer.com/article/S0959-8049(18)31109-2/fulltext”,”cancer_type_terms_string”:”Colorectal”,”treatment_type_terms_string”:”Immunotherapy, Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C Colorectal Cancer Dream Team: Targeting Genomic, Metabolic, and Immunological Vulnerabilities of Colorectal Cancer”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/colorectal-cancer-vulnerabilities-dream-team/”,”publisher_year”:”European Journal of Cancer, 2018″,”pub_med_id”:”30219720″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=30219720″},{“title”:”Hamada T, Zhang X, Mima K, Bullman S, Sukawa Y, Nowak JA, Kosumi K, Masugi Y, Twombly TS, Cao Y, Song M, Liu L, da Silva A, Shi Y, Gu M, Li W, Koh H, Nosho K, Inamura K, Keum N, Wu K, Meyerhardt JA, Kostic AD, Huttenhower C, Garrett WS, Meyerson M, Giovannucci EL, Chan AT, Fuchs CS, Nishihara R, Giannakis M, Ogino S. Fusobacterium nucleatum in Colorectal Cancer Relates to Immune Response Differentially by Tumor Microsatellite Instability Status. Cancer Immunol Res. 2018 Nov;6(11):1327-1336.”,”type”:”publication”,”url”:”https://cancerimmunolres.aacrjournals.org/content/6/11/1327″,”cancer_type_terms_string”:”Colorectal”,”treatment_type_terms_string”:”Immunotherapy, Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C Colorectal Cancer Dream Team: Targeting Genomic, Metabolic, and Immunological Vulnerabilities of Colorectal Cancer”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/colorectal-cancer-vulnerabilities-dream-team/”,”publisher_year”:”Cancer Immunology Research, 2018″,”pub_med_id”:”30228205″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=30228205″},{“title”:”Hu ZI, Hellmann MD, Wolchok JD, Vyas M, Shia J, Stadler ZK, Diaz LA Jr, O’Reilly EM. Acquired resistance to immunotherapy in MMR-D pancreatic cancer. J Immunother Cancer. 2018 Nov 20;6(1):127.”,”type”:”publication”,”url”:”https://jitc.biomedcentral.com/articles/10.1186/s40425-018-0448-1″,”cancer_type_terms_string”:”Pancreatic”,”treatment_type_terms_string”:”Immunotherapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C Colorectal Cancer Dream Team: Targeting Genomic, Metabolic, and Immunological Vulnerabilities of Colorectal Cancer”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/colorectal-cancer-vulnerabilities-dream-team/”,”publisher_year”:”Journal for Immunotherapy of Cancer, 2018″,”pub_med_id”:”30458888″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=30458888″},{“title”:”Zafra MP, Schatoff EM, Katti A, Foronda M, Breinig M, Schweitzer AY, Simon A, Han T, Goswami S, Montgomery E, Thibado J, Kastenhuber ER, Sánchez-Rivera FJ, Shi J, Vakoc CR, Lowe SW, Tschaharganeh DF, Dow LE. Optimized base editors enable efficient editing in cells, organoids and mice. Nat Biotechnol. 2018 Oct;36(9):888-893.”,”type”:”publication”,”url”:”https://www.nature.com/articles/nbt.4194″,”cancer_type_terms_string”:”Non – site Specific”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C Colorectal Cancer Dream Team: Targeting Genomic, Metabolic, and Immunological Vulnerabilities of Colorectal Cancer”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/colorectal-cancer-vulnerabilities-dream-team/”,”publisher_year”:”Nature Biotechnology, 2018″,”pub_med_id”:”29969439″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=29969439″},{“title”:”Wood DE, White JR, Georgiadis A, Van Emburgh B, Parpart-Li S, Mitchell J, Anagnostou V, Niknafs N, Karchin R, Papp E, McCord C, LoVerso P, Riley D, Diaz LA Jr, Jones S, Sausen M, Velculescu VE, Angiuoli SV. A machine learning approach for somatic mutation discovery. Sci Transl Med. 2018 Sep 5;10(457).”,”type”:”publication”,”url”:”https://stm.sciencemag.org/content/10/457/eaar7939″,”cancer_type_terms_string”:”Non – site Specific”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C Colorectal Cancer Dream Team: Targeting Genomic, Metabolic, and Immunological Vulnerabilities of Colorectal Cancer”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/colorectal-cancer-vulnerabilities-dream-team/”,”publisher_year”:”Science Translational Medicine, 2018″,”pub_med_id”:”30185652″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=30185652″},{“title”:”Grasso CS, Giannakis M, Wells DK, Hamada T, Mu XJ, Quist M, Nowak JA, Nishihara R, Qian ZR, Inamura K, Morikawa T, Nosho K, Abril-Rodriguez G, Connolly C, Escuin-Ordinas H, Geybels MS, Grady WM, Hsu L, Hu-Lieskovan S, Huyghe JR, Kim YJ, Krystofinski PE, Leiserson MD, Montoya DJ, Nadel BB, Pellegrini M, Pritchard CC, Puig-Saus C, Quist EH, Raphael BJ, Salipante SJ, Shin DS, Shinbrot E, Shirts B, Shukla S, Stanford JL, Sun W, Tsoi J, Upfill-Brown A, Wheeler DA, Wu CJ, Yu M, Zaidi SH, Zaretsky JM, Gabriel SB, Lander ES, Garraway LA, Hudson TJ, Fuchs CS, Ribas A, Ogino S, Peters U. Genetic mechanisms of immune evasion in colorectal cancer. Cancer Discov. 2018 Jun;8(6):730-749.”,”type”:”publication”,”url”:”https://cancerdiscovery.aacrjournals.org/content/8/6/730″,”cancer_type_terms_string”:”Colorectal”,”treatment_type_terms_string”:”Immunotherapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C Colorectal Cancer Dream Team: Targeting Genomic, Metabolic, and Immunological Vulnerabilities of Colorectal Cancer”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/colorectal-cancer-vulnerabilities-dream-team/”,”publisher_year”:”Cancer Discovery, 2018″,”pub_med_id”:”29510987″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=29510987″},{“title”:”Means AL, Freeman TJ, Zhu J, Woodbury LG, Marincola-Smith P, Wu C, Meyer AR, Weaver CJ, Padmanabhan C, An H, Zi J, Wessinger BC, Chaturvedi R, Brown TD, Deane NG, Coffey RJ, Wilson KT, Smith JJ, Sawyers CL, Goldenring JR, Novitskiy SV, Washington MK, Shi C, Beauchamp RD. Epithelial Smad4 Deletion Up-Regulates Inflammation andPromotes Inflammation-Associated Cancer. Cell Mol Gastroenterol Hepatol. 2018 May 24;6(3):257-276.”,”type”:”publication”,”url”:”https://www.cmghjournal.org/article/S2352-345X(18)30082-1/fulltext”,”cancer_type_terms_string”:”Colorectal”,”treatment_type_terms_string”:”Immunotherapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C Colorectal Cancer Dream Team: Targeting Genomic, Metabolic, and Immunological Vulnerabilities of Colorectal Cancer”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/colorectal-cancer-vulnerabilities-dream-team/”,”publisher_year”:”Cellular and Molecular Gastroenterology and Hepatology, 2018″,”pub_med_id”:”30109253″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=30109253″},{“title”:”Corcoran RB, André T, Atreya CE, Schellens JHM, Yoshino T, Bendell JC, Hollebecque A, McRee AJ, Siena S, Middleton G, Muro K, Gordon MS, Tabernero J, Yaeger R, O’Dwyer PJ, Humblet Y, De Vos F, Jung AS, Brase JC, Jaeger S, Bettinger S, Mookerjee B, Rangwala F, Van Cutsem E. Combined BRAF, EGFR, and MEK inhibition in patients with BRAFV600E-mutant colorectal cancer. Cancer Discov. 2018 Apr;8(4):428-443.”,”type”:”publication”,”url”:”https://cancerdiscovery.aacrjournals.org/content/8/4/428″,”cancer_type_terms_string”:”Colorectal”,”treatment_type_terms_string”:”Chemotherapy, Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C Colorectal Cancer Dream Team: Targeting Genomic, Metabolic, and Immunological Vulnerabilities of Colorectal Cancer”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/colorectal-cancer-vulnerabilities-dream-team/”,”publisher_year”:”Cancer Discovery, 2018″,”pub_med_id”:”29431699″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=29431699″},{“title”:”Hazar-Rethinam M, Kleyman M, Han GC, Liu D, Ahronian LG, Shahzade HA, Chen L, Parikh AR, Allen JN, Clark JW, Kwak EL, Faris JE, Murphy JE, Hong TS, Van Seventer EE, Nadres B, Hong CB, Gurski JM Jr, Jessop NA, Dias-Santagata D, Iafrate AJ, Van Allen EM, Corcoran RB. Convergent Therapeutic Strategies to Overcome the Heterogeneity of Acquired Resistance in BRAFV600E Colorectal Cancer. Cancer Discov. 2018 Apr;8(4):417-427.”,”type”:”publication”,”url”:”https://cancerdiscovery.aacrjournals.org/content/8/4/417″,”cancer_type_terms_string”:”Colorectal”,”treatment_type_terms_string”:”Chemotherapy, Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C Colorectal Cancer Dream Team: Targeting Genomic, Metabolic, and Immunological Vulnerabilities of Colorectal Cancer”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/colorectal-cancer-vulnerabilities-dream-team/”,”publisher_year”:”Cancer Discovery, 2018″,”pub_med_id”:”29431697″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=29431697″},{“title”:”AlDubayan SH, Giannakis M, Moore ND, Han GC, Reardon B, Hamada T, Mu XJ, Nishihara R, Qian Z, Liu L, Yurgelun MB, Syngal S, Garraway LA, Ogino S, Fuchs CS, Van Allen EM. Inherited DNA Repair Defects in colorectal cancer. Send to Am J Hum Genet. 2018 Mar 1;102(3):401-414.”,”type”:”publication”,”url”:”https://www.cell.com/ajhg/fulltext/S0002-9297(18)30040-5″,”cancer_type_terms_string”:”Colorectal”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C Colorectal Cancer Dream Team: Targeting Genomic, Metabolic, and Immunological Vulnerabilities of Colorectal Cancer”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/colorectal-cancer-vulnerabilities-dream-team/”,”publisher_year”:”American Journal of Human Genetics, 2018″,”pub_med_id”:”29478780″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=29478780″},{“title”:”Strickler JH, Loree JM, Ahronian LG, Parikh AR, Niedzwiecki D, Pereira AAL, McKinney M, Korn WM, Atreya CE, Banks KC, Nagy RJ, Meric-Bernstam F, Lanman RB, Talasaz A, Tsigelny IF, Corcoran RB, Kopetz S. Genomic Landscape of Cell-Free DNA in Patients with Colorectal Cancer. Cancer Discov. 2018 Feb;8(2):164-173.”,”type”:”publication”,”url”:”https://cancerdiscovery.aacrjournals.org/content/8/2/164″,”cancer_type_terms_string”:”Colorectal”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C Colorectal Cancer Dream Team: Targeting Genomic, Metabolic, and Immunological Vulnerabilities of Colorectal Cancer”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/colorectal-cancer-vulnerabilities-dream-team/”,”publisher_year”:”Cancer Discovery, 2018″,”pub_med_id”:”29196463″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=29196463″},{“title”:”Yaeger R, Chatila WK, Lipsyc MD, Hechtman JF, Cercek A, Sanchez-Vega F, Jayakumaran G, Middha S, Zehir A, Donoghue MTA, You D, Viale A, Kemeny N, Segal NH, Stadler ZK, Varghese AM, Kundra R, Gao J, Syed A, Hyman DM, Vakiani E, Rosen N, Taylor BS, Ladanyi M, Berger MF, Solit DB, Shia J, Saltz L, Schultz N. Clinical Sequencing Defines the Genomic Landscape of Metastatic Colorectal Cancer. Cancer Cell. 2018 Jan 8;33(1):125-136.e3.”,”type”:”publication”,”url”:”https://www.cell.com/cancer-cell/fulltext/S1535-6108(17)30556-1″,”cancer_type_terms_string”:”Colorectal”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C Colorectal Cancer Dream Team: Targeting Genomic, Metabolic, and Immunological Vulnerabilities of Colorectal Cancer”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/colorectal-cancer-vulnerabilities-dream-team/”,”publisher_year”:”Cancer Cell, 2018″,”pub_med_id”:”29316426″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=29316426″},{“title”:”Thu KL, Soria-Bretones I, Mak TW, Cescon DW. Targeting the cell cycle in breast cancer: towards the next phase. Cell Cycle. 2018;17(15):1871-1885.”,”type”:”publication”,”url”:”https://www.tandfonline.com/doi/full/10.1080/15384101.2018.1502567″,”cancer_type_terms_string”:”Breast”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C Canada–Canadian Cancer Society Breast Cancer Dream Team: Translational Development of Novel Drugs Targeting Tumor Vulnerabilities”,”research_project_url”:”http://www.standuptocancer.ca/en/dream_teams/view/cbcf_breast_cancer_dream_team”,”publisher_year”:”Cell Cycle, 2018″,”pub_med_id”:”30078354″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=30078354″},{“title”:”Thu KL, Silvester J, Elliott MJ, Ba-Alawi W, Duncan MH, Elia AC, Mer AS, Smirnov P, Safikhani Z, Haibe-Kains B, Mak TW, Cescon DW. Disruption of the anaphase-promoting complex confers resistance to TTK inhibitors in triple-negative breast cancer. Proc Natl Acad Sci U S A. 2018 Feb 13;115(7):E1570-E1577.”,”type”:”publication”,”url”:”https://www.pnas.org/content/115/7/E1570″,”cancer_type_terms_string”:”Breast”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C Canada–Canadian Cancer Society Breast Cancer Dream Team: Translational Development of Novel Drugs Targeting Tumor Vulnerabilities”,”research_project_url”:”http://www.standuptocancer.ca/en/dream_teams/view/cbcf_breast_cancer_dream_team”,”publisher_year”:”PNAS, 2018″,”pub_med_id”:”29378962″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=29378962″},{“title”:”Guihamon P, and Lupien M. SMuRF: a novel tool to identfy regulatory elements enriched for somatc point mutations. BMC Bioinformatcs. 2018 Nov 26. 19:454.”,”type”:”publication”,”url”:”https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-018-2501-y”,”cancer_type_terms_string”:”Non – site Specific”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C Canada Cancer Stem Cell Dream Team: Targeting Brain Tumour Stem Cell Epigenetic and Molecular Networks”,”research_project_url”:”http://www.standuptocancer.ca/en/dream_teams/view/cancer_stem_cell_dream_team”,”publisher_year”:”BMC bioinformatics, 2018″,”pub_med_id”:”30477433″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=30477433″},{“title”:”Phallen J, Leal A, Woodward BD, Forde PM, Naidoo J, Marrone KA, Brahmer JR, Fiksel J, Medina JE, Cristiano S, Palsgrove DN, Gocke CD, Bruhm DC, Keshavarzian P, Adleff V, Weihe E, Anagnostou V, Scharpf RB, Velculescu VE, Husain H. Early Noninvasive Detection of Response to Targeted Therapy in Non-Small Cell Lung Cancer. Cancer Res. 2018 Dec 20. pii: canres.1082.2018.”,”type”:”publication”,”url”:”https://cancerres.aacrjournals.org/content/79/6/1204″,”cancer_type_terms_string”:”Lung”,”treatment_type_terms_string”:”Screening/ Early Detection”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–LUNGevity Foundation–American Lung Association Lung Cancer Interception Dream Team: Intercept Lung Cancer Through Immune, Imaging, and Molecular Evaluation (InTIME)”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/lung-cancer-interception-intime-dream-team/”,”publisher_year”:”Cancer Research, 2018″,”pub_med_id”:”30573519″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=30573519″},{“title”:”Anagnostou V, Forde PM, White JR, Niknafs N, Hruban C, Naidoo J, Marrone KA, Sivakumar IKA, Bruhm DC, Rosner S, Phallen J, Leal A, Adleff V, Smith KN, Cottrell TR, Rhymee L, Palsgrove DN, Hann CL, Levy B, Feliciano J, Georgiades C, Verde F, Illei P, Li QK, Gabrielson E, Brock MV, Isbell JM, Sauter JL, Taube J, Scharpf RB, Karchin R, Pardoll DM, Chaft JE, Hellmann MD, Brahmer JR, Velculescu VE. Dynamics of tumor and immune responses during immune checkpoint blockade in non-small cell lung cancer. Cancer Res. 2018 Dec 12. pii: canres.1127.2018.”,”type”:”publication”,”url”:”https://cancerres.aacrjournals.org/content/79/6/1214″,”cancer_type_terms_string”:”Lung”,”treatment_type_terms_string”:”Immunotherapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–LUNGevity Foundation–American Lung Association Lung Cancer Interception Dream Team: Intercept Lung Cancer Through Immune, Imaging, and Molecular Evaluation (InTIME)”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/lung-cancer-interception-intime-dream-team/”,”publisher_year”:”Cancer Research, 2018″,”pub_med_id”:”30541742″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=30541742″},{“title”:”Abbosh C, Birkbak NJ, Swanton C. Early stage NSCLC — challenges to implementing ctDNA-based screening and MRD detection. Nat Rev Clin Oncol. 2018 Sep;15(9):577-586.”,”type”:”publication”,”url”:”https://www.nature.com/articles/s41571-018-0058-3″,”cancer_type_terms_string”:”Lung”,”treatment_type_terms_string”:”Screening/ Early Detection”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–LUNGevity Foundation–American Lung Association Lung Cancer Interception Dream Team: Intercept Lung Cancer Through Immune, Imaging, and Molecular Evaluation (InTIME)”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/lung-cancer-interception-intime-dream-team/”,”publisher_year”:”Nature Reviews Clinical Oncology, 2018″,”pub_med_id”:”29968853″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=29968853″},{“title”:”Goggins MG, Lippman SM, Constantinou PE, Jacks T, Petersen GM, Syngal S, Maitra A. Intercepting Pancreatic Cancer: Our Dream Team’s Resolve to Stop Pancreatic Cancer. Pancreas. 2018 Nov/Dec;47(10):1175-1176.”,”type”:”publication”,”url”:”https://insights.ovid.com/crossref?an=00006676-201811000-00002″,”cancer_type_terms_string”:”Pancreatic”,”treatment_type_terms_string”:”Prevention”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–Lustgarten Foundation Pancreatic Cancer Interception Dream Team: Intercepting Pancreatic Cancer in High-Risk Cohorts”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/pancreatic-interception-high-risk-cohorts-dream-team/”,”publisher_year”:”Pancreas, 2018″,”pub_med_id”:”30325853″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=30325853″},{“title”:”Syngal S, Furniss CS. Germline Genetic Testing for Pancreatic Ductal Adenocarcinoma at Time of Diagnosis. JAMA. 2018 Jun 19;319(23):2383-2385.”,”type”:”publication”,”url”:”https://jama.jamanetwork.com/article.aspx?doi=10.1001/jama.2018.6227″,”cancer_type_terms_string”:”Pancreatic”,”treatment_type_terms_string”:”Screening/ Early Detection”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–Lustgarten Foundation Pancreatic Cancer Interception Dream Team: Intercepting Pancreatic Cancer in High-Risk Cohorts”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/pancreatic-interception-high-risk-cohorts-dream-team/”,”publisher_year”:”JAMA, 2018″,”pub_med_id”:”29922810″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=29922810″},{“title”:”Danai LV, Babic A, Rosenthal MH, Dennstedt EA, Muir A, Lien EC, Mayers JR, Tai K, Lau AN, Jones-Sali P, Prado CM, Petersen GM, Takahashi N, Sugimoto M, Yeh JJ, Lopez N, Bardeesy N, Fernandez-Del Castillo C, Liss AS, Koong AC, Bui J, Yuan C, Welch MW, Brais LK, Kulke MH, Dennis C, Clish CB, Wolpin BM, Vander Heiden MG. Altered exocrine function can drive adipose wasting in early pancreatic cancer. Nature. 2018 Jun;558(7711):600-604″,”type”:”publication”,”url”:”https://www.nature.com/articles/s41586-018-0235-7″,”cancer_type_terms_string”:”Pancreatic”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–Lustgarten Foundation Pancreatic Cancer Interception Dream Team: Intercepting Pancreatic Cancer in High-Risk Cohorts”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/pancreatic-interception-high-risk-cohorts-dream-team/”,”publisher_year”:”Nature, 2018″,”pub_med_id”:”29925948″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=29925948″},{“title”:”Ayuso JM, Truttschel R, Gong MM, Humayun M, Virumbrales-Munoz M, Vitek R, Felder M, Gillies SD, Sondel P, Wisinski KB, Patankar M, Beebe DJ, Skala MC. Evaluating natural killer cell cytotoxicity against solid tumors using a microfluidic model. Oncoimmunology. 2018 Dec 12;8(3):1553477.”,”type”:”publication”,”url”:”https://www.tandfonline.com/doi/abs/10.1080/2162402X.2018.1553477?journalCode=koni20″,”cancer_type_terms_string”:”Non – site Specific”,”treatment_type_terms_string”:”Immunotherapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”St. Baldrick’s Foundation–SU2C Pediatric Cancer Dream Team: Immunogenomics to Create New Therapies for High-Risk Childhood Cancers”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/intractable-pediatric-cancers-dream-team/”,”publisher_year”:”Oncoimmunology, 2018″,”pub_med_id”:”30723584″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=30655315″},{“title”:”Mueller KT, Waldron E, Grupp SA, Levine JE, Laetsch TW, Pulsipher MA, Boyer MW, August KJ, Hamilton J, Awasthi R, Stein AM, Sickert D, Chakraborty A, Levine BL, June CH, Tomassian L, Shah SS, Leung M, Taran T, Wood PA, Maude SL. Clinical Pharmacology of Tisagenlecleucel in B-cell Acute Lymphoblastic Leukemia. Clin Cancer Res. 2018 Dec 15;24(24):6175-6184.”,”type”:”publication”,”url”:”https://clincancerres.aacrjournals.org/content/24/24/6175″,”cancer_type_terms_string”:”Leukemia (all types), Pediatric – Blood Related”,”treatment_type_terms_string”:”Immunotherapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”St. Baldrick’s Foundation–SU2C Pediatric Cancer Dream Team: Immunogenomics to Create New Therapies for High-Risk Childhood Cancers”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/intractable-pediatric-cancers-dream-team/”,”publisher_year”:”Clinical Cancer Research, 2018″,”pub_med_id”:”30190371″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=30190371″},{“title”:”Wei JS, Kuznetsov IB, Zhang S, Song YK, Asgharzadeh S, Sindiri S, Wen X, Patidar R, Najaraj S, Walton A, Auvil JMG, Gerhard DS, Yuksel A, Catchpoole D, Hewitt SM, Sondel PM, Seeger R, Maris JM, Khan J. Clinically Relevant Cytotoxic Immune Cell Signatures and Clonal Expansion of T-Cell Receptors in High-Risk MYCN-Not-Amplified Human Neuroblastoma. Clin Cancer Res. 2018 Nov 15;24(22):5673-5684.”,”type”:”publication”,”url”:”https://clincancerres.aacrjournals.org/content/24/22/5673″,”cancer_type_terms_string”:”Pediatric – Solid Tumor”,”treatment_type_terms_string”:”Immunotherapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”St. Baldrick’s Foundation–SU2C Pediatric Cancer Dream Team: Immunogenomics to Create New Therapies for High-Risk Childhood Cancers”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/intractable-pediatric-cancers-dream-team/”,”publisher_year”:”Clinical Cancer Research, 2018″,”pub_med_id”:”29784674″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=29784674″},{“title”:”Albertini MR, Yang RK, Ranheim EA, Hank JA, Zuleger CL, Weber S, Neuman H, Hartig G, Weigel T, Mahvi D, Henry MB, Quale R, McFarland T, Gan J, Carmichael L, Kim K, Loibner H, Gillies SD, Sondel PM. Pilot trial of the hu14.18-IL2 immunocytokine in patients with completely resectable recurrent stage III or stage IV melanoma. Cancer Immunol Immunother. 2018 Oct;67(10):1647-1658.”,”type”:”publication”,”url”:”https://link.springer.com/article/10.1007%2Fs00262-018-2223-z”,”cancer_type_terms_string”:”Melanoma”,”treatment_type_terms_string”:”Immunotherapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”St. Baldrick’s Foundation–SU2C Pediatric Cancer Dream Team: Immunogenomics to Create New Therapies for High-Risk Childhood Cancers”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/intractable-pediatric-cancers-dream-team/”,”publisher_year”:”Cancer Immunology, Immunotherapy, 2018″,”pub_med_id”:”30073390″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=30073390″},{“title”:”Majzner RG, Mackall CL. Tumor Antigen Escape from CAR T-cell Therapy. Cancer Discov. 2018 Oct;8(10):1219-1226.”,”type”:”publication”,”url”:”https://cancerdiscovery.aacrjournals.org/content/8/10/1219″,”cancer_type_terms_string”:”Non – site Specific”,”treatment_type_terms_string”:”Immunotherapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”St. Baldrick’s Foundation–SU2C Pediatric Cancer Dream Team: Immunogenomics to Create New Therapies for High-Risk Childhood Cancers”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/intractable-pediatric-cancers-dream-team/”,”publisher_year”:”Cancer Discovery, 2018″,”pub_med_id”:”30135176″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=30135176″},{“title”:”Chapelin F, Capitini CM, Ahrens ET. Fluorine-19 MRI for detection and quantification of immune cell therapy for cancer. J Immunother Cancer. 2018 Oct 11;6(1):105.”,”type”:”publication”,”url”:”https://jitc.biomedcentral.com/articles/10.1186/s40425-018-0416-9″,”cancer_type_terms_string”:”Non – site Specific”,”treatment_type_terms_string”:”Screening/ Early Detection”,”grant_type_terms_string”:”Dream Team”,”research_project”:”St. Baldrick’s Foundation–SU2C Pediatric Cancer Dream Team: Immunogenomics to Create New Therapies for High-Risk Childhood Cancers”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/intractable-pediatric-cancers-dream-team/”,”publisher_year”:”Journal for Immunotherapy of Cancer, 2018″,”pub_med_id”:”30305175″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=30305175″},{“title”:”Capitini CM. CAR-T immunotherapy: how will it change treatment for acute lymphoblastic leukemia and beyond? Expert Opin Orphan Drugs. 2018;6(10):563-566.”,”type”:”publication”,”url”:”https://www.tandfonline.com/doi/abs/10.1080/21678707.2018.1529562?journalCode=ieod20″,”cancer_type_terms_string”:”Leukemia (all types), Pediatric – Blood Related”,”treatment_type_terms_string”:”Immunotherapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”St. Baldrick’s Foundation–SU2C Pediatric Cancer Dream Team: Immunogenomics to Create New Therapies for High-Risk Childhood Cancers”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/intractable-pediatric-cancers-dream-team/”,”publisher_year”:”Expert Opinion on Orphan Drug, 2018″,”pub_med_id”:”30775189″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=30775189″},{“title”:”Leahy AB, Elgarten CW, Grupp SA, Maude SL, Teachey DT. Tisagenlecleucel for the treatment of B-cell acute lymphoblastic leukemia. Expert Rev Anticancer Ther. 2018 Oct;18(10):959-971.”,”type”:”publication”,”url”:”https://www.tandfonline.com/doi/abs/10.1080/14737140.2018.1512411?journalCode=iery20″,”cancer_type_terms_string”:”Leukemia (all types), Pediatric – Blood Related”,”treatment_type_terms_string”:”Immunotherapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”St. Baldrick’s Foundation–SU2C Pediatric Cancer Dream Team: Immunogenomics to Create New Therapies for High-Risk Childhood Cancers”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/intractable-pediatric-cancers-dream-team/”,”publisher_year”:”Expert Review of Anticancer Therapy, 2018″,”pub_med_id”:”30111196″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=30111196″},{“title”:”Orlando EJ, Han X, Tribouley C, Wood PA, Leary RJ, Riester M, Levine JE, Qayed M, Grupp SA, Boyer M, De Moerloose B, Nemecek ER, Bittencourt H, Hiramatsu H, Buechner J, Davies SM, Verneris MR, Nguyen K, Brogdon JL, Bitter H, Morrissey M, Pierog P, Pantano S, Engelman JA, Winckler W. Genetic mechanisms of target antigen loss in CAR19 therapy of acute lymphoblastic leukemia. Nat Med. 2018 Oct;24(10):1504-1506.”,”type”:”publication”,”url”:”https://www.nature.com/articles/s41591-018-0146-z”,”cancer_type_terms_string”:”Leukemia (all types), Pediatric – Blood Related”,”treatment_type_terms_string”:”Immunotherapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”St. Baldrick’s Foundation–SU2C Pediatric Cancer Dream Team: Immunogenomics to Create New Therapies for High-Risk Childhood Cancers”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/intractable-pediatric-cancers-dream-team/”,”publisher_year”:”Nature Medicine, 2018″,”pub_med_id”:”30275569″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=30275569″},{“title”:”Gofshteyn JS, Shaw PA, Teachey DT, Grupp SA, Maude S, Banwell B, Chen F, Lacey SF, Melenhorst JJ, Edmonson MJ, Panzer J, Barrett DM, McGuire JL. Neurotoxicity after CTL019 in a pediatric and young adult cohort. Ann Neurol. 2018 Oct;84(4):537-546.”,”type”:”publication”,”url”:”https://onlinelibrary.wiley.com/doi/abs/10.1002/ana.25315″,”cancer_type_terms_string”:”Leukemia (all types), Lymphoma, Pediatric – Blood Related”,”treatment_type_terms_string”:”Immunotherapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”St. Baldrick’s Foundation–SU2C Pediatric Cancer Dream Team: Immunogenomics to Create New Therapies for High-Risk Childhood Cancers”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/intractable-pediatric-cancers-dream-team/”,”publisher_year”:”Annals of Neurology, 2018″,”pub_med_id”:”30178481″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=30178481″},{“title”:”Oberley MJ, Gaynon PS, Bhojwani D, Pulsipher MA, Gardner RA, Hiemenz MC, Ji J, Han J, O’Gorman MRG, Wayne AS, Raca G. Myeloid lineage switch following chimeric antigen receptor T-cell therapy in a patient with TCF3-ZNF384 fusion-positive B-lymphoblastic leukemia. Pediatr Blood Cancer. 2018 Sep;65(9):e27265.”,”type”:”publication”,”url”:”https://onlinelibrary.wiley.com/doi/abs/10.1002/pbc.27265″,”cancer_type_terms_string”:”Leukemia (all types), Pediatric – Blood Related”,”treatment_type_terms_string”:”Immunotherapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”St. Baldrick’s Foundation–SU2C Pediatric Cancer Dream Team: Immunogenomics to Create New Therapies for High-Risk Childhood Cancers”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/intractable-pediatric-cancers-dream-team/”,”publisher_year”:”Pediatric Blood & Cancer, 2018″,”pub_med_id”:”29797659″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=29797659″},{“title”:”Forsberg MH, Das A, Saha K, Capitini CM. The potential of CAR T therapy for relapsed or refractory pediatric and young adult B-cell ALL. Ther Clin Risk Manag. 2018 Sep 3;14:1573-1584.”,”type”:”publication”,”url”:”https://www.dovepress.com/the-potential-of-car-t-therapy-for-relapsed-or-refractory-pediatric-an-peer-reviewed-article-TCRM”,”cancer_type_terms_string”:”Leukemia (all types), Pediatric – Blood Related”,”treatment_type_terms_string”:”Immunotherapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”St. Baldrick’s Foundation–SU2C Pediatric Cancer Dream Team: Immunogenomics to Create New Therapies for High-Risk Childhood Cancers”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/intractable-pediatric-cancers-dream-team/”,”publisher_year”:”Therapeutic Clinical Risk Management, 2018″,”pub_med_id”:”30233192″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=30233192″},{“title”:”Svoboda J, Rheingold SR, Gill SI, Grupp SA, Lacey SF, Kulikovskaya I, Suhoski MM, Melenhorst JJ, Loudon B, Mato AR, Nasta SD, Landsburg DJ, Youngman MR, Levine BL, Porter DL, June CH, Schuster SJ. Nonviral RNA chimeric antigen receptor-modified T cells in patients with Hodgkin lymphoma. Blood. 2018 Sep 6;132(10):1022-1026.”,”type”:”publication”,”url”:”http://www.bloodjournal.org/content/132/10/1022?sso-checked=true”,”cancer_type_terms_string”:”Lymphoma, Pediatric – Blood Related”,”treatment_type_terms_string”:”Immunotherapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”St. Baldrick’s Foundation–SU2C Pediatric Cancer Dream Team: Immunogenomics to Create New Therapies for High-Risk Childhood Cancers”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/intractable-pediatric-cancers-dream-team/”,”publisher_year”:”Blood, 2018″,”pub_med_id”:”29925499″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=29925499″},{“title”:”Ghassemi S, Nunez-Cruz S, O’Connor RS, Fraietta JA, Patel PR, Scholler J, Barrett DM, Lundh SM, Davis MM, Bedoya F, Zhang C, Leferovich J, Lacey SF, Levine BL, Grupp SA, June CH, Melenhorst JJ, Milone MC. Reducing Ex Vivo Culture Improves the Antileukemic Activity of Chimeric Antigen Receptor (CAR) T Cells. Cancer Immunol Res. 2018 Sep;6(9):1100-1109.”,”type”:”publication”,”url”:”https://cancerimmunolres.aacrjournals.org/content/6/9/1100″,”cancer_type_terms_string”:”Leukemia (all types), Pediatric – Blood Related”,”treatment_type_terms_string”:”Immunotherapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”St. Baldrick’s Foundation–SU2C Pediatric Cancer Dream Team: Immunogenomics to Create New Therapies for High-Risk Childhood Cancers”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/intractable-pediatric-cancers-dream-team/”,”publisher_year”:”Cancer Immunology Research, 2018″,”pub_med_id”:”30030295″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=30030295″},{“title”:”D’Angelo SP, Melchiori L, Merchant MS, Bernstein D, Glod J, Kaplan R, Grupp S, Tap WD, Chagin K, Binder GK, Basu S, Lowther DE, Wang R, Bath N, Tipping A, Betts G, Ramachandran I, Navenot JM, Zhang H, Wells DK, Van Winkle E, Kari G, Trivedi T, Holdich T, Pandite L, Amado R, Mackall CL. Antitumor Activity Associated with Prolonged Persistence of Adoptively Transferred NY-ESO-1 c259T Cells in Synovial Sarcoma. Cancer Discov. 2018 Aug;8(8):944-957.”,”type”:”publication”,”url”:”https://cancerdiscovery.aacrjournals.org/content/8/8/944″,”cancer_type_terms_string”:”Sarcoma”,”treatment_type_terms_string”:”Immunotherapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”St. Baldrick’s Foundation–SU2C Pediatric Cancer Dream Team: Immunogenomics to Create New Therapies for High-Risk Childhood Cancers”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/intractable-pediatric-cancers-dream-team/”,”publisher_year”:”Cancer Discover, 2018″,”pub_med_id”:”29891538″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=29891538″},{“title”:”Agerbæk MØ, Bang-Christensen SR, Yang MH, Clausen TM, Pereira MA, Sharma S, Ditlev SB, Nielsen MA, Choudhary S, Gustavsson T, Sorensen PH, Meyer T, Propper D, Shamash J, Theander TG, Aicher A, Daugaard M, Heeschen C, Salanti A. The VAR2CSA malaria protein efficiently retrieves circulating tumor cells in an EpCAM-independent manner. Nat Commun. 2018 Aug 16;9(1):3279.”,”type”:”publication”,”url”:”https://www.nature.com/articles/s41467-018-05793-2″,”cancer_type_terms_string”:”Non – site Specific”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”St. Baldrick’s Foundation–SU2C Pediatric Cancer Dream Team: Immunogenomics to Create New Therapies for High-Risk Childhood Cancers”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/intractable-pediatric-cancers-dream-team/”,”publisher_year”:”Nature Communications, 2018″,”pub_med_id”:”30115931″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=30115931″},{“title”:”Burstein DS, Maude S, Grupp S, Griffis H, Rossano J, Lin K. Cardiac Profile of Chimeric Antigen Receptor T Cell Therapy in Children: A Single-Institution Experience. Biol Blood Marrow Transplant. 2018 Aug;24(8):1590-1595.”,”type”:”publication”,”url”:”https://www.bbmt.org/article/S1083-8791(18)30266-0/fulltext”,”cancer_type_terms_string”:”Pediatric – Blood Related”,”treatment_type_terms_string”:”Immunotherapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”St. Baldrick’s Foundation–SU2C Pediatric Cancer Dream Team: Immunogenomics to Create New Therapies for High-Risk Childhood Cancers”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/intractable-pediatric-cancers-dream-team/”,”publisher_year”:”Biology of Blood and Marrow Transplantation, 2018″,”pub_med_id”:”29772353″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=29772353″},{“title”:”Bagashev A, Sotillo E, Tang CA, Black KL, Perazzelli J, Seeholzer SH, Argon Y, Barrett DM, Grupp SA, Hu CA, Thomas-Tikhonenko A. CD19 alterations emerging after CD19-directed immunotherapy cause retention of the misfolded protein in the endoplasmic reticulum. Mol Cell Biol. 2018 Aug 13. pii: MCB.00383-18.”,”type”:”publication”,”url”:”https://www.youtube.com/watch?v=AL2E1JDw2cA”,”cancer_type_terms_string”:”Non – site Specific”,”treatment_type_terms_string”:”Immunotherapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”St. Baldrick’s Foundation–SU2C Pediatric Cancer Dream Team: Immunogenomics to Create New Therapies for High-Risk Childhood Cancers”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/intractable-pediatric-cancers-dream-team/”,”publisher_year”:”Molecular and Cellular Biology, 2018″,”pub_med_id”:”30104252″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=30104252″},{“title”:”Morris ZS, Guy EI, Werner LR, Carlson PM, Heinze CM, Kler JS, Busche SM, Jaquish AA, Sriramaneni RN, Carmichael LL, Loibner H, Gillies SD, Korman AJ, Erbe AK, Hank JA, Rakhmilevich AL, Harari PM, Sondel PM. Tumor-Specific Inhibition of In Situ Vaccination by Distant Untreated Tumor Sites. Cancer Immunol Res. 2018 Jul;6(7):825-834.”,”type”:”publication”,”url”:”https://cancerimmunolres.aacrjournals.org/content/6/7/825″,”cancer_type_terms_string”:”Melanoma, Pancreatic”,”treatment_type_terms_string”:”Immunotherapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”St. Baldrick’s Foundation–SU2C Pediatric Cancer Dream Team: Immunogenomics to Create New Therapies for High-Risk Childhood Cancers”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/intractable-pediatric-cancers-dream-team/”,”publisher_year”:”Cancer Immunology Research, 2018″,”pub_med_id”:”29748391″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=29748391″},{“title”:”Tasian SK. Acute myeloid leukemia chimeric antigen receptor T-cell immunotherapy: how far up the road have we traveled? Ther Adv Hematol. 2018 Jun;9(6):135-148.”,”type”:”publication”,”url”:”https://journals.sagepub.com/doi/10.1177/2040620718774268″,”cancer_type_terms_string”:”Leukemia (all types), Pediatric – Blood Related”,”treatment_type_terms_string”:”Immunotherapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”St. Baldrick’s Foundation–SU2C Pediatric Cancer Dream Team: Immunogenomics to Create New Therapies for High-Risk Childhood Cancers”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/intractable-pediatric-cancers-dream-team/”,”publisher_year”:”Therapeutic Advances in Hematology, 2018″,”pub_med_id”:”29899889″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=29899889″},{“title”:”Joseph SK, Samaha H, Bielamowicz K, Ahmed N. Response to the comment on “Trivalent CAR T cells overcome interpatient antigenic variability in glioblastoma” by Bielamowicz et al. Neuro Oncol. 2018 Jun 18;20(7):1004-1005.”,”type”:”publication”,”url”:”https://academic.oup.com/neuro-oncology/article/20/7/1004/4999739″,”cancer_type_terms_string”:”Brain/Nervous System”,”treatment_type_terms_string”:”Immunotherapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”St. Baldrick’s Foundation–SU2C Pediatric Cancer Dream Team: Immunogenomics to Create New Therapies for High-Risk Childhood Cancers”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/intractable-pediatric-cancers-dream-team/”,”publisher_year”:”Neuro-Oncology, 2018″,”pub_med_id”:”29788442″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=29788442″},{“title”:”Ceppi F, Rivers J, Annesley C, Pinto N, Park JR, Lindgren C, Mgebroff S, Linn N, Delaney M, Gardner RA. Lymphocyte apheresis for chimeric antigen receptor T-cell manufacturing in children and young adults with leukemia and neuroblastoma. Transfusion. 2018 Jun;58(6):1414-1420.”,”type”:”publication”,”url”:”https://onlinelibrary.wiley.com/doi/full/10.1111/trf.14569″,”cancer_type_terms_string”:”Brain/Nervous System, Leukemia (all types), Pediatric – Blood Related, Pediatric – Solid Tumor”,”treatment_type_terms_string”:”Immunotherapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”St. Baldrick’s Foundation–SU2C Pediatric Cancer Dream Team: Immunogenomics to Create New Therapies for High-Risk Childhood Cancers”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/intractable-pediatric-cancers-dream-team/”,”publisher_year”:”Transfusion, 2018″,”pub_med_id”:”29536556″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=29536556″},{“title”:”Taraseviciute A, Tkachev V, Ponce R, Turtle CJ, Snyder JM, Liggitt HD, Myerson D, Gonzalez-Cuyar L, Baldessari A, English C, Yu A, Zheng H, Furlan SN, Hunt DJ, Hoglund V, Finney O, Brakke H, Blazar BR, Berger C, Riddell SR, Gardner R, Kean LS, Jensen MC. Chimeric Antigen Receptor T Cell-Mediated Neurotoxicity in Nonhuman Primates. Cancer Discov. 2018 Jun;8(6):750-763.”,”type”:”publication”,”url”:”https://cancerdiscovery.aacrjournals.org/content/8/6/750″,”cancer_type_terms_string”:”Non – site Specific”,”treatment_type_terms_string”:”Immunotherapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”St. Baldrick’s Foundation–SU2C Pediatric Cancer Dream Team: Immunogenomics to Create New Therapies for High-Risk Childhood Cancers”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/intractable-pediatric-cancers-dream-team/”,”publisher_year”:”Cancer Discovery, 2018″,”pub_med_id”:”29563103″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=29563103″},{“title”:”Ozkaynak MF, Gilman AL, London WB, Naranjo A, Diccianni MB, Tenney SC, Smith M, Messer KS, Seeger R, Reynolds CP, Smith LM, Shulkin BL, Parisi M, Maris JM, Park JR, Sondel PM, Yu AL. A Comprehensive Safety Trial of Chimeric Antibody 14.18 With GM-CSF, IL-2, and Isotretinoin in High-Risk Neuroblastoma Patients Following Myeloablative Therapy: Children’s Oncology Group Study ANBL0931. Front Immunol. 2018 Jun 18;9:1355.”,”type”:”publication”,”url”:”https://www.frontiersin.org/articles/10.3389/fimmu.2018.01355/full”,”cancer_type_terms_string”:”Pediatric – Solid Tumor”,”treatment_type_terms_string”:”Immunotherapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”St. Baldrick’s Foundation–SU2C Pediatric Cancer Dream Team: Immunogenomics to Create New Therapies for High-Risk Childhood Cancers”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/intractable-pediatric-cancers-dream-team/”,”publisher_year”:”Frontiers in Immunology, 2018″,”pub_med_id”:”29967609″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=29967609″},{“title”:”Lowe KL, Mackall CL, Norry E, Amado R, Jakobsen BK, Binder G. Fludarabine and neurotoxicity in engineered T-cell therapy. Gene Ther. 2018 Jun;25(3):176-191.”,”type”:”publication”,”url”:”https://www.nature.com/articles/s41434-018-0019-6″,”cancer_type_terms_string”:”Non – site Specific”,”treatment_type_terms_string”:”Chemotherapy, Immunotherapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”St. Baldrick’s Foundation–SU2C Pediatric Cancer Dream Team: Immunogenomics to Create New Therapies for High-Risk Childhood Cancers”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/intractable-pediatric-cancers-dream-team/”,”publisher_year”:”Gene Therapy, 2018″,”pub_med_id”:”29789639″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=29789639″},{“title”:”Laetsch TW, Maude SL, Milone MC, Davis KL, Krueger J, Cardenas AM, Eldjerou LK, Keir CH, Wood PA, Grupp SA. False-positive results with select HIV-1 NAT methods following lentivirus-based tisagenlecleucel therapy. Blood. 2018 Jun 7;131(23):2596-2598.”,”type”:”publication”,”url”:”http://www.bloodjournal.org/content/131/23/2596?sso-checked=true”,”cancer_type_terms_string”:”Leukemia (all types), Pediatric – Blood Related”,”treatment_type_terms_string”:”Immunotherapy, Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”St. Baldrick’s Foundation–SU2C Pediatric Cancer Dream Team: Immunogenomics to Create New Therapies for High-Risk Childhood Cancers”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/intractable-pediatric-cancers-dream-team/”,”publisher_year”:”Blood, 2018″,”pub_med_id”:”29669777″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=29669777″},{“title”:”Yáñez-Muñoz RJ, Grupp SA. CAR-T in the clinic: drive with care. Gene Ther. 2018 Jun;25(3):157-161.”,”type”:”publication”,”url”:”https://www.nature.com/articles/s41434-018-0023-x”,”cancer_type_terms_string”:”Non – site Specific”,”treatment_type_terms_string”:”Immunotherapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”St. Baldrick’s Foundation–SU2C Pediatric Cancer Dream Team: Immunogenomics to Create New Therapies for High-Risk Childhood Cancers”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/intractable-pediatric-cancers-dream-team/”,”publisher_year”:”Gene Therapy, 2018″,”pub_med_id”:”29961080″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=29961080″},{“title”:”Pennell CA, Barnum JL, McDonald-Hyman CS, Panoskaltsis-Mortari A, Riddle MJ, Xiong Z, Loschi M, Thangavelu G, Campbell HM, Storlie MD, Refaeli Y, Furlan SN, Jensen MC, Kean LS, Miller JS, Tolar J, Osborn MJ, Blazar BR. Human CD19-Targeted Mouse T Cells Induce B Cell Aplasia and Toxicity in Human CD19 Transgenic Mice. Mol Ther. 2018 Jun 6;26(6):1423-1434.”,”type”:”publication”,”url”:”https://www.cell.com/molecular-therapy-family/molecular-therapy/fulltext/S1525-0016(18)30163-1?_returnURL=https%3A%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2FS1525001618301631%3Fshowall%3Dtrue”,”cancer_type_terms_string”:”Non – site Specific”,”treatment_type_terms_string”:”Immunotherapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”St. Baldrick’s Foundation–SU2C Pediatric Cancer Dream Team: Immunogenomics to Create New Therapies for High-Risk Childhood Cancers”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/intractable-pediatric-cancers-dream-team/”,”publisher_year”:”Molecular Therapy, 2018″,”pub_med_id”:”29735365″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=29735365″},{“title”:”Mount CW, Majzner RG, Sundaresh S, Arnold EP, Kadapakkam M, Haile S, Labanieh L, Hulleman E, Woo PJ, Rietberg SP, Vogel H, Monje M, Mackall CL. Potent anti-tumor efficacy of anti-GD2 CAR T cells in H3-K27M+ diffuse midline gliomas. Nat Med. 2018 May;24(5):572-579.”,”type”:”publication”,”url”:”https://www.nature.com/articles/s41591-018-0006-x”,”cancer_type_terms_string”:”Brain/Nervous System, Pediatric – Solid Tumor”,”treatment_type_terms_string”:”Immunotherapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”St. Baldrick’s Foundation–SU2C Pediatric Cancer Dream Team: Immunogenomics to Create New Therapies for High-Risk Childhood Cancers”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/intractable-pediatric-cancers-dream-team/”,”publisher_year”:”Nature Medicine, 2018″,”pub_med_id”:”29662203″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=29662203″},{“title”:”Grupp S. Beginning the CAR T cell therapy revolution in the US and EU. Curr Res Transl Med. 2018 May;66(2):62-64.”,”type”:”publication”,”url”:”https://www.sciencedirect.com/science/article/abs/pii/S2452318618300199?via%3Dihub”,”cancer_type_terms_string”:”Non – site Specific”,”treatment_type_terms_string”:”Immunotherapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”St. Baldrick’s Foundation–SU2C Pediatric Cancer Dream Team: Immunogenomics to Create New Therapies for High-Risk Childhood Cancers”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/intractable-pediatric-cancers-dream-team/”,”publisher_year”:”Current Research in Translational Medicine, 2018″,”pub_med_id”:”29656949″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=29656949″},{“title”:”Miller JS, Morishima C, McNeel DG, Patel MR, Kohrt HEK, Thompson JA, Sondel PM, Wakelee HA, Disis ML, Kaiser JC, Cheever MA, Streicher H, Creekmore SP, Waldmann TA, Conlon KC. A First-in-Human Phase 1 Study of Subcutaneous Outpatient Recombinant Human IL-15 (rhIL-15) in Adults with Advanced Solid Tumors. Clin Cancer Res. 2018 Apr 1;24(7):1525-1535.”,”type”:”publication”,”url”:”https://clincancerres.aacrjournals.org/content/24/7/1525″,”cancer_type_terms_string”:”Non – site Specific”,”treatment_type_terms_string”:”Immunotherapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”St. Baldrick’s Foundation–SU2C Pediatric Cancer Dream Team: Immunogenomics to Create New Therapies for High-Risk Childhood Cancers”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/intractable-pediatric-cancers-dream-team/”,”publisher_year”:”Clinical Cancer Research, 2018″,”pub_med_id”:”29203590″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=29203590″},{“title”:”Majzner RG, Weber EW, Lynn RC, Xu P, Mackall CL. Neurotoxicity Associated with a High-Affinity GD2 CAR-Letter. Cancer Immunol Res. 2018 Apr;6(4):494-495.”,”type”:”publication”,”url”:”https://cancerimmunolres.aacrjournals.org/content/6/4/494″,”cancer_type_terms_string”:”Pediatric – Solid Tumor”,”treatment_type_terms_string”:”Immunotherapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”St. Baldrick’s Foundation–SU2C Pediatric Cancer Dream Team: Immunogenomics to Create New Therapies for High-Risk Childhood Cancers”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/intractable-pediatric-cancers-dream-team/”,”publisher_year”:”Cancer Immunology Research, 2018″,”pub_med_id”:”29610423″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=29610423″},{“title”:”Teachey DT, Bishop MR, Maloney DG, Grupp SA. Toxicity management after chimeric antigen receptor T cell therapy: one size does not fit ‘ALL’. Nat Rev Clin Oncol. 2018 Apr;15(4):218.”,”type”:”publication”,”url”:”https://www.nature.com/articles/nrclinonc.2018.19″,”cancer_type_terms_string”:”Leukemia (all types), Pediatric – Blood Related”,”treatment_type_terms_string”:”Immunotherapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”St. Baldrick’s Foundation–SU2C Pediatric Cancer Dream Team: Immunogenomics to Create New Therapies for High-Risk Childhood Cancers”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/intractable-pediatric-cancers-dream-team/”,”publisher_year”:”Nature Reviews Clinical Oncology, 2018″,”pub_med_id”:”29434335″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=29434335″},{“title”:”Bielamowicz K, Fousek K, Byrd TT, Samaha H, Mukherjee M, Aware N, Wu MF, Orange JS, Sumazin P, Man TK, Joseph SK, Hegde M, Ahmed N. Trivalent CAR T-cells Overcome Interpatient Antigenic Variability in Glioblastoma. Neuro Oncol. 2018 Mar 27;20(4):506-518.”,”type”:”publication”,”url”:”https://academic.oup.com/neuro-oncology/article/20/4/506/4159414″,”cancer_type_terms_string”:”Brain/Nervous System, Pediatric – Solid Tumor”,”treatment_type_terms_string”:”Immunotherapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”St. Baldrick’s Foundation–SU2C Pediatric Cancer Dream Team: Immunogenomics to Create New Therapies for High-Risk Childhood Cancers”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/intractable-pediatric-cancers-dream-team/”,”publisher_year”:”Neuro-Oncology, 2018″,”pub_med_id”:”29016929″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=29016929″},{“title”:”Porter D, Frey N, Wood PA, Weng Y, Grupp SA. Grading of cytokine release syndrome associated with the CAR T cell therapy tisagenlecleucel. J Hematol Oncol. 2018 Mar 2;11(1):35.”,”type”:”publication”,”url”:”https://jhoonline.biomedcentral.com/articles/10.1186/s13045-018-0571-y”,”cancer_type_terms_string”:”Leukemia (all types), Lymphoma, Pediatric – Blood Related”,”treatment_type_terms_string”:”Immunotherapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”St. Baldrick’s Foundation–SU2C Pediatric Cancer Dream Team: Immunogenomics to Create New Therapies for High-Risk Childhood Cancers”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/intractable-pediatric-cancers-dream-team/”,”publisher_year”:”Journal of Hematology & Oncology, 2018″,”pub_med_id”:”29499750″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=29499750″},{“title”:”Lieberman NAP, DeGolier K, Haberthur K, Chinn H, Moyes KW, Bouchlaka MN, Walker KL, Capitini CM, Crane CA. An Uncoupling of Canonical Phenotypic Markers and Functional Potency of Ex Vivo-Expanded Natural Killer Cells. Front Immunol. 2018 Feb 2;9:150.”,”type”:”publication”,”url”:”https://www.frontiersin.org/articles/10.3389/fimmu.2018.00150/full”,”cancer_type_terms_string”:”Leukemia (all types)”,”treatment_type_terms_string”:”Immunotherapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”St. Baldrick’s Foundation–SU2C Pediatric Cancer Dream Team: Immunogenomics to Create New Therapies for High-Risk Childhood Cancers”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/intractable-pediatric-cancers-dream-team/”,”publisher_year”:”Frontiers in Immunology, 2018″,”pub_med_id”:”29456538″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=29456538″},{“title”:”Piscopo NJ, Mueller KP, Das T, Hematti P, Murphy WL, Palecek SP, Capitini CM, Saha K. Bioengineering solutions for manufacturing challenges in CAR T-cells. Biotechnol J. 2018 Feb;13(2).”,”type”:”publication”,”url”:”https://onlinelibrary.wiley.com/doi/abs/10.1002/biot.201700095″,”cancer_type_terms_string”:”Non – site Specific”,”treatment_type_terms_string”:”Immunotherapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”St. Baldrick’s Foundation–SU2C Pediatric Cancer Dream Team: Immunogenomics to Create New Therapies for High-Risk Childhood Cancers”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/intractable-pediatric-cancers-dream-team/”,”publisher_year”:”Biotechnology Journal, 2018″,”pub_med_id”:”28840981″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=28840981″},{“title”:”Schultz LM, Majzner R, Davis KL, Mackall C. New developments in immunotherapy for pediatric solid tumors. Curr Opin Pediatr. 2018 Feb;30(1):30-39.”,”type”:”publication”,”url”:”https://insights.ovid.com/crossref?an=00008480-201802000-00007″,”cancer_type_terms_string”:”Pediatric – Solid Tumor”,”treatment_type_terms_string”:”Immunotherapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”St. Baldrick’s Foundation–SU2C Pediatric Cancer Dream Team: Immunogenomics to Create New Therapies for High-Risk Childhood Cancers”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/intractable-pediatric-cancers-dream-team/”,”publisher_year”:”Current Opinions in Pediatrics, 2018″,”pub_med_id”:”29189429″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=29189429″},{“title”:”Garzia L, Kijima N, Morrissy AS, De Antonellis P, Guerreiro-Stucklin A, Holgado BL, Wu X, Wang X, Parsons M, Zayne K, Manno A, Kuzan-Fischer C, Nor C, Donovan LK, Liu J, Qin L, Garancher A, Liu KW, Mansouri S, Luu B, Thompson YY, Ramaswamy V, Peacock J, Farooq H, Skowron P, Shih DJH, Li A, Ensan S, Robbins CS, Cybulsky M, Mitra S, Ma Y, Moore R, Mungall A, Cho YJ, Weiss WA, Chan JA, Hawkins CE, Massimino M, Jabado N, Zapotocky M, Sumerauer D, Bouffet E, Dirks P, Tabori U, Sorensen PHB, Brastianos PK, Aldape K, Jones SJM, Marra MA, Woodgett JR, Wechsler-Reya RJ, Fults DW, Taylor MD. A Hematogenous Route for Medulloblastoma Leptomeningeal Metastases. Cell. 2018 Feb 22;172(5):1050-1062.e14.”,”type”:”publication”,”url”:”https://www.cell.com/cell/fulltext/S0092-8674(18)30115-6?_returnURL=https%3A%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2FS0092867418301156%3Fshowall%3Dtrue”,”cancer_type_terms_string”:”Pediatric – Solid Tumor”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”St. Baldrick’s Foundation–SU2C Pediatric Cancer Dream Team: Immunogenomics to Create New Therapies for High-Risk Childhood Cancers”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/intractable-pediatric-cancers-dream-team/”,”publisher_year”:”Cell, 2018″,”pub_med_id”:”29474906″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=29474906″},{“title”:”Maude SL, Laetsch TW, Buechner J, Rives S, Boyer M, Bittencourt H, Bader P, Verneris MR, Stefanski HE, Myers GD, Qayed M, De Moerloose B, Hiramatsu H, Schlis K, Davis KL, Martin PL, Nemecek ER, Yanik GA, Peters C, Baruchel A, Boissel N, Mechinaud F, Balduzzi A, Krueger J, June CH, Levine BL, Wood P, Taran T, Leung M, Mueller KT, Zhang Y, Sen K, Lebwohl D, Pulsipher MA, Grupp SA. Tisagenlecleucel in Children and Young Adults with B-Cell Lymphoblastic Leukemia. N Engl J Med. 2018 Feb 1;378(5):439-448.”,”type”:”publication”,”url”:”https://www.nejm.org/doi/10.1056/NEJMoa1709866″,”cancer_type_terms_string”:”Leukemia (all types), Pediatric – Blood Related”,”treatment_type_terms_string”:”Immunotherapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”St. Baldrick’s Foundation–SU2C Pediatric Cancer Dream Team: Immunogenomics to Create New Therapies for High-Risk Childhood Cancers”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/intractable-pediatric-cancers-dream-team/”,”publisher_year”:”New England Journal of Medicine, 2018″,”pub_med_id”:”29385370″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=29385370″},{“title”:”Erbe AK, Wang W, Carmichael L, Kim K, Mendonça EA, Song Y, Hess D, Reville PK, London WB, Naranjo A, Hank JA, Diccianni MB, Reisfeld RA, Gillies SD, Matthay KK, Cohn SL, Hogarty MD, Maris JM, Park JR, Ozkaynak MF, Gilman AL, Yu AL, Sondel PM. Neuroblastoma Patients’ KIR and KIR-Ligand Genotypes Influence Clinical Outcome for Dinutuximab-based Immunotherapy: A Report from the Children’s Oncology Group. Clin Cancer Res. 2018 Jan 1;24(1):189-196.”,”type”:”publication”,”url”:”https://clincancerres.aacrjournals.org/content/24/1/189″,”cancer_type_terms_string”:”Pediatric – Solid Tumor”,”treatment_type_terms_string”:”Immunotherapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”St. Baldrick’s Foundation–SU2C Pediatric Cancer Dream Team: Immunogenomics to Create New Therapies for High-Risk Childhood Cancers”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/intractable-pediatric-cancers-dream-team/”,”publisher_year”:”Clinical Cancer Research, 2018″,”pub_med_id”:”28972044″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=28972044″},{“title”:”Byrd TT, Fousek K, Pignata A, Szot C, Samaha H, Seaman S, Dobrolecki L, Salsman V, Oo HZ, Bielamowicz K, Landi D, Rainusso N, Hicks JM, Powell S, Baker ML, Wels WS, Koch J, Sorensen PH, Deneen B, Ellis MJ, Lewis MT, Hegde M, Fletcher BS, St Croix B, Ahmed N. TEM8/ANTXR1-specific CAR T cells as a targeted therapy for triple-negative breast cancer. Cancer Res. 2018 Jan 15;78(2):489-500.”,”type”:”publication”,”url”:”https://cancerres.aacrjournals.org/content/78/2/489″,”cancer_type_terms_string”:”Breast”,”treatment_type_terms_string”:”Immunotherapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”St. Baldrick’s Foundation–SU2C Pediatric Cancer Dream Team: Immunogenomics to Create New Therapies for High-Risk Childhood Cancers”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/intractable-pediatric-cancers-dream-team/”,”publisher_year”:”Cancer Research, 2018″,”pub_med_id”:”29183891″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=29183891″},{“title”:”Mack SC, Pajtler KW, Chavez L, Okonechnikov K, Bertrand KC, Wang X, Erkek S, Federation A, Song A, Lee C, Wang X, McDonald L, Morrow JJ, Saiakhova A, Sin-Chan P, Wu Q, Michaelraj KA, Miller TE, Hubert CG, Ryzhova M, Garzia L, Donovan L, Dombrowski S, Factor DC, Luu B, Valentim CLL, Gimple RC, Morton A, Kim L, Prager BC, Lee JJY, Wu X, Zuccaro J, Thompson Y, Holgado BL, Reimand J, Ke SQ, Tropper A, Lai S, Vijayarajah S, Doan S, Mahadev V, Miñan AF, Gröbner SN, Lienhard M, Zapatka M, Huang Z, Aldape KD, Carcaboso AM, Houghton PJ, Keir ST, Milde T, Witt H, Li Y, Li CJ, Bian XW, Jones DTW, Scott I, Singh SK, Huang A, Dirks PB, Bouffet E, Bradner JE, Ramaswamy V, Jabado N, Rutka JT, Northcott PA, Lupien M, Lichter P, Korshunov A, Scacheri PC, Pfister SM, Kool M, Taylor MD, Rich JN. Therapeutic targeting of ependymoma as informed by oncogenic enhancer profiling. Nature. 2018 Jan 4;553(7686):101-105. : 29258295″,”type”:”publication”,”url”:”https://www.nature.com/articles/nature25169″,”cancer_type_terms_string”:”Brain/Nervous System, Pediatric – Solid Tumor”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”St. Baldrick’s Foundation–SU2C Pediatric Cancer Dream Team: Immunogenomics to Create New Therapies for High-Risk Childhood Cancers”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/intractable-pediatric-cancers-dream-team/”,”publisher_year”:”Nature, 2018″,”pub_med_id”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=29258295″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=29258295″},{“title”:”Fry TJ, Shah NN, Orentas RJ, Stetler-Stevenson M, Yuan CM, Ramakrishna S, Wolters P, Martin S, Delbrook C, Yates B, Shalabi H, Fountaine TJ, Shern JF, Majzner RG, Stroncek DF, Sabatino M, Feng Y, Dimitrov DS, Zhang L, Nguyen S, Qin H, Dropulic B, Lee DW, Mackall CL. CD22-targetd CAR T cells induce remission in B-ALL that is naive or resistant to CD19-targeted immunotherapy. Nat Med. 2018 Jan;24(1):20-28.”,”type”:”publication”,”url”:”https://www.nature.com/articles/nm.4441″,”cancer_type_terms_string”:”Leukemia (all types), Pediatric – Blood Related”,”treatment_type_terms_string”:”Immunotherapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”St. Baldrick’s Foundation–SU2C Pediatric Cancer Dream Team: Immunogenomics to Create New Therapies for High-Risk Childhood Cancers”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/intractable-pediatric-cancers-dream-team/”,”publisher_year”:”Nature Medicine, 2018″,”pub_med_id”:”29155426″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=29155426″},{“title”:”Kochanowski K, Morinishi L, Altschuler S, Wu L. Drug persistence – from antibiotics to cancer therapies. Curr Opin Syst Biol. 2018 Aug;10:1-8.”,”type”:”publication”,”url”:”https://www.sciencedirect.com/science/article/pii/S245231001830026X?via%3Dihub”,”cancer_type_terms_string”:”Non – site Specific”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Convergence Team”,”research_project”:”SU2C–National Science Foundation Lung Cancer Convergence Research Team: Genetic, Epigenetic, and Immunological Underpinnings of Cancer Evolution Through Treatment”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/convergence-teams/cancer-evolution-convergence-team/”,”publisher_year”:”Current Opinion in Systems Biology, 2018″,”pub_med_id”:”30740553″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=30740553″},{“title”:”Ptashkin RN, Mandelker DL, Coombs CC, Bolton K, Yelskaya Z, Hyman DM, Solit DB, Baselga J, Arcila ME, Ladanyi M, Zhang L, Levine RL, Berger MF, Zehir A. Prevalence of Clonal Hematopoiesis Mutations in Tumor-Only Clinical Genomic Profiling of Solid Tumors. JAMA Oncol. 2018 Nov 1;4(11):1589-1593.”,”type”:”publication”,”url”:”https://doi.org/10.1001/jamaoncol.2018.2297″,”cancer_type_terms_string”:”Non – site Specific”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Convergence Team”,”research_project”:”SU2C–National Science Foundation Lung Cancer Convergence Research Team: Genetic, Epigenetic, and Immunological Underpinnings of Cancer Evolution Through Treatment”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/convergence-teams/cancer-evolution-convergence-team/”,”publisher_year”:”JAMA Oncology, 2018″,”pub_med_id”:”29872864″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=29872864″},{“title”:”Razavi P, Chang MT, Xu G, Bandlamudi C, Ross DS, Vasan N, Cai Y, Bielski CM, Donoghue MTA, Jonsson P, Penson A, Shen R, Pareja F, Kundra R, Middha S, Cheng ML, Zehir A, Kandoth C, Patel R, Huberman K, Smyth LM, Jhaveri K, Modi S, Traina TA, Dang C, Zhang W, Weigelt B, Li BT, Ladanyi M, Hyman DM, Schultz N, Robson ME, Hudis C, Brogi E, Viale A, Norton L, Dickler MN, Berger MF, Iacobuzio-Donahue CA, Chandarlapaty S, Scaltriti M, Reis-Filho JS, Solit DB, Taylor BS, Baselga J. The Genomic Landscape of Endocrine-Resistant Advanced Breast Cancers. Cancer Cell. 2018 Sep 10;34(3):427-438.e6.”,”type”:”publication”,”url”:”https://www.cell.com/cancer-cell/fulltext/S1535-6108(18)30368-4″,”cancer_type_terms_string”:”Breast”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Convergence Team”,”research_project”:”SU2C–National Science Foundation Drug Combinations Convergence Research Team: Rational Design of Anticancer Drug Combinations with Dynamic Multi-Dimensional Input”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/convergence-teams/rational-design-of-anticancer-drug-combinations-convergence-research-team/”,”publisher_year”:”Cancer Cell, 2018″,”pub_med_id”:”30205045″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=30205045″},{“title”:”Yang G, Gómez Tejeda Zañudo J, Albert R. Target control in logical models using the domain of influence of nodes Front Physiol. 2018 May 8;9:454.”,”type”:”publication”,”url”:”https://www.frontiersin.org/articles/10.3389/fphys.2018.00454/full”,”cancer_type_terms_string”:”Non – site Specific”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Convergence Team”,”research_project”:”SU2C–National Science Foundation Drug Combinations Convergence Research Team: Rational Design of Anticancer Drug Combinations with Dynamic Multi-Dimensional Input”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/convergence-teams/rational-design-of-anticancer-drug-combinations-convergence-research-team/”,”publisher_year”:”Fronteirs in Physiology, 2018″,”pub_med_id”:”29867523″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=29867523″},{“title”:”Solovyov A, Vabret N, Arora KS, Snyder A, Funt SA, Bajorin DF, Rosenberg JE, Bhardwaj N, Ting DT, Greenbaum BD. Global Cancer Transcriptome Quantifies Repeat Element Polarization between Immunotherapy Responsive and T Cell Suppressive Classes. Cell Rep. 2018 Apr 10;23(2):512-521.”,”type”:”publication”,”url”:”https://www.cell.com/cell-reports/fulltext/S2211-1247(18)30384-X?_returnURL=https%3A%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2FS221112471830384X%3Fshowall%3Dtrue”,”cancer_type_terms_string”:”Non – site Specific”,”treatment_type_terms_string”:”Immunotherapy”,”grant_type_terms_string”:”Convergence Team”,”research_project”:”SU2C–National Science Foundation–Lustgarten Foundation Pancreatic Cancer Convergence Research Team: Liberating T-Cell Mediated Immunity to Pancreatic Cancer”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/convergence-teams/mediated-immunity-in-pancreatic-cancer-convergence-team/”,”publisher_year”:”Cell Reports, 2018″,”pub_med_id”:”29642008″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=29642008″},{“title”:”Elhanati Y, Sethna Z, Callan CG Jr, Mora T, Walczak AM. Predicting the spectrum of TCR repertoire sharing with a data-driven model of recombination. Immunol Rev. 2018 Jul;284(1):167-179.”,”type”:”publication”,”url”:”https://onlinelibrary.wiley.com/doi/full/10.1111/imr.12665″,”cancer_type_terms_string”:”Non – site Specific”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Convergence Team”,”research_project”:”SU2C–National Science Foundation–Lustgarten Foundation Pancreatic Cancer Convergence Research Team: Liberating T-Cell Mediated Immunity to Pancreatic Cancer”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/convergence-teams/mediated-immunity-in-pancreatic-cancer-convergence-team/”,”publisher_year”:”Immunological Reviews, 2018″,”pub_med_id”:”29944757″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=29944757″},{“title”:”Ruel NH, Schwartz EJ, Krag DN, Tan LK, Yim JH, Mortimer JE, Yuan Y, Lee PP. Sentinel lymph node B cells can predict disease-free survival in breast cancer patients. NPJ Breast Cancer. 2018 Aug 23;4:28.”,”type”:”publication”,”url”:”https://www.nature.com/articles/s41523-018-0081-7″,”cancer_type_terms_string”:”Breast”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Convergence Team”,”research_project”:”SU2C–Breast Cancer Research Foundation Breast Cancer Convergence Research Team: Ecology of the Tumor Microenvironment in Breast Cancer”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/convergence-teams/breast-cancer-tumor-microenvironment/”,”publisher_year”:”NPJ Breast Cancer, 2018″,”pub_med_id”:”30155518″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=30155518″},{“title”:”Egelston CA, Avalos C, Tu TY, Simons DL, Jimenez G, Jung JY, Melstrom L, Margolin K, Yim JH, Kruper L, Mortimer J, Lee PP. Human breast tumor-infiltrating CD8+ T cells retain polyfunctionality despite PD-1 expression. Nat Commun. 2018 Oct 16;9(1):4297.”,”type”:”publication”,”url”:”https://www.nature.com/articles/s41467-018-06653-9″,”cancer_type_terms_string”:”Breast”,”treatment_type_terms_string”:”Immunotherapy”,”grant_type_terms_string”:”Convergence Team”,”research_project”:”SU2C–Breast Cancer Research Foundation Breast Cancer Convergence Research Team: Ecology of the Tumor Microenvironment in Breast Cancer”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/convergence-teams/breast-cancer-tumor-microenvironment/”,”publisher_year”:”Nature Communications, 2018″,”pub_med_id”:”30327458″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=30327458″},{“title”:”Lee V, Wang J, Zahurak M, Gootjes E, Verheul HM, Parkinson R, Kerner Z, Sharma A, Rosner G, De Jesus-Acosta A, Laheru D, Le DT, Oganesian A, Lilly E, Brown T, Jones P, Baylin S, Ahuja N, Azad N. A Phase I Trial of a Guadecitabine (SGI-110) and Irinotecan in Metastatic Colorectal Cancer Patients Previously Exposed to Irinotecan. Clin Cancer Res. 2018 Dec 15;24(24):6160-6167.”,”type”:”publication”,”url”:”https://clincancerres.aacrjournals.org/content/24/24/6160″,”cancer_type_terms_string”:”Colorectal”,”treatment_type_terms_string”:”Chemotherapy, Epigenetic Therapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”Van Andel Institute–SU2C Cancer Epigenetics Dream Team: The Epigenetics Dream Team II”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/epigenetics-dream-team-ii/”,”publisher_year”:”Clinical Cancer Research, 2018″,”pub_med_id”:”30097434″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=30097434″},{“title”:”Popovic A, Jaffee EM, Zaidi N. Emerging strategies for combination checkpoint modulators in cancer immunotherapy. J Clin Invest. 2018 Aug 1;128(8):3209-3218.”,”type”:”publication”,”url”:”https://www.jci.org/articles/view/120775″,”cancer_type_terms_string”:”Non – site Specific”,”treatment_type_terms_string”:”Immunotherapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–Lustgarten Foundation Pancreatic Cancer Dream Team: Transforming Pancreatic Cancer to Treatable Disease”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/transforming-pancreatic-cancer-dream-team/”,”publisher_year”:”Journal of Clinical Investigation, 2018″,”pub_med_id”:”30067248″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=30067248″},{“title”:”Kinkead HL, Hopkins A, Lutz E, Wu AA, Yarchoan M, Cruz K, Woolman S, Vithayathil T, Glickman LH, Ndubaku CO, McWhirter SM, Dubensky TW Jr, Armstrong TD, Jaffee EM, Zaidi N. Combining STING-based neoantigen-targeted vaccine with checkpoint modulators enhances antitumor immunity in murine pancreatic cancer. JCI Insight. 2018 Oct 18;3(20). pii: 122857.”,”type”:”publication”,”url”:”https://insight.jci.org/articles/view/122857″,”cancer_type_terms_string”:”Pancreatic”,”treatment_type_terms_string”:”Immunotherapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–Lustgarten Foundation Pancreatic Cancer Dream Team: Transforming Pancreatic Cancer to Treatable Disease”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/transforming-pancreatic-cancer-dream-team/”,”publisher_year”:”JCI Insight, 2018″,”pub_med_id”:”30333318″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=30333318″},{“title”:”Christmas BJ, Rafie CI, Hopkins AC, Scott BA, Ma HS, Cruz KA, Woolman S, Armstrong TD, Connolly RM, Azad NA, Jaffee EM, Roussos Torres ET. Entinostat Converts Immune-Resistant Breast and Pancreatic Cancers into Checkpoint-Responsive Tumors by Reprogramming Tumor-Infiltrating MDSCs. Cancer Immunol Res. 2018 Dec;6(12):1561-1577.”,”type”:”publication”,”url”:”https://cancerimmunolres.aacrjournals.org/content/6/12/1561″,”cancer_type_terms_string”:”Breast, Pancreatic”,”treatment_type_terms_string”:”Immunotherapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–Lustgarten Foundation Pancreatic Cancer Dream Team: Transforming Pancreatic Cancer to Treatable Disease”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/transforming-pancreatic-cancer-dream-team/”,”publisher_year”:”Cancer Immunology Research, 2018″,”pub_med_id”:”30341213″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=30341213″},{“title”:”Liu H, Murphy CJ, Karreth FA, Emdal KB, White FM, Elemento O, Toker A, Wulf GM, Cantley LC. Identifying and Targeting Sporadic Oncogenic Genetic Aberrations in Mouse Models of Triple-Negative Breast Cancer. Cancer Discov. 2018 Mar;8(3):354-369.”,”type”:”publication”,”url”:”https://cancerdiscovery.aacrjournals.org/content/8/3/354″,”cancer_type_terms_string”:”Breast”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C Colorectal Cancer Dream Team: Targeting Genomic, Metabolic, and Immunological Vulnerabilities of Colorectal Cancer”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/colorectal-cancer-vulnerabilities-dream-team/”,”publisher_year”:”Cancer Discovery, 2018″,”pub_med_id”:”29203461″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=29203461″},{“title”:”Babic A, Schnure N, Neupane NP, Zaman MM, Rifai N, Welch MW, Brais LK, Rubinson DA, Morales-Oyarvide V, Yuan C, Zhang S, Poole EM, Wolpin BM, Kulke MH, Barbie DA, Wong K, Fuchs CS, Ng K. Plasma inflammatory cytokines and survival of pancreatic cancer patients. Clin Transl Gastroenterol. 2018 Apr 25;9(4):145.”,”type”:”publication”,”url”:”https://insights.ovid.com/crossref?an=01720094-201804000-00004″,”cancer_type_terms_string”:”Pancreatic”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C Colorectal Cancer Dream Team: Targeting Genomic, Metabolic, and Immunological Vulnerabilities of Colorectal Cancer”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/colorectal-cancer-vulnerabilities-dream-team/”,”publisher_year”:”Clinical and Tranlational Gastroenterology, 2018″,”pub_med_id”:”29691365″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=29691365″},{“title”:”Brown JC, Zhang S, Niedzwiecki D, Saltz LB, Mayer RJ, Mowat RB, Whittom R, Hantel A Benson A, Atienza D, Messino M, Kindler H, Venook A, Ogino S, Li Y, Zhang X, Ng K, Willett WC, Giovannucci EL, Fuchs CS, Meyerhardt JA. Grain Intake and Clinical Outcome in Stage III Colon Cancer: Results From CALGB 89803 (Alliance). JNCI Cancer Spectr. 2018 Feb;2(2):pky017.”,”type”:”publication”,”url”:”https://academic.oup.com/jncics/article/2/2/pky017/5025854″,”cancer_type_terms_string”:”Colorectal”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C Colorectal Cancer Dream Team: Targeting Genomic, Metabolic, and Immunological Vulnerabilities of Colorectal Cancer”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/colorectal-cancer-vulnerabilities-dream-team/”,”publisher_year”:”JNCI Cancer Spectrum, 2018″,”pub_med_id”:”29877501″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=29877501″},{“title”:”Cao Y, Wu K, Mehta R, Drew DA, Song M, Lochhead P, Nguyen LH, Izard J, Fuchs CS, Garrett WS, Huttenhower C, Ogino S, Giovannucci EL, Chan AT. Long-term use of antibiotics and risk of colorectal adenoma. Gut. 2018 Apr;67(4):672-678.”,”type”:”publication”,”url”:”https://gut.bmj.com/content/67/4/672″,”cancer_type_terms_string”:”Colorectal”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C Colorectal Cancer Dream Team: Targeting Genomic, Metabolic, and Immunological Vulnerabilities of Colorectal Cancer”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/colorectal-cancer-vulnerabilities-dream-team/”,”publisher_year”:”Gut, 2018″,”pub_med_id”:”28377387″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=28377387″},{“title”:”Fadelu T, Zhang S, Niedzwiecki D, Ye X, Saltz LB, Mayer RJ, Mowat RB, Whittom R, Hantel A, Benson AB, Atienza DM, Messino M, Kindler HL, Venook A, Ogino S, Ng K, Wu K, Willett W, Giovannucci E, Meyerhardt J, Bao Y, Fuchs CS. Nut Consumption and Survival in Patients With Stage III Colon Cancer: Results From CALGB 89803 (Alliance). J Clin Oncol. 2018 Apr 10;36(11):1112-1120.”,”type”:”publication”,”url”:”https://ascopubs.org/doi/10.1200/JCO.2017.75.5413″,”cancer_type_terms_string”:”Colorectal”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C Colorectal Cancer Dream Team: Targeting Genomic, Metabolic, and Immunological Vulnerabilities of Colorectal Cancer”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/colorectal-cancer-vulnerabilities-dream-team/”,”publisher_year”:”Journal of Clinical Oncology, 2018″,”pub_med_id”:”29489429″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=29489429″},{“title”:”Fuchs CS, Doi T, Jang RW, Muro K, Satoh T, Machado M, Sun W, Jalal SI, Shah MA, Metges JP, Garrido M, Golan T, Mandala M, Wainberg ZA, Catenacci DV, Ohtsu A, Shitara K, Geva R, Bleeker J, Ko AH, Ku G, Philip P, Enzinger PC, Bang YJ2 Levitan D, Wang J, Rosales M, Dalal RP, Yoon HH. Safety and Efficacy of Pembrolizumab Monotherapy in Patients With Previously Treated Advanced Gastric and Gastroesophageal Junction Cancer: Phase 2 Clinical KEYNOTE-059 Trial. JAMA Oncol. 2018 May 10;4(5):e180013.”,”type”:”publication”,”url”:”https://jamanetwork.com/journals/jamaoncology/fullarticle/2675013″,”cancer_type_terms_string”:”Esophogeal, Stomach”,”treatment_type_terms_string”:”Immunotherapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C Colorectal Cancer Dream Team: Targeting Genomic, Metabolic, and Immunological Vulnerabilities of Colorectal Cancer”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/colorectal-cancer-vulnerabilities-dream-team/”,”publisher_year”:”JAMA Oncology, 2018″,”pub_med_id”:”29543932″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=29543932″},{“title”:”Hamada T, Khalaf N, Yuan C, Babic A, Morales-Oyarvide V, Qian ZR, Nowak JA, Ng K, Kraft P, Rubinson DA, Stampfer MJ, Giovannucci EL, Fuchs CS, Ogino S, Wolpin BM. Statin use and pancreatic cancer risk in two prospective cohort studies. J Gastroenterol. 2018 Aug;53(8):959-966.”,”type”:”publication”,”url”:”https://link.springer.com/article/10.1007%2Fs00535-018-1430-x”,”cancer_type_terms_string”:”Pancreatic”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C Colorectal Cancer Dream Team: Targeting Genomic, Metabolic, and Immunological Vulnerabilities of Colorectal Cancer”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/colorectal-cancer-vulnerabilities-dream-team/”,”publisher_year”:”Journal of Gastroenterology, 2018″,”pub_med_id”:”29362938″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=29362938″},{“title”:”Hamada T, Khalaf N, Yuan C, Morales-Oyarvide V, Babic A, Nowak JA, Qian ZR, Ng K, Rubinson DA, Kraft P, Giovannucci EL, Stampfer MJ, Fuchs CS, Ogino S, Wolpin BM. Prediagnosis Use of Statins Associates With Increased Survival Times of Patients With Pancreatic Cancer. Clin Gastroenterol Hepatol. 2018 Aug;16(8):1300-1306.e3.”,”type”:”publication”,”url”:”https://www.cghjournal.org/article/S1542-3565(18)30167-8/fulltext”,”cancer_type_terms_string”:”Pancreatic”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C Colorectal Cancer Dream Team: Targeting Genomic, Metabolic, and Immunological Vulnerabilities of Colorectal Cancer”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/colorectal-cancer-vulnerabilities-dream-team/”,”publisher_year”:”Clinical Gastroenterology and Hepatology, 2018″,”pub_med_id”:”29474971″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=29474971″},{“title”:”Hamada T, Soong TR, Masugi Y, Kosumi K, Nowak JA, da Silva A, Mu XJ, Twombly TS, Koh H, Yang J, Song M, Liu L, Gu M, Shi Y, Nosho K, Morikawa T, Inamura K, Shukla SA, Wu CJ, Garraway LA, Zhang X, Wu K, Meyerhardt JA, Chan AT, Glickman JN, Rodig SJ, Freeman GJ, Fuchs CS, Nishihara R, Giannakis M, Ogino S. TIME (Tumor Immunity in the MicroEnvironment) classification based on tumor CD274 (PD-L1) expression status and tumor-infiltrating lymphocytes in colorectal carcinomas. Oncoimmunology. 2018 Mar 19;7(7):e1442999.”,”type”:”publication”,”url”:”https://www.tandfonline.com/doi/full/10.1080/2162402X.2018.1442999″,”cancer_type_terms_string”:”Colorectal”,”treatment_type_terms_string”:”Immunotherapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C Colorectal Cancer Dream Team: Targeting Genomic, Metabolic, and Immunological Vulnerabilities of Colorectal Cancer”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/colorectal-cancer-vulnerabilities-dream-team/”,”publisher_year”:”Oncoimmunology, 2018″,”pub_med_id”:”29900052″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=29900052″},{“title”:”Hu Y, Ding M, Yuan C, Wu K, Smith-Warner SA, Hu FB, Chan AT, Meyerhardt JA, Ogino S, Fuchs CS, Giovannucci EL, Song M. Association Between Coffee Intake After Diagnosis of Colorectal Cancer and Reduced Mortality. Gastroenterology. 2018 Mar;154(4):916-926.e9.”,”type”:”publication”,”url”:”https://www.gastrojournal.org/article/S0016-5085(17)36368-0/fulltext?referrer=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2F”,”cancer_type_terms_string”:”Colorectal”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C Colorectal Cancer Dream Team: Targeting Genomic, Metabolic, and Immunological Vulnerabilities of Colorectal Cancer”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/colorectal-cancer-vulnerabilities-dream-team/”,”publisher_year”:”Gastroenterology, 2018″,”pub_med_id”:”29158191″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=29158191″},{“title”:”Khalaf N, Yuan C, Hamada T, Cao Y, Babic A, Morales-Oyarvide V, Kraft P, Ng K, Giovannucci E, Ogino S, Stampfer M, Cochrane BB, Manson JE, Clish CB, Chan AT, Fuchs CS, Wolpin BM. Regular Use of Aspirin or Non-Aspirin Nonsteroidal Anti-Inflammatory Drugs Is Not Associated With Risk of Incident Pancreatic Cancer in Two Large Cohort Studies. Gastroenterology. 2018 Apr;154(5):1380-1390.e5.”,”type”:”publication”,”url”:”https://www.gastrojournal.org/article/S0016-5085(17)36688-X/fulltext?referrer=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2F”,”cancer_type_terms_string”:”Pancreatic”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C Colorectal Cancer Dream Team: Targeting Genomic, Metabolic, and Immunological Vulnerabilities of Colorectal Cancer”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/colorectal-cancer-vulnerabilities-dream-team/”,”publisher_year”:”Gastroenterology, 2018″,”pub_med_id”:”29229401″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=29229401″},{“title”:”Kim H, Keum N, Giovannucci EL, Fuchs CS, Bao Y. Garlic intake and gastric cancer risk: Results from two large prospective US cohort studies. Int J Cancer. 2018 Sep 1;143(5):1047-1053.”,”type”:”publication”,”url”:”https://onlinelibrary.wiley.com/doi/full/10.1002/ijc.31396″,”cancer_type_terms_string”:”Stomach”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C Colorectal Cancer Dream Team: Targeting Genomic, Metabolic, and Immunological Vulnerabilities of Colorectal Cancer”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/colorectal-cancer-vulnerabilities-dream-team/”,”publisher_year”:”International Journal of Cancer, 2018″,”pub_med_id”:”29569711″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=29569711″},{“title”:”Liu L, Tabung FK, Zhang X, Nowak JA, Qian ZR, Hamada T, Nevo D, Bullman S, Mima K, Kosumi K, da Silva A, Song M, Cao Y, Twombly TS, Shi Y, Liu H, Gu M, Koh H, Li W, Du C, Chen Y, Li C, Li W, Mehta RS, Wu K, Wang M, Kostic AD, Giannakis M, Garrett WS, Hutthenhower C, Chan AT, Fuchs CS, Nishihara R, Ogino S, Giovannucci EL. Diets That Promote Colon Inflammation Associate With Risk of Colorectal Carcinomas That Contain Fusobacterium nucleatum. Clin Gastroenterol Hepatol. 2018 Oct;16(10):1622-1631.e3.”,”type”:”publication”,”url”:”https://www.cghjournal.org/article/S1542-3565(18)30389-6/fulltext”,”cancer_type_terms_string”:”Colorectal”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C Colorectal Cancer Dream Team: Targeting Genomic, Metabolic, and Immunological Vulnerabilities of Colorectal Cancer”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/colorectal-cancer-vulnerabilities-dream-team/”,”publisher_year”:”Clinical Gastroenterology and Hepatology, 2018″,”pub_med_id”:”29702299″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=29702299″},{“title”:”Patel AK, Duh MS, Barghout V, Yenikomshian MA, Xiao Y, Wynant W, Tabesh M, Fuchs CS. Real-world Treatment Patterns Among Patients With Colorectal Cancer Treated With Trifluridine/Tipiracil and Regorafenib. Clin Colorectal Cancer. 2018 Sep;17(3):e531-e539.”,”type”:”publication”,”url”:”https://www.clinical-colorectal-cancer.com/article/S1533-0028(18)30009-4/fulltext”,”cancer_type_terms_string”:”Colorectal”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C Colorectal Cancer Dream Team: Targeting Genomic, Metabolic, and Immunological Vulnerabilities of Colorectal Cancer”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/colorectal-cancer-vulnerabilities-dream-team/”,”publisher_year”:”Clinical Colorectal Cancer, 2018″,”pub_med_id”:”29803544″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=29803544″},{“title”:”Qian ZR, Rubinson DA, Nowak JA, Morales-Oyarvide V, Dunne RF, Kozak MM, Welch MW, Brais LK, Da Silva A, Li T, Li W, Masuda A, Yang J, Shi Y, Gu M, Masugi Y, Bui J, Zellers CL, Yuan C, Babic A, Khalaf N, Aguirre A, Ng K, Miksad RA, Bullock AJ, Chang DT, Tseng JF, Clancy TE, Linehan DC, Findeis-Hosey JJ, Doyle LA, Thorner AR, Ducar M, Wollison B, Laing A, Hahn WC, Meyerson M, Fuchs CS, Ogino S, Hornick JL, Hezel AF, Koong AC, Wolpin BM. Association of Alterations in Main Driver Genes With Outcomes of Patients With Resected Pancreatic Ductal Adenocarcinoma. JAMA Oncol. 2018 Mar 8;4(3):e173420.”,”type”:”publication”,”url”:”https://jamanetwork.com/journals/jamaoncology/fullarticle/2661054″,”cancer_type_terms_string”:”Pancreatic”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C Colorectal Cancer Dream Team: Targeting Genomic, Metabolic, and Immunological Vulnerabilities of Colorectal Cancer”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/colorectal-cancer-vulnerabilities-dream-team/”,”publisher_year”:”JAMA Oncology, 2018″,”pub_med_id”:”29098284″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=29098284″},{“title”:”Sarma EA, Kawachi I, Poole EM, Tworoger SS, Giovannucci EL, Fuchs CS, Bao Y. Social integration and survival after diagnosis of colorectal cancer. Cancer. 2018 Feb 15;124(4):833-840.”,”type”:”publication”,”url”:”https://acsjournals.onlinelibrary.wiley.com/doi/full/10.1002/cncr.31117″,”cancer_type_terms_string”:”Colorectal”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C Colorectal Cancer Dream Team: Targeting Genomic, Metabolic, and Immunological Vulnerabilities of Colorectal Cancer”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/colorectal-cancer-vulnerabilities-dream-team/”,”publisher_year”:”Cancer, 2018″,”pub_med_id”:”29160897″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=29160897″},{“title”:”Shitara K, Özgüroğlu M, Bang YJ, Di Bartolomeo M, Mandalà M, Ryu MH, Fornaro L, Olesiński T, Caglevic C, Chung HC, Muro K, Goekkurt E, Mansoor W, McDermott RS, Shacham-Shmueli E, Chen X, Mayo C, Kang SP, Ohtsu A, Fuchs CS; KEYNOTE-061 investigators. Pembrolizumab versus paclitaxel for previously treated, advanced gastric or gastro-oesophageal junction cancer (KEYNOTE-061): a randomised, open-label, controlled, phase 3 trial. Lancet. 2018 Jul 14;392(10142):123-133.”,”type”:”publication”,”url”:”https://www.thelancet.com/journals/lancet/article/PIIS0140-6736(18)31257-1/fulltext”,”cancer_type_terms_string”:”Esophogeal, Stomach”,”treatment_type_terms_string”:”Chemotherapy, Immunotherapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C Colorectal Cancer Dream Team: Targeting Genomic, Metabolic, and Immunological Vulnerabilities of Colorectal Cancer”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/colorectal-cancer-vulnerabilities-dream-team/”,”publisher_year”:”Lancet, 2018″,”pub_med_id”:”29880231″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=29880231″},{“title”:”Simon TG, King LY, Chong DQ, Nguyen LH, Ma Y, VoPham T, Giovannucci EL, Fuchs CS, Meyerhardt JA, Corey KE, Khalili H, Chung RT, Zhang X, Chan AT. Diabetes, metabolic comorbidities, and risk of hepatocellular carcinoma: Results from two prospective cohort studies. Hepatology. 2018 May;67(5):1797-1806.”,”type”:”publication”,”url”:”https://aasldpubs.onlinelibrary.wiley.com/doi/full/10.1002/hep.29660″,”cancer_type_terms_string”:”Non – site Specific”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C Colorectal Cancer Dream Team: Targeting Genomic, Metabolic, and Immunological Vulnerabilities of Colorectal Cancer”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/colorectal-cancer-vulnerabilities-dream-team/”,”publisher_year”:”Hepatology, 2018″,”pub_med_id”:”29152763″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=29152763″},{“title”:”Song M, Wu K, Meyerhardt JA, Ogino S, Wang M, Fuchs CS, Giovannucci EL, Chan AT. Fiber Intake and Survival After Colorectal Cancer Diagnosis. JAMA Oncol. 2018 Jan 1;4(1):71-79.”,”type”:”publication”,”url”:”https://jamanetwork.com/journals/jamaoncology/fullarticle/2661061″,”cancer_type_terms_string”:”Colorectal”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C Colorectal Cancer Dream Team: Targeting Genomic, Metabolic, and Immunological Vulnerabilities of Colorectal Cancer”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/colorectal-cancer-vulnerabilities-dream-team/”,”publisher_year”:”JAMA Oncology, 2018″,”pub_med_id”:”29098294″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=29098294″},{“title”:”Tabung FK, Liu L, Wang W, Fung TT, Wu K, Smith-Warner SA, Cao Y, Hu FB, Ogino S, Fuchs CS, Giovannucci EL. Association of Dietary Inflammatory Potential With Colorectal Cancer Risk in Men and Women. JAMA Oncol. 2018 Mar 1;4(3):366-373.”,”type”:”publication”,”url”:”https://jamanetwork.com/journals/jamaoncology/fullarticle/2669777″,”cancer_type_terms_string”:”Colorectal”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C Colorectal Cancer Dream Team: Targeting Genomic, Metabolic, and Immunological Vulnerabilities of Colorectal Cancer”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/colorectal-cancer-vulnerabilities-dream-team/”,”publisher_year”:”JAMA Oncology, 2018″,”pub_med_id”:”29346484″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=29346484″},{“title”:”Tabung FK, Wang W, Fung TT, Smith-Warner SA, Keum N, Wu K, Fuchs CS, Hu FB, Giovannucci EL. Association of dietary insulinemic potential and colorectal cancer risk in men and women. Am J Clin Nutr. 2018 Aug 1;108(2):363-370.”,”type”:”publication”,”url”:”https://academic.oup.com/ajcn/article/108/2/363/5036567″,”cancer_type_terms_string”:”Colorectal”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C Colorectal Cancer Dream Team: Targeting Genomic, Metabolic, and Immunological Vulnerabilities of Colorectal Cancer”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/colorectal-cancer-vulnerabilities-dream-team/”,”publisher_year”:”American Journal of Clinical Nutrition, 2018″,”pub_med_id”:”29901698″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=29901698″},{“title”:”Van Blarigan EL, Fuchs CS, Niedzwiecki D, Ye X, Zhang S, Song M, Saltz LB, Mayer RJ, Mowat RB, Whittom R, Hantel A, Benson A, Atienza D, Messino M, Kindler H, Venook A, Ogino S, Giovannucci EL, Meyerhardt JA. Marine ω-3 Polyunsaturated Fatty Acid and Fish Intake after Colon Cancer Diagnosis and Survival: CALGB 89803 (Alliance). Cancer Epidemiol Biomarkers Prev. 2018 Apr;27(4):438-445.”,”type”:”publication”,”url”:”https://cebp.aacrjournals.org/content/27/4/438″,”cancer_type_terms_string”:”Colorectal”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C Colorectal Cancer Dream Team: Targeting Genomic, Metabolic, and Immunological Vulnerabilities of Colorectal Cancer”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/colorectal-cancer-vulnerabilities-dream-team/”,”publisher_year”:”Cancer Epidemiology, Biomarkers and Prevention, 2018″,”pub_med_id”:”29358223″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=29358223″},{“title”:”Van Blarigan EL, Fuchs CS, Niedzwiecki D, Zhang S, Saltz LB, Mayer RJ, Mowat RB, Whittom R, Hantel A, Benson A, Atienza D, Messino M, Kindler H, Venook A, Ogino S, Giovannucci EL, Ng K, Meyerhardt JA. Association of Survival With Adherence to the American Cancer Society Nutrition and Physical Activity Guidelines for Cancer Survivors After Colon Cancer Diagnosis: The CALGB 89803/Alliance Trial. JAMA Oncol. 2018 Jun 1;4(6):783-790.”,”type”:”publication”,”url”:”https://jamanetwork.com/journals/jamaoncology/fullarticle/2678094″,”cancer_type_terms_string”:”Colorectal”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C Colorectal Cancer Dream Team: Targeting Genomic, Metabolic, and Immunological Vulnerabilities of Colorectal Cancer”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/colorectal-cancer-vulnerabilities-dream-team/”,”publisher_year”:”JAMA Oncology, 2018″,”pub_med_id”:”29710284″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=29710284″},{“title”:”Feng Y, Reinherz EL, Lang MJ. αβ T Cell Receptor Mechanosensing Forces out Serial Engagement. Trends Immunol. 2018 Aug;39(8):596-609.”,”type”:”publication”,”url”:”https://www.cell.com/trends/immunology/fulltext/S1471-4906(18)30108-X?_returnURL=https%3A%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2FS147149061830108X%3Fshowall%3Dtrue”,”cancer_type_terms_string”:”Pediatric – Solid Tumor”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Research Team”,”research_project”:”SU2C–Farrah Fawcett Foundation Human Papillomavirus (HPV) Research Team: Therapeutic CD8 Vaccines Against Conserved E7 HPV Epitopes Identified by MS”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/research-teams/hpv-research-team/”,”publisher_year”:”Trends in Immunology, 2018″,”pub_med_id”:”30060805″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=30060805″},{“title”:”Perez Horta Z, Saseedhar S, Rakhmilevich AL, Carmichael L, Hank JA, Boyden M, Gillies SD, Sondel PM. Human and murine IL2 receptors differentially respond to the human-IL2 component of immunocytokines. Oncoimmunology. 2018 May 7;8(6):e1238538.”,”type”:”publication”,”url”:”https://www.tandfonline.com/doi/full/10.1080/2162402X.2016.1238538″,”cancer_type_terms_string”:”Non – site Specific”,”treatment_type_terms_string”:”Immunotherapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”St. Baldrick’s Foundation–SU2C Pediatric Cancer Dream Team: Immunogenomics to Create New Therapies for High-Risk Childhood Cancers”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/intractable-pediatric-cancers-dream-team/”,”publisher_year”:”Oncoimmunology, 2018″,”pub_med_id”:”31069147″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=31069147″},{“title”:”Deng J, Wang ES, Jenkins RW, Li S, Dries R, Yates K, Chhabra S, Huang W, Liu H, Aref AR, Ivanova E, Paweletz CP, Bowden M, Zhou CW, Herter-Sprie GS, Sorrentino JA, Bisi JE, Lizotte PH, Merlino AA, Quinn MM, Bufe LE, Yang A, Zhang Y, Zhang H, Gao P, Chen T, Cavanaugh ME, Rode AJ, Haines E, Roberts PJ, Strum JC, Richards WG, Lorch JH, Parangi S, Gunda V, Boland GM, Bueno R, Palakurthi S, Freeman GJ, Ritz J, Haining WN, Sharpless NE, Arthanari H, Shapiro GI, Barbie DA, Gray NS, Wong KK. CDK4/6 Inhibition Augments Antitumor Immunity by Enhancing T-cell Activation. Cancer Discov. 2018 Feb;8(2):216-233.”,”type”:”publication”,”url”:”https://cancerdiscovery.aacrjournals.org/content/8/2/216″,”cancer_type_terms_string”:”Non – site Specific”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–American Cancer Society Lung Cancer Dream Team: Targeting KRAS Mutant Lung Cancers”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/targeting-kras-mutant-lung-cancers-dream-team/”,”publisher_year”:”Cancer Discovery, 2018″,”pub_med_id”:”29101163″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=29101163″},{“title”:”Leonardi GC, Gainor JF, Altan M, Kravets S, Dahlberg SE, Gedmintas L, Azimi R, Rizvi H, Riess JW, Hellmann MD, Awad MM. Safety of Programmed Death-1 Pathway Inhibitors Among Patients With Non-Small-Cell Lung Cancer and Preexisting Autoimmune Disorders. J Clin Oncol. 2018 Jul 1;36(19):1905-1912.”,”type”:”publication”,”url”:”https://ascopubs.org/doi/10.1200/JCO.2017.77.0305″,”cancer_type_terms_string”:”Lung”,”treatment_type_terms_string”:”Immunotherapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–American Cancer Society Lung Cancer Dream Team: Targeting KRAS Mutant Lung Cancers”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/targeting-kras-mutant-lung-cancers-dream-team/”,”publisher_year”:”Journal of Clinical Oncology, 2018″,”pub_med_id”:”29746230″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=29746230″},{“title”:”Graham RP, Treece AL, Lindeman NI, Vasalos P, Shan M, Jennings LJ, Rimm DL. Worldwide Frequency of Commonly Detected EGFR Mutations. Arch Pathol Lab Med. 2018 Feb;142(2):163-167.”,”type”:”publication”,”url”:”https://www.archivesofpathology.org/doi/10.5858/arpa.2016-0579-CP”,”cancer_type_terms_string”:”Non – site Specific”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–American Cancer Society Lung Cancer Dream Team: Targeting KRAS Mutant Lung Cancers”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/targeting-kras-mutant-lung-cancers-dream-team/”,”publisher_year”:”Archive of Pathology & Laboratory Medicine, 2018″,”pub_med_id”:”29106293″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=29106293″},{“title”:”Skoulidis F, Goldberg ME, Greenawalt DM, Hellmann MD, Awad MM, Gainor JF, Schrock AB, Hartmaier RJ, Trabucco SE, Gay L, Ali SM, Elvin JA, Singal G, Ross JS, Fabrizio D, Szabo PM, Chang H, Sasson A, Srinivasan S, Kirov S, Szustakowski J, Vitazka P, Edwards R, Bufill JA, Sharma N, Ou SI, Peled N, Spigel DR, Rizvi H, Aguilar EJ, Carter BW, Erasmus J, Halpenny DF, Plodkowski AJ, Long NM, Nishino M, Denning WL, Galan-Cobo A, Hamdi H, Hirz T, Tong P, Wang J, Rodriguez-Canales J, Villalobos PA, Parra ER, Kalhor N, Sholl LM, Sauter JL, Jungbluth AA, Mino-Kenudson M, Azimi R, Elamin YY, Zhang J, Leonardi GC, Jiang F, Wong KK, Lee JJ, Papadimitrakopoulou VA, Wistuba II, Miller VA, Frampton GM, Wolchok JD, Shaw AT, Jänne PA, Stephens PJ, Rudin CM, Geese WJ, Albacker LA, Heymach JV. STK11/LKB1 Mutations and PD-1 Inhibitor Resistance in KRAS-Mutant Lung Adenocarcinoma. Cancer Discov. 2018 Jul;8(7):822-835. d”,”type”:”publication”,”url”:”https://cancerdiscovery.aacrjournals.org/content/8/7/822″,”cancer_type_terms_string”:”Lung”,”treatment_type_terms_string”:”Immunotherapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–American Cancer Society Lung Cancer Dream Team: Targeting KRAS Mutant Lung Cancers”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/targeting-kras-mutant-lung-cancers-dream-team/”,”publisher_year”:”Cancer Discovery, 2018″,”pub_med_id”:”29773717″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=29773717″},{“title”:”Chowell D, Morris LGT, Grigg CM, Weber JK, Samstein RM, Makarov V, Kuo F, Kendall SM, Requena D, Riaz N, Greenbaum B, Carroll J, Garon E, Hyman DM, Zehir A, Solit D, Berger M, Zhou R, Rizvi NA, Chan TA. Patient HLA class I genotype influences cancer response to checkpoint blockade immunotherapy. Science. 2018 Feb 2;359(6375):582-587.”,”type”:”publication”,”url”:”https://science.sciencemag.org/content/359/6375/582″,”cancer_type_terms_string”:”Non – site Specific”,”treatment_type_terms_string”:”Immunotherapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–American Cancer Society Lung Cancer Dream Team: Targeting KRAS Mutant Lung Cancers”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/targeting-kras-mutant-lung-cancers-dream-team/”,”publisher_year”:”Science, 2018″,”pub_med_id”:”29217585″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=29217585″},{“title”:”Rizvi H, Sanchez-Vega F, La K, Chatila W, Jonsson P, Halpenny D, Plodkowski A, Long N, Sauter JL, Rekhtman N, Hollmann T, Schalper KA, Gainor JF, Shen R, Ni A, Arbour KC, Merghoub T, Wolchok J, Snyder A, Chaft JE, Kris MG, Rudin CM, Socci ND, Berger MF, Taylor BS, Zehir A, Solit DB, Arcila ME, Ladanyi M, Riely GJ, Schultz N, Hellmann MD. Molecular Determinants of Response to Anti-Programmed Cell Death (PD)-1 and Anti-Programmed Death-Ligand 1 (PD-L1) Blockade in Patients With Non-Small-Cell Lung Cancer Profiled With Targeted Next-Generation Sequencing. J Clin Oncol. 2018 Mar 1;36(7):633-641.”,”type”:”publication”,”url”:”https://www.cell.com/cell-reports/fulltext/S2211-1247(18)30083-4?_returnURL=https%3A%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2FS2211124718300834%3Fshowall%3Dtrue”,”cancer_type_terms_string”:”Lung”,”treatment_type_terms_string”:”Immunotherapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–American Cancer Society Lung Cancer Dream Team: Targeting KRAS Mutant Lung Cancers”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/targeting-kras-mutant-lung-cancers-dream-team/”,”publisher_year”:”Cell Reports, 2018″,”pub_med_id”:”29444439″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=29444439″},{“title”:”Yuan TL, Amzallag A, Bagni R, Yi M, Afghani S, Burgan W, Fer N, Strathern LA, Powell K, Smith B, Waters AM, Drubin D, Thomson T, Liao R, Greninger P, Stein GT, Murchie E, Cortez E, Egan RK, Procter L, Bess M, Cheng KT, Lee CS, Lee LC, Fellmann C, Stephens R, Luo J, Lowe SW, Benes CH, McCormick F. Differential Effector Engagement by Oncogenic KRAS. Cell Rep. 2018 Feb 13;22(7):1889-1902.”,”type”:”publication”,”url”:”https://www.cell.com/cell-reports/fulltext/S2211-1247(18)30083-4?_returnURL=https%3A%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2FS2211124718300834%3Fshowall%3Dtrue”,”cancer_type_terms_string”:”Non – site Specific”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–American Cancer Society Lung Cancer Dream Team: Targeting KRAS Mutant Lung Cancers”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/targeting-kras-mutant-lung-cancers-dream-team/”,”publisher_year”:”Cell Reports, 2018″,”pub_med_id”:”29444439″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=29444439″},{“title”:”Hellmann MD, Nathanson T, Rizvi H, Creelan BC, Sanchez-Vega F, Ahuja A, Ni A, Novik JB, Mangarin LMB, Abu-Akeel M, Liu C, Sauter JL, Rekhtman N, Chang E, Callahan MK, Chaft JE, Voss MH, Tenet M, Li XM, Covello K, Renninger A, Vitazka P, Geese WJ, Borghaei H, Rudin CM, Antonia SJ, Swanton C, Hammerbacher J, Merghoub T, McGranahan N, Snyder A, Wolchok JD. Genomic Features of Response to Combination Immunotherapy in Patients with Advanced Non-Small-Cell Lung Cancer. Cancer Cell. 2018 May 14;33(5):843-852.e4.”,”type”:”publication”,”url”:”https://www.cell.com/cancer-cell/fulltext/S1535-6108(18)30123-5″,”cancer_type_terms_string”:”Lung”,”treatment_type_terms_string”:”Immunotherapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–American Cancer Society Lung Cancer Dream Team: Targeting KRAS Mutant Lung Cancers”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/targeting-kras-mutant-lung-cancers-dream-team/”,”publisher_year”:”Cancer Cell, 2018″,”pub_med_id”:”29657128″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=29657128″},{“title”:”Arbour KC, Jordan E, Kim HR, Dienstag J, Yu HA, Sanchez-Vega F, Lito P, Berger M, Solit DB, Hellmann M, Kris MG, Rudin CM, Ni A, Arcila M, Ladanyi M, Riely GJ. Effects of Co-occurring Genomic Alterations on Outcomes in Patients with KRAS-Mutant Non-Small Cell Lung Cancer. Clin Cancer Res. 2018 Jan 15;24(2):334-340.”,”type”:”publication”,”url”:”https://clincancerres.aacrjournals.org/content/24/2/334″,”cancer_type_terms_string”:”Lung”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–American Cancer Society Lung Cancer Dream Team: Targeting KRAS Mutant Lung Cancers”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/targeting-kras-mutant-lung-cancers-dream-team/”,”publisher_year”:”Clinical Cancer Research, 2018″,”pub_med_id”:”29089357″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=29089357″},{“title”:”Nnadi CI, Jenkins ML, Gentile DR, Bateman LA, Zaidman D, Balius TE, Nomura DK, Burke JE, Shokat KM, London N. Novel K-Ras G12C Switch-II Covalent Binders Destabilize Ras and Accelerate Nucleotide Exchange. J Chem Inf Model. 2018 Feb 26;58(2):464-471.”,”type”:”publication”,”url”:”https://pubs.acs.org/doi/10.1021/acs.jcim.7b00399″,”cancer_type_terms_string”:”Non – site Specific”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–American Cancer Society Lung Cancer Dream Team: Targeting KRAS Mutant Lung Cancers”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/targeting-kras-mutant-lung-cancers-dream-team/”,”publisher_year”:”Journal of Chemical Information and Modeling, 2018″,”pub_med_id”:”29320178″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=29320178″},{“title”:”Toki MI, Mani N, Smithy JW, Liu Y, Altan M, Wasserman B, Tuktamyshov R, Schalper K, Syrigos KN, Rimm DL. Immune Marker Profiling and Programmed Death Ligand 1 Expression Across NSCLC Mutations. J Thorac Oncol. 2018 Dec;13(12):1884-1896.”,”type”:”publication”,”url”:”https://www.jto.org/article/S1556-0864(18)33124-1/fulltext”,”cancer_type_terms_string”:”Lung”,”treatment_type_terms_string”:”Immunotherapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–American Cancer Society Lung Cancer Dream Team: Targeting KRAS Mutant Lung Cancers”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/targeting-kras-mutant-lung-cancers-dream-team/”,”publisher_year”:” Journal of Thoracic Oncology, 2018″,”pub_med_id”:”30267840″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=30267840″},{“title”:”Gettinger SN, Choi J, Mani N, Sanmamed MF, Datar I, Sowell R, Du VY, Kaftan E, Goldberg S, Dong W, Zelterman D, Politi K, Kavathas P, Kaech S, Yu X, Zhao H, Schlessinger J, Lifton R, Rimm DL, Chen L, Herbst RS, Schalper KA. A dormant TIL phenotype defines non-small cell lung carcinomas sensitive to immune checkpoint blockers. Nat Commun. 2018 Aug 10;9(1):3196.”,”type”:”publication”,”url”:”https://www.nature.com/articles/s41467-018-05032-8″,”cancer_type_terms_string”:”Lung”,”treatment_type_terms_string”:”Immunotherapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–American Cancer Society Lung Cancer Dream Team: Targeting KRAS Mutant Lung Cancers”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/targeting-kras-mutant-lung-cancers-dream-team/”,”publisher_year”:”Nature Communications, 2018″,”pub_med_id”:”30097571″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=30097571″},{“title”:”Miao D, Margolis CA, Vokes NI, Liu D, Taylor-Weiner A, Wankowicz SM, Adeegbe D, Keliher D, Schilling B, Tracy A, Manos M, Chau NG, Hanna GJ, Polak P, Rodig SJ, Signoretti S, Sholl LM, Engelman JA, Getz G, Jänne PA, Haddad RI, Choueiri TK, Barbie DA, Haq R, Awad MM, Schadendorf D, Hodi FS, Bellmunt J, Wong KK, Hammerman P, Van Allen EM. Genomic correlates of response to immune checkpoint blockade in microsatellite-stable solid tumors. Nat Genet. 2018 Sep;50(9):1271-1281.”,”type”:”publication”,”url”:”https://www.nature.com/articles/s41588-018-0200-2″,”cancer_type_terms_string”:”Non – site Specific”,”treatment_type_terms_string”:”Immunotherapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–American Cancer Society Lung Cancer Dream Team: Targeting KRAS Mutant Lung Cancers”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/targeting-kras-mutant-lung-cancers-dream-team/”,”publisher_year”:”Nature Genetics, 2018″,”pub_med_id”:”30150660″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=30150660″},{“title”:”Piotrowska Z, Isozaki H, Lennerz JK, Gainor JF, Lennes IT, Zhu VW, Marcoux N, Banwait MK, Digumarthy SR, Su W, Yoda S, Riley AK, Nangia V, Lin JJ, Nagy RJ, Lanman RB, Dias-Santagata D, Mino-Kenudson M, Iafrate AJ, Heist RS, Shaw AT, Evans EK, Clifford C, Ou SI, Wolf B, Hata AN, Sequist LV. Landscape of Acquired Resistance to Osimertinib in EGFR-Mutant NSCLC and Clinical Validation of Combined EGFR and RET Inhibition with Osimertinib and BLU-667 for Acquired RET Fusion. Cancer Discov. 2018 Dec;8(12):1529-1539.”,”type”:”publication”,”url”:”https://cancerdiscovery.aacrjournals.org/content/8/12/1529″,”cancer_type_terms_string”:”Lung”,”treatment_type_terms_string”:”Chemotherapy”,”grant_type_terms_string”:”Convergence Team”,”research_project”:”SU2C–National Science Foundation Lung Cancer Convergence Research Team: Genetic, Epigenetic, and Immunological Underpinnings of Cancer Evolution Through Treatment”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/convergence-teams/cancer-evolution-convergence-team/”,”publisher_year”:”Cancer Discovery, 2018″,”pub_med_id”:”30257958″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=30257958″},{“title”:”Lee JK, Liu Z, Sa JK, Shin S, Wang J, Bordyuh M, Cho HJ, Elliott O, Chu T, Choi SW, Rosenbloom DIS, Lee IH, Shin YJ, Kang HJ, Kim D, Kim SY, Sim MH, Kim J, Lee T, Seo YJ, Shin H, Lee M, Kim SH, Kwon YJ, Oh JW, Song M, Kim M, Kong DS, Choi JW, Seol HJ, Lee JI, Kim ST, Park JO, Kim KM, Song SY, Lee JW, Kim HC, Lee JE, Choi MG, Seo SW, Shim YM, Zo JI, Jeong BC, Yoon Y, Ryu GH, Kim NKD, Bae JS, Park WY, Lee J, Verhaak RGW, Iavarone A, Lee J, Rabadan R, Nam DH. Pharmacogenomic landscape of patient-derived tumor cells informs precision oncology therapy. Nat Genet. 2018 Oct;50(10):1399-1411.”,”type”:”publication”,”url”:”https://www.nature.com/articles/s41588-018-0209-6″,”cancer_type_terms_string”:”Brain/Nervous System”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Convergence Team”,”research_project”:”SU2C–National Science Foundation Drug Combinations Convergence Research Team: Rational Design of Anticancer Drug Combinations with Dynamic Multi-Dimensional Input”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/convergence-teams/rational-design-of-anticancer-drug-combinations-convergence-research-team/”,”publisher_year”:”Nature Genetics, 2018″,”pub_med_id”:”30262818″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=30262818″},{“title”:”Zoeller JJ, Bronson RT, Selfors LM, Mills GB, Brugge JS. Niche-localized tumor cells are protected from HER2-targeted therapy via upregulation of an anti-apoptotic program in vivo. NPJ Breast Cancer. 2017 May 1;3:18.”,”type”:”publication”,”url”:”https://www.nature.com/articles/s41523-017-0020-z”,”cancer_type_terms_string”:”Breast”,”treatment_type_terms_string”:”Chemotherapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C Breast Cancer Dream Team: An Integrated Approach to Targeting Breast Cancer Molecular Subtypes and Their Resistance Phenotypes”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/breast-cancer-resistant-phenotypes-dream-team/”,”publisher_year”:”NPJ Breast Cancer, 2017″,”pub_med_id”:”28649658″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=28649658″},{“title”:”Mayer IA, Abramson VG, Formisano L, Balko JM, Estrada MV, Sanders ME, Juric D, Solit D, Berger MF, Won HH, Li Y, Cantley LC, Winer E, Arteaga CL. A Phase Ib Study of Alpelisib (BYL719), a PI3Kα-Specific Inhibitor, with Letrozole in ER+/HER2- Metastatic Breast Cancer. Clin Cancer Res. 2017 Jan 1;23(1):26-34.”,”type”:”publication”,”url”:”https://clincancerres.aacrjournals.org/content/23/1/26″,”cancer_type_terms_string”:”Breast”,”treatment_type_terms_string”:”Chemotherapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C PI3K Dream Team: Targeting the PI3K Pathway in Women’s Cancers”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/womens-cancers-pi3k-dream-team/”,”publisher_year”:”Clinical Cancer Research, 2017″,”pub_med_id”:”27126994″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=27126994″},{“title”:”Liang WS, Hendricks W, Kiefer J, Schmidt J, Sekar S, Carpten J, Craig DW, Adkins J, Cuyugan L, Manojlovic Z, Halperin RF, Helland A, Nasser S, Legendre C, Hurley LH, Sivaprakasam K, Johnson DB, Crandall H, Busam KJ, Zismann V, Deluca V, Lee J, Sekulic A, Ariyan CE, Sosman J, Trent J. Integrated genomic analyses reveal frequent TERT aberrations in acral melanoma. Genome Res. 2017 Apr;27(4):524-532.”,”type”:”publication”,”url”:”https://genome.cshlp.org/content/27/4/524″,”cancer_type_terms_string”:”Melanoma”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–Melanoma Research Alliance Melanoma Dream Team: Personalized Medicine for Patients with BRAF Wild-Type (BRAFwt) Cancer”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/melanoma-braf-wildtype-dream-team/”,”publisher_year”:”Genome Research, 2017″,”pub_med_id”:”28373299″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=28373299″},{“title”:”Ding KF, Finlay D, Yin H, Hendricks WP, Sereduk C, Kiefer J, Sekulic A, LoRusso PM, Vuori K, Trent JM, Schork NJ. Analysis of variability in high throughput screening data: applications to melanoma cell lines and drug responses. Oncotarget. 2017 Apr 25;8(17):27786-27799.”,”type”:”publication”,”url”:”http://www.oncotarget.com/index.php?journal=oncotarget&page=article&op=view&path[]=15347&path[]=49048″,”cancer_type_terms_string”:”Melanoma”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–Melanoma Research Alliance Melanoma Dream Team: Personalized Medicine for Patients with BRAF Wild-Type (BRAFwt) Cancer”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/melanoma-braf-wildtype-dream-team/”,”publisher_year”:”Oncotarget, 2017″,”pub_med_id”:”28212541″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=28212541″},{“title”:”Jaffee EM, Dang CV, Agus DB, Alexander BM, Anderson KC, Ashworth A, Barker AD, Bastani R, Bhatia S, Bluestone JA, Brawley O, Butte AJ, Coit DG, Davidson NE, Davis M, DePinho RA, Diasio RB, Draetta G, Frazier AL, Futreal A, Gambhir SS, Ganz PA, Garraway L, Gerson S, Gupta S, Heath J, Hoffman RI, Hudis C, Hughes-Halbert C, Ibrahim R, Jadvar H, Kavanagh B, Kittles R, Le QT, Lippman SM, Mankoff D, Mardis ER, Mayer DK, McMasters K, Meropol NJ, Mitchell B, Naredi P, Ornish D, Pawlik TM, Peppercorn J, Pomper MG, Raghavan D, Ritchie C, Schwarz SW, Sullivan R, Wahl R, Wolchok JD, Wong SL, Yung A. Future cancer research priorities in the USA: a Lancet Oncology Commission. Lancet Oncol. 2017 Nov;18(11):e653-e706.”,”type”:”publication”,”url”:”https://www.thelancet.com/journals/lanonc/article/PIIS1470-2045(17)30698-8/fulltext”,”cancer_type_terms_string”:”Brain/Nervous System, Non – site Specific”,”treatment_type_terms_string”:””,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–Cancer Research Institute Cancer Immunology Dream Team: Immunologic Checkpoint Blockade and Adoptive Cell Transfer in Cancer Therapy”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/immunologic-checkpoint-blockade-dream-team/”,”publisher_year”:”Lancet Oncology, 2017″,”pub_med_id”:”29208398″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=29208398″},{“title”:”Xue Q, Bettini E, Paczkowski P, Ng C, Kaiser A, McConnell T, Kodrasi O, Quigley MF, Heath J, Fan R, Mackay S, Dudley ME, Kassim SH, Zhou J. Single-cell multiplexed cytokine profiling of CD19 CAR-T cells reveals a diverse landscape of polyfunctional antigen-specific response. J Immunother Cancer. 2017 Nov 21;5(1):85.”,”type”:”publication”,”url”:”https://jitc.biomedcentral.com/articles/10.1186/s40425-017-0293-7″,”cancer_type_terms_string”:”Melanoma”,”treatment_type_terms_string”:”Immunotherapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–Cancer Research Institute Cancer Immunology Dream Team: Immunologic Checkpoint Blockade and Adoptive Cell Transfer in Cancer Therapy”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/immunologic-checkpoint-blockade-dream-team/”,”publisher_year”:”The Journal for Immunotherapy of Cancer, 2017″,”pub_med_id”:”29157295″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=29157295″},{“title”:”Park J, Talukder AH, Lim SA, Kim K, Pan K, Melendez B, Bradley SD, Jackson KR, Khalili JS, Wang J, Creasy C, Pan BF, Woodman SE, Bernatchez C, Hawke D, Hwu P, Lee KM, Roszik J, Lizee G, Yee C. SLC45A2: A Melanoma Antigen with High Tumor Selectivity and Reduced Potential for Autoimmune Toxicity. Cancer Immunol Res. 2017 Aug;5(8):618-629.”,”type”:”publication”,”url”:”https://cancerimmunolres.aacrjournals.org/content/5/8/618″,”cancer_type_terms_string”:”Melanoma”,”treatment_type_terms_string”:”Immunotherapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–Cancer Research Institute Cancer Immunology Dream Team: Immunologic Checkpoint Blockade and Adoptive Cell Transfer in Cancer Therapy”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/immunologic-checkpoint-blockade-dream-team/”,”publisher_year”:”Cancer Immunology Research, 2017″,”pub_med_id”:”28630054″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=28630054″},{“title”:”Yee C and Lizee GA . Personalized Therapy: Tumor Antigen Discovery for Adoptive Cellular Therapy.Cancer J. 2017 Mar/Apr;23(2):144-148.”,”type”:”publication”,”url”:”https://insights.ovid.com/crossref?an=00130404-201703000-00013″,”cancer_type_terms_string”:”Non – site Specific”,”treatment_type_terms_string”:”Immunotherapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–Cancer Research Institute Cancer Immunology Dream Team: Immunologic Checkpoint Blockade and Adoptive Cell Transfer in Cancer Therapy”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/immunologic-checkpoint-blockade-dream-team/”,”publisher_year”:”Cancer Journal, 2017″,”pub_med_id”:”28410303″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=28410303″},{“title”:”Chapuis AG, Desmarais C, Emerson R, Schmitt TM, Shibuya K1, Lai I, Wagener F, Chou J, Roberts IM, Coffey DG, Warren E, Robbins H, Greenberg PD, Yee C. Tracking the Fate and Origin of Clinically Relevant Adoptively Transferred CD8+ T Cells In Vivo. Sci Immunol. 2017 Feb;2(8).”,”type”:”publication”,”url”:”https://immunology.sciencemag.org/content/2/8/eaal2568″,”cancer_type_terms_string”:”Melanoma”,”treatment_type_terms_string”:”Immunotherapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–Cancer Research Institute Cancer Immunology Dream Team: Immunologic Checkpoint Blockade and Adoptive Cell Transfer in Cancer Therapy”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/immunologic-checkpoint-blockade-dream-team/”,”publisher_year”:”Science Immunology, 2017″,”pub_med_id”:”28367538″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=28367538″},{“title”:”Goodall J, Mateo J, Yuan W, Mossop H, Porta N, Miranda S, Perez-Lopez R, Dolling D, Robinson DR, Sandhu S, Fowler G, Ebbs B, Flohr P, Seed G, Rodrigues DN, Boysen G, Bertan C, Atkin M, Clarke M, Crespo M, Figueiredo I, Riisnaes R, Sumanasuriya S, Rescigno P, Zafeiriou Z, Sharp A, Tunariu N, Bianchini D, Gillman A, Lord CJ, Hall E, Chinnaiyan AM, Carreira S, de Bono JS; TOPARP-A investigators. Circulating cell-free DNA to guide prostate cancer treatment with PARP inhibition. Cancer Discov. 2017 Sep;7(9):1006-1017.”,”type”:”publication”,”url”:”https://cancerdiscovery.aacrjournals.org/content/7/9/1006″,”cancer_type_terms_string”:”Prostate”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C−Prostate Cancer Foundation Prostate Dream Team: Precision Therapy of Advanced Prostate Cancer”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/prostate-cancer-precision-therapy-dream-team/”,”publisher_year”:”Cancer Discovery, 2017″,”pub_med_id”:”28450425″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=28450425″},{“title”:”Quigley D, Alumkal JJ, Wyatt AW, Kothari V, Foye A, Lloyd P, Aggarwal R, Kim W, Lu E, Schwartzman J, Beja K, Annala M, Das R, Diolaiti M, Pritchard C, Thomas G, Tomlins S, Knudsen K, Lord CJ, Ryan C, Youngren J, Beer TM, Ashworth A, Small EJ, Feng FY. . 2017. Cancer Discovery 7(9):999-1005″,”type”:”publication”,”url”:”https://cancerdiscovery.aacrjournals.org/content/7/9/999″,”cancer_type_terms_string”:”Prostate”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C−Prostate Cancer Foundation Prostate Dream Team: Precision Therapy of Advanced Prostate Cancer”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/prostate-cancer-precision-therapy-dream-team/”,”publisher_year”:”Cancer Discovery, 2017″,”pub_med_id”:”28450426″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=28450426″},{“title”:”Mackall CL, Miklos DB. CNS Endothelial Cell Activation Emerges as a Driver of CAR T Cell-Associated Neurotoxicity. Cancer Discov. 2017 Dec;7(12):1371-1373.”,”type”:”publication”,”url”:”https://cancerdiscovery.aacrjournals.org/content/7/12/1371″,”cancer_type_terms_string”:”Non – site Specific”,”treatment_type_terms_string”:”Immunotherapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–St. Baldrick’s Foundation Pediatric Cancer Dream Team: Immunogenomics to Create New Therapies for High-Risk Childhood Cancers”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/high-risk-pediatric-cancers-dream-team/”,”publisher_year”:”Cancer Discovery, 2017″,”pub_med_id”:”29208775″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=29208775″},{“title”:”Masucci GV, Cesano A, Eggermont A, Fox B, Wang E, Marincola F, Ciliberto G, Dobbin K, Puzanov I, Taube J, Wargo J, Butterfield LH, Villabona L, Thurin M, Postow M, Sondel PM, Demaria S, Agarwala S, Ascierto PA. The need for a network to establish and validate predictive biomarkers in cancer immunotherapy. J Transl Med. 2017 Nov 3;15(1):223.”,”type”:”publication”,”url”:”https://translational-medicine.biomedcentral.com/articles/10.1186/s12967-017-1325-2″,”cancer_type_terms_string”:”Non – site Specific”,”treatment_type_terms_string”:”Immunotherapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–St. Baldrick’s Foundation Pediatric Cancer Dream Team: Immunogenomics to Create New Therapies for High-Risk Childhood Cancers”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/high-risk-pediatric-cancers-dream-team/”,”publisher_year”:”Journal of Translational Medicine, 2017″,”pub_med_id”:”29100546″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=29100546″},{“title”:”Ascierto PA, Sanjiv MD, Agarwala S, Ciliberto G, Demaria S, Dummer R, Duong C, Ferrone S, Formenti SC, Garbe C, Halaban R, Khleif S, Luke JJ, Mir LM, Overwijk WW, Postow M, Puzanov I, Sondel P, Taube JM, Starten PT, Stroncek DF, Wargo JA, Zarour H, Thurin M. Future perspectives in melanoma research “Melanoma Bridge”, Napoli, November 30th- 3rd December 2016. 2017. J Transl Med. 2017 Nov 16;15(1):236.”,”type”:”publication”,”url”:”https://translational-medicine.biomedcentral.com/articles/10.1186/s12967-017-1341-2″,”cancer_type_terms_string”:”Melanoma”,”treatment_type_terms_string”:”Immunotherapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–St. Baldrick’s Foundation Pediatric Cancer Dream Team: Immunogenomics to Create New Therapies for High-Risk Childhood Cancers”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/high-risk-pediatric-cancers-dream-team/”,”publisher_year”:”Journal of Translational Medicine, 2017″,”pub_med_id”:”29145885″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=29145885″},{“title”:”Federico SM, McCarville MB, Shulkin BL, Sondel PM, Hank JA, Hutson P, Meagher M, Shafer A, Ng CY, Leung W, Janssen WE, Wu J, Mao S, Brennan RC, Santana VM, Pappo AS, Furman WL. A Pilot Trial of Humanized Anti-GD2 Monoclonal Antibody (hu14.18K322A) with Chemotherapy and Natural Killer Cells in Children with Recurrent/Refractory Neuroblastoma. Clin Cancer Res. 2017 Nov 1;23(21):6441-6449.”,”type”:”publication”,”url”:”https://clincancerres.aacrjournals.org/content/23/21/6441″,”cancer_type_terms_string”:”Pediatric – Solid Tumor”,”treatment_type_terms_string”:”Immunotherapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–St. Baldrick’s Foundation Pediatric Cancer Dream Team: Immunogenomics to Create New Therapies for High-Risk Childhood Cancers”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/high-risk-pediatric-cancers-dream-team/”,”publisher_year”:”Clinical Cancer Research, 2017″,”pub_med_id”:”28939747″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=28939747″},{“title”:”Mueller KT, Maude SL, Porter DL, Frey N, Wood P, Han X, Waldron E, Chakraborty A, Awasthi R, Levine BL, Melenhorst JJ, Grupp SA, June CH, Lacey SF. Cellular kinetics of CTL019 in relapsed/refractory B-cell acute lymphoblastic leukemia and chronic lymphocytic leukemia. Blood. 2017 Nov 23;130(21):2317-2325.”,”type”:”publication”,”url”:”http://www.bloodjournal.org/content/130/21/2317?sso-checked=true”,”cancer_type_terms_string”:”Leukemia (all types), Pediatric – Blood Related”,”treatment_type_terms_string”:”Immunotherapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–St. Baldrick’s Foundation Pediatric Cancer Dream Team: Immunogenomics to Create New Therapies for High-Risk Childhood Cancers”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/high-risk-pediatric-cancers-dream-team/”,”publisher_year”:”Blood, 2017″,”pub_med_id”:”28935694″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=28935694″},{“title”:”Majzner RG, Simon JS, Grosso JF, Martinez D, Pawel BR, Santi M, Merchant MS, Geoerger B, Hezam I, Marty V, Vielh P, Daugaard M, Sorensen PH, Mackall CL, Maris JM. Assessment of programmed death-ligand 1 expression and tumor-associated immune cells in pediatric cancer tissues.Cancer. 2017 Oct 1;123(19):3807-3815. 10.1002/cncr.30724. : 28608950.”,”type”:”publication”,”url”:”https://onlinelibrary.wiley.com/doi/full/10.1002/cncr.30724″,”cancer_type_terms_string”:”Pediatric – Blood Related, Pediatric – Solid Tumor”,”treatment_type_terms_string”:”Immunotherapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–St. Baldrick’s Foundation Pediatric Cancer Dream Team: Immunogenomics to Create New Therapies for High-Risk Childhood Cancers”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/high-risk-pediatric-cancers-dream-team/”,”publisher_year”:”Cancer, 2017″,”pub_med_id”:”28608950″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=28608950″},{“title”:”Walker AJ, Majzner RG, Zhang L, Wanhainen K, Long AH, Nguyen S, Lopomo P, Vigney M, Fry T, Orentas RJ, Mackall CL. Tumor antigen and receptor densities regulate efficacy of a novel chimeric antigen receptor targeting ALK,Mol Ther. 2017 Sep 6;25(9):2189-2201.”,”type”:”publication”,”url”:”https://www.cell.com/molecular-therapy-family/molecular-therapy/fulltext/S1525-0016(17)30270-8?_returnURL=https%3A%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2FS1525001617302708%3Fshowall%3Dtrue”,”cancer_type_terms_string”:”Pediatric – Solid Tumor”,”treatment_type_terms_string”:”Immunotherapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–St. Baldrick’s Foundation Pediatric Cancer Dream Team: Immunogenomics to Create New Therapies for High-Risk Childhood Cancers”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/high-risk-pediatric-cancers-dream-team/”,”publisher_year”:”Molecular Therapy, 2017″,”pub_med_id”:”28676342″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=28676342″},{“title”:”Bosse KR, Raman P, Zhu Z, Lane M, Martinez D, Heitzeneder S, Rathi KS, Kendsersky NM, Randall M, Donovan L, Morrissy S, Sussman RT, Zhelev DV, Feng Y, Wang Y, Hwang J, Lopez G, Harenza JL, Wei JS, Pawel B, Bhatti T, Santi M, Ganguly A, Khan J, Marra MA, Taylor MD, Dimitrov DS, Mackall CL, Maris JM. Identification of GPC2 as an Oncoprotein and Candidate Immunotherapeutic Target in High-Risk Neuroblastoma. Cancer Cell. 2017 Sep 11;32(3):295-309.e12.”,”type”:”publication”,”url”:”https://www.cell.com/cancer-cell/fulltext/S1535-6108(17)30346-X”,”cancer_type_terms_string”:”Pediatric – Solid Tumor”,”treatment_type_terms_string”:”Immunotherapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–St. Baldrick’s Foundation Pediatric Cancer Dream Team: Immunogenomics to Create New Therapies for High-Risk Childhood Cancers”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/high-risk-pediatric-cancers-dream-team/”,”publisher_year”:”Cancer Cell, 2017″,”pub_med_id”:”28898695″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=28898695″},{“title”:”Mukherjee M, Mace EM, Carisey AF, Ahmed N, Orange JS. Mol Ther. Quantitative Imaging Approaches to Study the CAR Immunological Synapse. Mol Ther. 2017 Aug 2;25(8):1757-1768.”,”type”:”publication”,”url”:”https://www.cell.com/molecular-therapy-family/molecular-therapy/fulltext/S1525-0016(17)30263-0?_returnURL=https%3A%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2FS1525001617302630%3Fshowall%3Dtrue”,”cancer_type_terms_string”:”Non – site Specific”,”treatment_type_terms_string”:”Immunotherapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–St. Baldrick’s Foundation Pediatric Cancer Dream Team: Immunogenomics to Create New Therapies for High-Risk Childhood Cancers”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/high-risk-pediatric-cancers-dream-team/”,”publisher_year”:”Molecular Therapy, 2017″,”pub_med_id”:”28663103″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=28663103″},{“title”:”Ahmed N, Brawley V, Hegde M, Bielamowicz K, Kalra M, Landi D, Robertson C, Gray TL, Diouf O, Wakefield A, Ghazi A, Gerken C, Yi Z, Ashoori A, Wu MF, Liu H, Rooney C, Dotti G, Gee A, Su J, Kew Y, Baskin D, Zhang YJ, New P, Grilley B, Stojakovic M, Hicks J, Powell SZ, Brenner MK, Heslop HE, Grossman R, Wels WS, Gottschalk S. HER2-Specific Chimeric Antigen Receptor-Modified Virus-Specific T Cells for Progressive Glioblastoma: A Phase 1 Dose-Escalation Trial. JAMA Oncol. 2017 Aug 1;3(8):1094-1101.”,”type”:”publication”,”url”:”https://jamanetwork.com/journals/jamaoncology/fullarticle/2619711″,”cancer_type_terms_string”:”Pediatric – Solid Tumor”,”treatment_type_terms_string”:”Immunotherapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–St. Baldrick’s Foundation Pediatric Cancer Dream Team: Immunogenomics to Create New Therapies for High-Risk Childhood Cancers”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/high-risk-pediatric-cancers-dream-team/”,”publisher_year”:”JAMA Oncology, 2017″,”pub_med_id”:”28426845″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=28426845″},{“title”:”Mody R, Naranjo A, Van Ryn C, Yu AL, London WB, Shulkin BL, Parisi MT, Servaes SEN, Dicciani MB, Sondel PM, Maris JM, Park JR, Bagatell R. Irinotecan-temozolomide with temsirolimus or dinutuximab in children with refractory or relapsed neuroblastoma (COG ANBL1221): an open-label, randomised, phase 2 trial. Lancet Oncol. 2017 Jul;18(7):946-957.”,”type”:”publication”,”url”:”https://www.thelancet.com/journals/lanonc/article/PIIS1470-2045(17)30355-8/fulltext”,”cancer_type_terms_string”:”Pediatric – Solid Tumor”,”treatment_type_terms_string”:”Chemotherapy, Immunotherapy, Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–St. Baldrick’s Foundation Pediatric Cancer Dream Team: Immunogenomics to Create New Therapies for High-Risk Childhood Cancers”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/high-risk-pediatric-cancers-dream-team/”,”publisher_year”:”Lancet Oncology, 2017″,”pub_med_id”:”28549783″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=28549783″},{“title”:”Singh N, Hofmann TJ, Gershenson Z, Levine BL, Grupp SA, Teachey DT, Barrett DM. Monocyte lineage-derived IL-6 does not affect chimeric antigen receptor T-cell function. Cytotherapy. 2017 Jul;19(7):867-880.”,”type”:”publication”,”url”:”https://www.celltherapyjournal.org/article/S1465-3249(17)30543-1/fulltext”,”cancer_type_terms_string”:”Non – site Specific”,”treatment_type_terms_string”:”Immunotherapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–St. Baldrick’s Foundation Pediatric Cancer Dream Team: Immunogenomics to Create New Therapies for High-Risk Childhood Cancers”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/high-risk-pediatric-cancers-dream-team/”,”publisher_year”:”Cytotherapy, 2017″,”pub_med_id”:”28506444″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=28506444″},{“title”:”Gardner RA, Finney O, Annesley C, Smithers H, Leger K, Summers C, Brown C, Mgebroff S, Lindgren C, Spratt K, Oron AO, Li D, Bleakley M, Riddell, S, Park JR, Jensen MC. Intent to treat leukemia remission by CD19 CAR T cells of defined formulation and dose in children and young adults. Blood. 2017 Jun 22;129(25):3322-3331.”,”type”:”publication”,”url”:”http://www.bloodjournal.org/content/129/25/3322?sso-checked=true”,”cancer_type_terms_string”:”Pediatric – Blood Related”,”treatment_type_terms_string”:”Immunotherapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–St. Baldrick’s Foundation Pediatric Cancer Dream Team: Immunogenomics to Create New Therapies for High-Risk Childhood Cancers”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/high-risk-pediatric-cancers-dream-team/”,”publisher_year”:”Blood, 2017″,”pub_med_id”:”28408462″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=28408462″},{“title”:”Cavalli FMG, Remke M, Rampasek L, Peacock J, Shih DJH, Luu B, Garzia L, Torchia J, Nor C, Morrissy AS, Agnihotri S, Thompson YY, Kuzan-Fischer CM, Farooq H, Isaev K, Daniels C, Cho BK, Kim SK, Wang KC, Lee JY, Grajkowska WA, Perek-Polnik M, Vasiljevic A, Faure-Conter C, Jouvet A, Giannini C, Nageswara Rao AA, Li KKW, Ng HK, Eberhart CG, Pollack IF, Hamilton RL, Gillespie GY, Olson JM, Leary S, Weiss WA, Lach B, Chambless LB, Thompson RC, Cooper MK, Vibhakar R, Hauser P, van Veelen MC, Kros JM, French PJ, Ra YS, Kumabe T, López-Aguilar E, Zitterbart K, Sterba J, Finocchiaro G, Massimino M, Van Meir EG, Osuka S, Shofuda T, Klekner A, Zollo M, Leonard JR, Rubin JB, Jabado N, Albrecht S, Mora J, Van Meter TE, Jung S, Moore AS, Hallahan AR, Chan JA, Tirapelli DPC, Carlotti CG, Fouladi M, Pimentel J, Faria CC, Saad AG, Massimi L, Liau LM, Wheeler H, Nakamura H, Elbabaa SK, Perezpeña-Diazconti M, Chico Ponce de León F, Robinson S, Zapotocky M, Lassaletta A, Huang A, Hawkins CE, Tabori U, Bouffet E, Bartels U, Dirks PB, Rutka JT, Bader GD, Reimand J, Goldenberg A, Ramaswamy V, Taylor MD. Intertumoral Heterogeneity within Medulloblastoma Subgroups. Cancer Cell. 2017 Jun 12;31(6):737-754.e6.”,”type”:”publication”,”url”:”https://www.cell.com/cancer-cell/fulltext/S1535-6108(17)30201-5″,”cancer_type_terms_string”:”Pediatric – Solid Tumor”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–St. Baldrick’s Foundation Pediatric Cancer Dream Team: Immunogenomics to Create New Therapies for High-Risk Childhood Cancers”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/high-risk-pediatric-cancers-dream-team/”,”publisher_year”:”Cancer Cell, 2017″,”pub_med_id”:”28609654″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=28609654″},{“title”:”Erbe AK, Wang W, Reville PK, Carmichael L, Kim K, Mendonca EA, Song Y, Hank JA, London WB, Naranjo A, Hong F, Hogarty MD, Maris JM, Park JR, Ozkaynak MF, Miller JS, Gilman AL, Kahl B, Yu AL, Sondel PM. HLA-Bw4-I-80 Isoform Differentially Influences Clinical Outcome As Compared to HLA-Bw4-T-80 and HLA-A-Bw4 Isoforms in Rituximab or Dinutuximab-Based Cancer Immunotherapy. Front Immunol. 2017 Jun 12;8:675.”,”type”:”publication”,”url”:”https://www.frontiersin.org/articles/10.3389/fimmu.2017.00675/full”,”cancer_type_terms_string”:”Pediatric – Blood Related”,”treatment_type_terms_string”:”Immunotherapy, Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–St. Baldrick’s Foundation Pediatric Cancer Dream Team: Immunogenomics to Create New Therapies for High-Risk Childhood Cancers”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/high-risk-pediatric-cancers-dream-team/”,”publisher_year”:”Frontiers in Immunology, 2017″,”pub_med_id”:”28659916″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=28659916″},{“title”:”Erbe AK, Wang W, Goldberg J, Gallenberger M, Kim KM, Carmichael L, Hess D, Mendonca EA, Song Y, Hank JA, Cheng S-C, Signoretti S, Atkins M, Carlson A, Mier J, Panka D, McDermott DF, Sondel PM. FCGR Polymorphisms Influence Response to IL-2 in Metastatic Renal Cell Carcinoma. Clin Cancer Res. 2017 May 1;23(9):2159-2168.”,”type”:”publication”,”url”:”https://clincancerres.aacrjournals.org/content/23/9/2159″,”cancer_type_terms_string”:”Kidney”,”treatment_type_terms_string”:”Immunotherapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–St. Baldrick’s Foundation Pediatric Cancer Dream Team: Immunogenomics to Create New Therapies for High-Risk Childhood Cancers”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/high-risk-pediatric-cancers-dream-team/”,”publisher_year”:”Clinical Cancer Research, 2017″,”pub_med_id”:”27742794″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=27742794″},{“title”:”Morrissy AS, Cavalli FMG, Remke M, Ramaswamy V, Shih DJH, Holgado BL, Farooq H, Donovan LK, Garzia L, Agnihotri S, Kiehna EN, Mercier E, Mayoh C, Papillon-Cavanagh S, Nikbakht H, Gayden T, Torchia J, Picard D, Merino DM, Vladoiu M, Luu B, Wu X, Daniels C, Horswell S, Thompson YY, Hovestadt V, Northcott PA, Jones DTW, Peacock J, Wang X, Mack SC, Reimand J, Albrecht S, Fontebasso AM, Thiessen N, Li Y, Schein JE, Lee D, Carlsen R, Mayo M, Tse K, Tam A, Dhalla N, Ally A, Chuah E, Cheng Y, Plettner P, Li HI, Corbett RD, Wong T, Long W, Loukides J, Buczkowicz P, Hawkins CE, Tabori U, Rood BR, Myseros JS, Packer RJ, Korshunov A, Lichter P, Kool M, Pfister SM, Schüller U, Dirks P, Huang A, Bouffet E, Rutka JT, Bader GD, Swanton C, Ma Y, Moore RA, Mungall AJ, Majewski J, Jones SJM, Das S, Malkin D, Jabado N, Marra MA, Taylor MD. Spatial heterogeneity in medulloblastoma. Nat Genet. 2017 May;49(5):780-788.”,”type”:”publication”,”url”:”https://www.nature.com/articles/ng.3838″,”cancer_type_terms_string”:”Pediatric – Solid Tumor”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–St. Baldrick’s Foundation Pediatric Cancer Dream Team: Immunogenomics to Create New Therapies for High-Risk Childhood Cancers”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/high-risk-pediatric-cancers-dream-team/”,”publisher_year”:”Nature Genetics, 2017″,”pub_med_id”:”28394352″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=28394352″},{“title”:”Wang W, Erbe AK, DeSantes KB, Sondel PM. Donor selection for ex vivo-expanded natural killer cells as adoptive cancer immunotherapy. Future Oncol. 2017 May;13(12):1043-1047.”,”type”:”publication”,”url”:”https://www.futuremedicine.com/doi/10.2217/fon-2017-0039″,”cancer_type_terms_string”:”Non – site Specific”,”treatment_type_terms_string”:”Immunotherapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–St. Baldrick’s Foundation Pediatric Cancer Dream Team: Immunogenomics to Create New Therapies for High-Risk Childhood Cancers”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/high-risk-pediatric-cancers-dream-team/”,”publisher_year”:”Future Oncology, 2017″,”pub_med_id”:”28492088″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=28492088″},{“title”:”Tasian SK, Kenderian SS, Shen F, Ruella M, Shestova O, Kozlowski M, Li Y, Schrank-Hacker A, Morrissette JJD, Carroll M, June CH, Grupp SA, Gill S. Optimized depletion of chimeric antigen receptor T cells in murine xenograft models of human acute myeloid leukemia. Blood. 2017 Apr 27;129(17):2395-2407.”,”type”:”publication”,”url”:”http://www.bloodjournal.org/content/129/17/2395?sso-checked=true”,”cancer_type_terms_string”:”Leukemia (all types)”,”treatment_type_terms_string”:”Immunotherapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–St. Baldrick’s Foundation Pediatric Cancer Dream Team: Immunogenomics to Create New Therapies for High-Risk Childhood Cancers”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/high-risk-pediatric-cancers-dream-team/”,”publisher_year”:”Blood, 2017″,”pub_med_id”:”28246194″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=28246194″},{“title”:”Majzner RG, Heitzeneder S, Mackall CL. Harnessing the Immunotherapy Revolution for the Treatment of Childhood Cancers. Cancer Cell. 2017 Apr 10;31(4):476-485.”,”type”:”publication”,”url”:”https://www.cell.com/cancer-cell/fulltext/S1535-6108(17)30064-8″,”cancer_type_terms_string”:”Pediatric – Blood Related, Pediatric – Solid Tumor”,”treatment_type_terms_string”:”Immunotherapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–St. Baldrick’s Foundation Pediatric Cancer Dream Team: Immunogenomics to Create New Therapies for High-Risk Childhood Cancers”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/high-risk-pediatric-cancers-dream-team/”,”publisher_year”:”Cancer Cell, 2017″,”pub_med_id”:”28366678″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=28366678″},{“title”:”Rakhmilevich AL, Felder M, Lever L, Slowinski J, Van De Voort TJ, Loibner H, Korman AJ, Gillies SD, Sondel PM. Effective Combination of Innate and Adaptive Immunotherapeutic Approaches in a Mouse Melanoma Model. J Immunol. 2017 Feb 15;198(4):1575-1584.”,”type”:”publication”,”url”:”https://www.jimmunol.org/content/198/4/1575″,”cancer_type_terms_string”:”Melanoma”,”treatment_type_terms_string”:”Immunotherapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–St. Baldrick’s Foundation Pediatric Cancer Dream Team: Immunogenomics to Create New Therapies for High-Risk Childhood Cancers”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/high-risk-pediatric-cancers-dream-team/”,”publisher_year”:”Journal of Immnunology, 2017″,”pub_med_id”:”28062694″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=28062694″},{“title”:”Fitzgerald JC, Weiss SL, Maude SL, Barrett DM, Lacey SF, Melenhorst JJ, Shaw P, Berg RA, June CH, Porter DL, Frey NV, Grupp SA, Teachey DT. Cytokine Release Syndrome After Chimeric Antigen Receptor T Cell Therapy for Acute Lymphoblastic Leukemia. Crit Care Med. 2017 Feb;45(2):e124-e131.”,”type”:”publication”,”url”:”https://insights.ovid.com/crossref?an=00003246-201702000-00037″,”cancer_type_terms_string”:”Leukemia (all types), Pediatric – Blood Related”,”treatment_type_terms_string”:”Immunotherapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–St. Baldrick’s Foundation Pediatric Cancer Dream Team: Immunogenomics to Create New Therapies for High-Risk Childhood Cancers”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/high-risk-pediatric-cancers-dream-team/”,”publisher_year”:”Critical Care Medicine, 2017″,”pub_med_id”:”27632680″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=27632680″},{“title”:”Künkele A, Taraseviciute A, Finn LS, Johnson AJ, Berger C, Finney O, Chang CA, Rolczynski LS, Brown C, Mgebroff S, Berger M, Park JR, Jensen MC. Preclinical Assessment of CD171-Directed CAR T-cell Adoptive Therapy for Childhood Neuroblastoma: CE7 Epitope Target Safety and Product Manufacturing Feasibility. Clin Cancer Res. 2017 Jan 15;23(2):466-477.”,”type”:”publication”,”url”:”https://clincancerres.aacrjournals.org/content/23/2/466″,”cancer_type_terms_string”:”Pediatric – Solid Tumor”,”treatment_type_terms_string”:”Immunotherapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–St. Baldrick’s Foundation Pediatric Cancer Dream Team: Immunogenomics to Create New Therapies for High-Risk Childhood Cancers”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/high-risk-pediatric-cancers-dream-team/”,”publisher_year”:”Clinical Cancer Research, 2017″,”pub_med_id”:”27390347″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=27390347″},{“title”:”Yu H, Sotillo E, Harrington C, Wertheim G, Paessler M, Maude SL, Rheingold SR, Grupp SA, Thomas-Tikhonenko A, Pillai V. Repeated loss of target surface antigen after immunotherapy in primary mediastinal large B cell lymphoma. Am J Hematol. 2017 Jan;92(1):E11-E13.”,”type”:”publication”,”url”:”https://onlinelibrary.wiley.com/doi/full/10.1002/ajh.24594″,”cancer_type_terms_string”:”Lymphoma, Pediatric – Blood Related”,”treatment_type_terms_string”:”Immunotherapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–St. Baldrick’s Foundation Pediatric Cancer Dream Team: Immunogenomics to Create New Therapies for High-Risk Childhood Cancers”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/high-risk-pediatric-cancers-dream-team/”,”publisher_year”:”American Journal of Hematology, 2017″,”pub_med_id”:”27779774″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=27779774″},{“title”:”Broutier L, Mastrogiovanni G, Verstegen MM, Francies HE, Gavarró LM, Bradshaw CR, Allen GE, Arnes-Benito R, Sidorova O, Gaspersz MP, Georgakopoulos N, Koo BK, Dietmann S, Davies SE, Praseedom RK, Lieshout R, IJzermans JNM, Wigmore SJ, Saeb-Parsy K, Garnett MJ, van der Laan LJ, Huch M. Human primary liver cancer-derived organoid cultures for disease modeling and drug screening. Nat Med. 2017 Dec;23(12):1424-1435.”,”type”:”publication”,”url”:”https://www.nature.com/articles/nm.4438″,”cancer_type_terms_string”:”Liver”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–Dutch Cancer Society Tumor Organoids Dream Team: A New Preclinical Model for Drug Sensitivity Analysis”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/tumor-organoids-preclinical-models-dream-team/”,”publisher_year”:”Nature Medicine, 2017″,”pub_med_id”:”29131160″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=29131160″},{“title”:”Drost J, van Boxtel R, Blokzijl F, Mizutani T, Sasaki N, Sasselli V, de Ligt J, Behjati S, Grolleman JE, van Wezel T, Nik-Zainal S, Kuiper RP, Cuppen E, Clevers H. Use of CRISPR-modified human stem cell organoids to study the origin of mutational signatures in cancer. Science. 2017 Oct 13;358(6360):234-238.”,”type”:”publication”,”url”:”https://science.sciencemag.org/content/358/6360/234″,”cancer_type_terms_string”:”Breast, Colorectal”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–Dutch Cancer Society Tumor Organoids Dream Team: A New Preclinical Model for Drug Sensitivity Analysis”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/tumor-organoids-preclinical-models-dream-team/”,”publisher_year”:”Science, 2017″,”pub_med_id”:”28912133″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=28912133″},{“title”:”Cristobal A, van den Toorn HW, van de Wetering M, Clevers H, Heck AJ, Mohammed S. Personalized Proteome Profiles of Healthy and Tumor Human Colon Organoids Reveal Both Individual Diversity and Basic Features of Colorectal Cancer. Cell Rep. 2017 Jan 3;18(1):263-274.”,”type”:”publication”,”url”:”https://www.cell.com/cell-reports/fulltext/S2211-1247(16)31706-5?_returnURL=https%3A%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2FS2211124716317065%3Fshowall%3Dtrue”,”cancer_type_terms_string”:”Colorectal”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–Dutch Cancer Society Tumor Organoids Dream Team: A New Preclinical Model for Drug Sensitivity Analysis”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/tumor-organoids-preclinical-models-dream-team/”,”publisher_year”:”Cell Reports, 2017″,”pub_med_id”:”28052255″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=28052255″},{“title”:”Le DT, Hubbard-Lucey VM, Morse MA, Heery CR, Dwyer A, Marsilje TH, Brodsky AN, Chan E, Deming DA, Diaz LA Jr, Fridman WH, Goldberg RM, Hamilton SR, Housseau F, Jaffee EM, Kang SP, Krishnamurthi SS, Lieu CH, Messersmith W, Sears CL, Segal NH, Yang A, Moss RA, Cha E, O’Donnell-Tormey J, Roach N, Davis AQ, McAbee K, Worrall S, Benson AB. A Blueprint to Advance Colorectal Cancer Immunotherapies. Cancer Immunol Res. 2017 Nov;5(11):942-949.”,”type”:”publication”,”url”:”https://cancerimmunolres.aacrjournals.org/content/5/11/942″,”cancer_type_terms_string”:”Colorectal”,”treatment_type_terms_string”:”Immunotherapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–Lustgarten Foundation Pancreatic Cancer Dream Team: Transforming Pancreatic Cancer to Treatable Disease”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/transforming-pancreatic-cancer-dream-team/”,”publisher_year”:”Cancer Immunology Research, 2017″,”pub_med_id”:”29038296″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=29038296″},{“title”:”Zloza A, Palucka KA, Coussens LM, Gotwals PL, Headley M, Jaffee EM, Lund AW, Sharpe AH, Sznol M, Wainwright DA, Wong KK. Bosenberg MW. Workshop on challenges, insights, and future directions for mouse and humanized models in cancer immunology and immunotherapy: a report from the associated programs of the 2016 Annual Meeting for the Society for Immunotherapy of Cancer. J Immunother Cancer. 2017 Sep 19;5(1):77.”,”type”:”publication”,”url”:”https://jitc.biomedcentral.com/articles/10.1186/s40425-017-0278-6″,”cancer_type_terms_string”:”Non – site Specific”,”treatment_type_terms_string”:”Immunotherapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–Lustgarten Foundation Pancreatic Cancer Dream Team: Transforming Pancreatic Cancer to Treatable Disease”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/transforming-pancreatic-cancer-dream-team/”,”publisher_year”:”Journal for Immunotherapy of Cancer, 2017″,”pub_med_id”:”28923102″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=28923102″},{“title”:”Chang YH, Tsujikawa T, Margolin A, Coussens LM, Gray JW. Multiplexed immunohistochemistry image analysis using sparse coding. Conf Proc IEEE Eng Med Biol Soc. 2017 Jul;2017:4046-4049.”,”type”:”publication”,”url”:”https://ieeexplore.ieee.org/document/8037744″,”cancer_type_terms_string”:”Non – site Specific”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–Lustgarten Foundation Pancreatic Cancer Dream Team: Transforming Pancreatic Cancer to Treatable Disease”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/transforming-pancreatic-cancer-dream-team/”,”publisher_year”:”2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 2017″,”pub_med_id”:”29060785″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=29060785″},{“title”:”Jang JE, Hajdu CH, Miller G, Dustin ML, Bar-Sagi D. Crosstalk between regulatory T cells and tumor-associated dendritic cells negates anti-tumor immunity in pancreatic cancer. Send to Cell Rep. 2017 Jul 18;20(3):558-571.”,”type”:”publication”,”url”:”https://www.cell.com/cell-reports/fulltext/S2211-1247(17)30893-8?_returnURL=https%3A%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2FS2211124717308938%3Fshowall%3Dtrue”,”cancer_type_terms_string”:”Pancreatic”,”treatment_type_terms_string”:”Immunotherapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–Lustgarten Foundation Pancreatic Cancer Dream Team: Transforming Pancreatic Cancer to Treatable Disease”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/transforming-pancreatic-cancer-dream-team/”,”publisher_year”:”Cell Reports, 2017″,”pub_med_id”:”28723561″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=28723561″},{“title”:”Le DT, Durham JN, Smith KN, Wang H, Bartlett BR, Aulakh LK, Lu S, Kemberling H, Wilt C, Luber BS, Wong F, Azad NS, Rucki AA, Laheru D, Donehower R, Zaheer A, Fisher GA, Crocenzi TS, Lee JJ, Greten TF, Duffy AG, Ciombor KK, Eyring AD, Lam BH, Joe A, Kang SP, Holdhoff M, Danilova L, Cope L, Meyer C, Zhou S, Goldberg RM, Armstrong DK, Bever KM, Fader AN, Taube J, Housseau F, Spetzler D, Xiao N, Pardoll DM, Papadopoulos N, Kinzler KW, Eshleman JR, Vogelstein B, Anders RA, Diaz LA, Jr. Mismatch-repair deficiency predicts response of solid tumors to PD-1 blockade. Science. 2017 Jul 28;357(6349):409-413.”,”type”:”publication”,”url”:”https://science.sciencemag.org/content/357/6349/409″,”cancer_type_terms_string”:”Non – site Specific”,”treatment_type_terms_string”:”Immunotherapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–Lustgarten Foundation Pancreatic Cancer Dream Team: Transforming Pancreatic Cancer to Treatable Disease”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/transforming-pancreatic-cancer-dream-team/”,”publisher_year”:”Science, 2017″,”pub_med_id”:”28596308″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=28596308″},{“title”:”Chang, Y.H., Thibault, G., Madin, O., Azimi, V., Meyers, C., Johnson, B., Link, J., Margolin, A. and Gray, J.W., 2017, July. Deep learning based Nucleus Classification in pancreas histological images.Conf Proc IEEE Eng Med Biol Soc. 2017 Jul;2017:672-675.”,”type”:”publication”,”url”:”https://ieeexplore.ieee.org/document/8036914″,”cancer_type_terms_string”:”Pancreatic”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–Lustgarten Foundation Pancreatic Cancer Dream Team: Transforming Pancreatic Cancer to Treatable Disease”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/transforming-pancreatic-cancer-dream-team/”,”publisher_year”:”Conf Proc IEEE Eng Med Biol Soc, 2017″,”pub_med_id”:”29059962″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=29059962″},{“title”:”Tsujikawa T, Kumar S, Borkar RN, Azimi V, Thibault G, Chang YH, Balter A, Kawashima R, Choe G, Sauer D, El Rassi E, Clayburgh DR, Kulesz-Martin MF, Lutz ER, Zheng L, Jaffee EM, Leyshock P, Margolin AA, Mori M, Gray JW, Flint PW, Coussens LM. Quantitative Multiplex Immunohistochemistry Reveals Myeloid-Inflamed Tumor-Immune Complexity Associated with Poor Prognosis. Cell Rep. 2017 Apr 4;19(1):203-217.”,”type”:”publication”,”url”:”https://www.cell.com/cell-reports/fulltext/S2211-1247(17)30383-2?_returnURL=https%3A%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2FS2211124717303832%3Fshowall%3Dtrue”,”cancer_type_terms_string”:”Head and Neck”,”treatment_type_terms_string”:”Immunotherapy, Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–Lustgarten Foundation Pancreatic Cancer Dream Team: Transforming Pancreatic Cancer to Treatable Disease”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/transforming-pancreatic-cancer-dream-team/”,”publisher_year”:”Cell Reports, 2017″,”pub_med_id”:”28380359″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=28380359″},{“title”:”McCracken MN, George BM, Kao KS, Marjon KD, Raveh T, Weissman IL. Normal and Neoplastic Stem Cells. Cold Spring Harb Symp Quant Biol. 2016;81:1-9.”,”type”:”publication”,”url”:”http://symposium.cshlp.org/content/81/1″,”cancer_type_terms_string”:”Leukemia (all types)”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–Lustgarten Foundation Pancreatic Cancer Dream Team: Transforming Pancreatic Cancer to Treatable Disease”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/transforming-pancreatic-cancer-dream-team/”,”publisher_year”:”Cold Spring Harbor Symposia on Quantitative Biology, 2017″,”pub_med_id”:”28416577″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=28416577″},{“title”:”Noguchi T, Ward JP, Gubin MM, Arthur CD, Lee SH, Hundal J, Selby MJ, Graziano RF, Mardis ER, Korman AJ, Schreiber RD. Temporally Distinct PD-L1 Expression by Tumor and Host Cells Contributes to Immune Escape. Cancer Immunol Res. 2017 Feb;5(2):106-117.”,”type”:”publication”,”url”:”https://cancerimmunolres.aacrjournals.org/content/5/2/106″,”cancer_type_terms_string”:”Non – site Specific”,”treatment_type_terms_string”:”Immunotherapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–Lustgarten Foundation Pancreatic Cancer Dream Team: Transforming Pancreatic Cancer to Treatable Disease”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/transforming-pancreatic-cancer-dream-team/”,”publisher_year”:”Cancer Immunology Research, 2017″,”pub_med_id”:”28073774″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=28073774″},{“title”:”Liu Y, Wang Z, De La Torre R, Barling A, Tsujikawa T, Hornick N, Hanifin J, Simpson E, Wang Y, Swanzey E, Wortham A, Ding H, Coussens LM, Kulesz-Martin M. Trim32 deficiency enhances Th2 immunity and predisposes to features of atopic dermatitis.J Invest Dermatol. 2017 Feb;137(2):359-366.”,”type”:”publication”,”url”:”https://www.jidonline.org/article/S0022-202X(16)32467-8/fulltext”,”cancer_type_terms_string”:”Non – site Specific”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–Lustgarten Foundation Pancreatic Cancer Dream Team: Transforming Pancreatic Cancer to Treatable Disease”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/transforming-pancreatic-cancer-dream-team/”,”publisher_year”:”Journal of Investigative Dermatology, 2017″,”pub_med_id”:”27720760″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=27720760″},{“title”:”Bosch LJW, de Wit M, Pham TV, Coupé VMH, Hiemstra AC, Piersma SR, Oudgenoeg G, Scheffer GL, Mongera S, Sive Droste JT, Oort FA, van Turenhout ST, Larbi IB, Louwagie J, van Criekinge W, van der Hulst RWM, Mulder CJJ, Carvalho B, Fijneman RJA, Jimenez CR, Meijer GA. Novel Stool-Based Protein Biomarkers for Improved Colorectal Cancer Screening: A Case-Control Study. Ann Intern Med. 2017 Dec 19;167(12):855-866.”,”type”:”publication”,”url”:”https://annals.org/aim/article-abstract/2664091/novel-stool-based-protein-biomarkers-improved-colorectal-cancer-screening-case?doi=10.7326%2fM17-1068″,”cancer_type_terms_string”:”Colorectal”,”treatment_type_terms_string”:”Screening/ Early Detection”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–Dutch Cancer Society Colorectal Cancer Early Detection Dream Team: Molecular Early Detection of Colorectal Cancer”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/colorectal-cancer-early-detection-dream-team/”,”publisher_year”:”Annals of Internal Medicine, 2017″,”pub_med_id”:”29159365″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=29159365″},{“title”:”Labidi-Galy S Papp E Hallberg D Niknafs N Adleff V Noe M Bhattacharya R Novak M Jones S Phallen J Hruban C Hirsch M Lin D Schwartz L Maire C Tille J Bowden M Ayhan A Wood L Scharpf R Kurman R Wang T Shih I Karchin R Drapkin R Velculescu V. High grade serous ovarian carcinomas originate in the fallopian tube. Nat Commun. 2017 Oct 23;8(1):1093.”,”type”:”publication”,”url”:”https://www.nature.com/articles/s41467-017-00962-1″,”cancer_type_terms_string”:”Ovarian”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–Dutch Cancer Society Colorectal Cancer Early Detection Dream Team: Molecular Early Detection of Colorectal Cancer”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/colorectal-cancer-early-detection-dream-team/”,”publisher_year”:”Nature Communication, 2017″,”pub_med_id”:”29061967″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=29061967″},{“title”:”Husain H, Velculescu V. Cancer DNA in the circulation: The liquid biopsy. JAMA. 2017 Oct 3;318(13):1272-1274.”,”type”:”publication”,”url”:”https://jama.jamanetwork.com/article.aspx?doi=10.1001/jama.2017.12131″,”cancer_type_terms_string”:”Non – site Specific”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–Dutch Cancer Society Colorectal Cancer Early Detection Dream Team: Molecular Early Detection of Colorectal Cancer”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/colorectal-cancer-early-detection-dream-team/”,”publisher_year”:”JAMA, 2017″,”pub_med_id”:”28973237″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=28973237″},{“title”:”Greuter M, De Klerk C, Meijer G, Dekker E, Coupe V. Screening for colorectal cancer with fecal immunochemical testing with and without postpolypectomy surveillance colonoscopy: A cost-effectiveness analysis. Ann Intern Med. 2017 Oct 17;167(8):544-554.”,”type”:”publication”,”url”:”https://annals.org/aim/article-abstract/2656476/screening-colorectal-cancer-fecal-immunochemical-testing-without-postpolypectomy-surveillance-colonoscopy?doi=10.7326%2fM16-2891″,”cancer_type_terms_string”:”Colorectal”,”treatment_type_terms_string”:”Screening/ Early Detection”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–Dutch Cancer Society Colorectal Cancer Early Detection Dream Team: Molecular Early Detection of Colorectal Cancer”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/colorectal-cancer-early-detection-dream-team/”,”publisher_year”:”Annals of Internal Medicine, 2017″,”pub_med_id”:”28973514″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=28973514″},{“title”:”Phallen J, Sausen M, Adleff V, Leal A, Hruban C, White J, Anagnostou V, Fiksel J, Cristiano S, Papp E, Speir S, Reinert T, Orntoft MW, Woodward BD, Murphy D, Parpart-Li S, Riley D, Nesselbush M, Sengamalay N, Georgiadis A, Li QK, Madsen MR, Mortensen FV, Huiskens J, Punt C, van Grieken N, Fijneman R, Meijer G, Husain H, Scharpf RB, Diaz LA Jr, Jones S, Angiuoli S, Ørntoft T, Nielsen HJ, Andersen CL, Velculescu VE. Direct detection of early-stage cancers using circulating tumor DNA. Sci Transl Med. 2017 Aug 16;9(403).”,”type”:”publication”,”url”:”https://stm.sciencemag.org/content/9/403/eaan2415″,”cancer_type_terms_string”:”Breast, Colorectal, Lung, Ovarian”,”treatment_type_terms_string”:”Screening/ Early Detection”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–Dutch Cancer Society Colorectal Cancer Early Detection Dream Team: Molecular Early Detection of Colorectal Cancer”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/colorectal-cancer-early-detection-dream-team/”,”publisher_year”:”Science Translational Medicine, 2017″,”pub_med_id”:”28814544″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=28814544″},{“title”:”van Lanschot M, Bosch L, de Wit M, Carvalho B, Meijer GA. Early detection: the impact of genomics. Virchows Arch. 2017 Aug;471(2):165-173.”,”type”:”publication”,”url”:”https://link.springer.com/article/10.1007%2Fs00428-017-2159-2″,”cancer_type_terms_string”:”Colorectal, Non – site Specific”,”treatment_type_terms_string”:”Screening/ Early Detection”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–Dutch Cancer Society Colorectal Cancer Early Detection Dream Team: Molecular Early Detection of Colorectal Cancer”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/colorectal-cancer-early-detection-dream-team/”,”publisher_year”:”Virchows Archive, 2017″,”pub_med_id”:”28573511″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=28573511″},{“title”:”Anagnostou V, Smith KN, Forde PM, Niknafs N, Bhattacharya R, White J, Zhang T, Adleff V, Phallen J, Wali N, Hruban C, Guthrie VB, Rodgers K, Naidoo J, Kang H, Sharfman W, Georgiades C, Verde F, Illei P, Li QK, Gabrielson E, Brock MV, Zahnow CA, Baylin SB, Scharpf RB, Brahmer JR, Karchin R, Pardoll DM, Velculescu VE. Evolution of Neoantigen Landscape during Immune Checkpoint Blockade in Non-Small Cell Lung Cancer. Cancer Discov. 2017 Mar;7(3):264-276.”,”type”:”publication”,”url”:”https://cancerdiscovery.aacrjournals.org/content/7/3/264″,”cancer_type_terms_string”:”Lung”,”treatment_type_terms_string”:”Immunotherapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–Dutch Cancer Society Colorectal Cancer Early Detection Dream Team: Molecular Early Detection of Colorectal Cancer”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/colorectal-cancer-early-detection-dream-team/”,”publisher_year”:”Cancer Discovery, 2017″,”pub_med_id”:”28031159″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=28031159″},{“title”:”Wahner Hendrickson AE, Kaufmann SH, and Swisher EM Doubling Down on BRCA-Mutated Cancer. Trends Cancer. 2017 Nov;3(11):743-744.”,”type”:”publication”,”url”:”https://www.cell.com/trends/cancer/fulltext/S2405-8033(17)30190-5?_returnURL=https%3A%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2FS2405803317301905%3Fshowall%3Dtrue”,”cancer_type_terms_string”:”Breast”,”treatment_type_terms_string”:”Immunotherapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–Ovarian Cancer Research Alliance–National Ovarian Cancer Coalition Ovarian Cancer Dream Team: DNA Repair Therapies for Ovarian Cancer”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/dna-repair-thearpies-for-ovarian-cancer-dream-team/”,”publisher_year”:”Trends in Cancer , 2017″,”pub_med_id”:”29120748″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=29120748″},{“title”:”Rondinelli B, Gogola E, Yücel H, Duarte AA, van de Ven M, van der Sluijs R, Konstantinopoulos PA, Jonkers J, Ceccaldi R, Rottenberg S, D’Andrea AD. EZH2 promotes degradation of stalled replication forks by recruiting MUS81 through histone H3 trimethylation. Nat Cell Biol. 2017 Nov;19(11):1371-1378.”,”type”:”publication”,”url”:”https://www.nature.com/articles/ncb3626″,”cancer_type_terms_string”:”Non – site Specific”,”treatment_type_terms_string”:”Chemotherapy, Screening/ Early Detection”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–Ovarian Cancer Research Alliance–National Ovarian Cancer Coalition Ovarian Cancer Dream Team: DNA Repair Therapies for Ovarian Cancer”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/dna-repair-thearpies-for-ovarian-cancer-dream-team/”,”publisher_year”:”Nature Cell Biology, 2017″,”pub_med_id”:”29035360″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=29035360″},{“title”:”Oza AM, Tinker AV, Oaknin A, Shapira-Frommer R, McNeish IA, Swisher EM, Ray-Coquard I, Bell-McGuinn K, Coleman RL, O’Malley DM, Leary A, Chen LM, Provencher D, Ma L, Brenton JD, Konecny GE, Castro CM, Giordano H, Maloney L, Goble S, Lin KK, Sun J, Raponi M, Rolfe L, Kristeleit RS. Antitumor activity and safety of the PARP inhibitor rucaparib in patients with high-grade ovarian carcinoma and a germline or somatic BRCA1 or BRCA2 mutation: Integrated analysis of data from Study 10 and ARIEL2. Gynecol Oncol. 2017 Nov;147(2):267-275.”,”type”:”publication”,”url”:”https://www.gynecologiconcology-online.net/article/S0090-8258(17)31260-X/fulltext”,”cancer_type_terms_string”:”Ovarian”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–Ovarian Cancer Research Alliance–National Ovarian Cancer Coalition Ovarian Cancer Dream Team: DNA Repair Therapies for Ovarian Cancer”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/dna-repair-thearpies-for-ovarian-cancer-dream-team/”,”publisher_year”:”Gynecologic Oncology, 2017″,”pub_med_id”:”28882436″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=28882436″},{“title”:”Wahner Hendrickson AE, Bakkum-Gamez JN, J Couch F, Ghosh K, Boughey JC. Management of Breast Cancer Risk in Women with Ovarian Cancer and Deleterious BRCA1 or BRCA2 Mutations. Ann Surg Oncol. 2017 Oct;24(11):3107-3109.”,”type”:”publication”,”url”:”https://link.springer.com/article/10.1245%2Fs10434-017-5999-8″,”cancer_type_terms_string”:”Breast, Ovarian”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–Ovarian Cancer Research Alliance–National Ovarian Cancer Coalition Ovarian Cancer Dream Team: DNA Repair Therapies for Ovarian Cancer”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/dna-repair-thearpies-for-ovarian-cancer-dream-team/”,”publisher_year”:”Annals of Surgical Oncology, 2017″,”pub_med_id”:”28730286″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=28730286″},{“title”:”Elias KM, Fendler W, Stawiski K, Fiascone SJ, Vitonis AF, Berkowitz RS, Frendl G, Konstantinopoulos P, Crum CP, Kedzierska M, Cramer DW, Chowdhury D. Diagnostic potential for a serum miRNA neural network for detection of ovarian cancer. Elife. 2017 Oct 31;6.”,”type”:”publication”,”url”:”https://elifesciences.org/articles/28932″,”cancer_type_terms_string”:”Ovarian”,”treatment_type_terms_string”:”Screening/ Early Detection”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–Ovarian Cancer Research Alliance–National Ovarian Cancer Coalition Ovarian Cancer Dream Team: DNA Repair Therapies for Ovarian Cancer”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/dna-repair-thearpies-for-ovarian-cancer-dream-team/”,”publisher_year”:”eLife, 2017″,”pub_med_id”:”29087294″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=29087294″},{“title”:”Coleman RL, Oza AM, Lorusso D, Aghajanian C, Oaknin A, Dean A, Colombo N, Weberpals JI, Clamp A, Scambia G, Leary A, Holloway RW, Gancedo MA, Fong PC, Goh JC, O’Malley DM, Armstrong DK, Garcia-Donas J, Swisher EM, Floquet A, Konecny GE, McNeish IA, Scott CL, Cameron T, Maloney L, Isaacson J, Goble S, Grace C, Harding TC, Raponi M, Sun J, Lin KK, Giordano H, Ledermann JA, ARIEL3 investigators. Rucaparib maintenance treatment for recurrent ovarian carcinoma after response to platinum therapy (ARIEL3): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet. 2017 Oct 28;390(10106): 1949-1961.”,”type”:”publication”,”url”:”https://www.thelancet.com/journals/lancet/article/PIIS0140-6736(17)32440-6/fulltext”,”cancer_type_terms_string”:”Ovarian”,”treatment_type_terms_string”:”Chemotherapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–Ovarian Cancer Research Alliance–National Ovarian Cancer Coalition Ovarian Cancer Dream Team: DNA Repair Therapies for Ovarian Cancer”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/dna-repair-thearpies-for-ovarian-cancer-dream-team/”,”publisher_year”:”Lancet, 2017″,”pub_med_id”:”28916367″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=28916367″},{“title”:”Kondrashova O, Nguyen M, Shield-Artin K, Tinker AV, Teng NNH, Harrell MI, Kuiper MJ, Ho GY, Barker H, Jasin M, Prakash R, Kass EM, Sullivan MR, Brunette GJ, Bernstein KA, Coleman RL, Floquet A, Friedlander M, Kichenadasse G, O’Malley DM, Oza A, Sun J, Robillard L, Maloney L, Bowtell D, Giordano H, Wakefield MJ, Kaufmann SH, Simmons AD, Harding TC, Raponi M, McNeish IA, Swisher EM, Lin KK, Scott CL; AOCS Study Group. Secondary Somatic Mutations Restoring RAD51C and RAD51D Associated with Acquired Resistance to the PARP Inhibitor Rucaparib in High-Grade Ovarian Carcinoma. Cancer Discov. 2017 Sep;7(9):984-998.”,”type”:”publication”,”url”:”https://cancerdiscovery.aacrjournals.org/content/7/9/984″,”cancer_type_terms_string”:”Ovarian”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–Ovarian Cancer Research Alliance–National Ovarian Cancer Coalition Ovarian Cancer Dream Team: DNA Repair Therapies for Ovarian Cancer”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/dna-repair-thearpies-for-ovarian-cancer-dream-team/”,”publisher_year”:”Cancer Discovery, 2017″,”pub_med_id”:”28588062″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=28588062″},{“title”:”Pitroda SP, Bao R, Andrade J, Weichselbaum RR, Connell PP: Low Recombination Proficiency Score (RPS) predicts heightened sensitivity to DNA-damaging chemotherapy in breast cancer. Clin Cancer Res. 2017 Aug 1;23(15):4493-4500.”,”type”:”publication”,”url”:”https://clincancerres.aacrjournals.org/content/23/15/4493″,”cancer_type_terms_string”:”Breast”,”treatment_type_terms_string”:”Chemotherapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–Ovarian Cancer Research Alliance–National Ovarian Cancer Coalition Ovarian Cancer Dream Team: DNA Repair Therapies for Ovarian Cancer”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/dna-repair-thearpies-for-ovarian-cancer-dream-team/”,”publisher_year”:”Clinical Cancer Research, 2017″,”pub_med_id”:”28341751″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=28341751″},{“title”:”Colon-Otero G, Weroha SJ, Foster NR, Haluska P, Hou X, Wahner-Hendrickson AE, Jatoi A, Block MS, Dinh TA, Robertson MW, Copland JA. Phase 2 trial of everolimus and letrozole in relapsed estrogen receptor-positive high-grade ovarian cancers. Gynecol Oncol. 2017 Jul;146(1):64-68.”,”type”:”publication”,”url”:”https://www.gynecologiconcology-online.net/article/S0090-8258(17)30801-6/fulltext”,”cancer_type_terms_string”:”Ovarian”,”treatment_type_terms_string”:”Chemotherapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–Ovarian Cancer Research Alliance–National Ovarian Cancer Coalition Ovarian Cancer Dream Team: DNA Repair Therapies for Ovarian Cancer”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/dna-repair-thearpies-for-ovarian-cancer-dream-team/”,”publisher_year”:”Gynecologic Oncology, 2017″,”pub_med_id”:”28461031″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=28461031″},{“title”:”Mouw KW, Goldberg MS, Konstantinopoulos PA, D’Andrea AD. DNA Damage and Repair Biomarkers of Immunotherapy Response. Cancer Discov. 2017 Jul;7(7):675-693.”,”type”:”publication”,”url”:”https://cancerdiscovery.aacrjournals.org/content/7/7/675″,”cancer_type_terms_string”:”Non – site Specific”,”treatment_type_terms_string”:”Immunotherapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–Ovarian Cancer Research Alliance–National Ovarian Cancer Coalition Ovarian Cancer Dream Team: DNA Repair Therapies for Ovarian Cancer”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/dna-repair-thearpies-for-ovarian-cancer-dream-team/”,”publisher_year”:”Cancer Discovery, 2017″,”pub_med_id”:”28630051″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=28630051″},{“title”:”Lee JM, Cimino-Mathews A, Peer CJ, Zimmer A, Lipkowitz S, Annunziata CM, Cao L, Harrell MI, Swisher EM, Houston N, Botesteanu DA, Taube JM, Thompson E, Ogurtsova A, Xu H, Nguyen J, Ho TW, Figg WD, Kohn EC. Safety and Clinical Activity of the Programmed Death-Ligand 1 Inhibitor Durvalumab in Combination With Poly (ADP-Ribose) Polymerase Inhibitor Olaparib or Vascular Endothelial Growth Factor Receptor 1-3 Inhibitor Cediranib in Women’s Cancers: A Dose-Escalation, Phase I Study. J Clin Oncol. 2017 Jul 1;35(19):2193-2202.”,”type”:”publication”,”url”:”https://ascopubs.org/doi/10.1200/JCO.2016.72.1340″,”cancer_type_terms_string”:”Breast, Endometiral/Uterin, Ovarian”,”treatment_type_terms_string”:”Immunotherapy, Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–Ovarian Cancer Research Alliance–National Ovarian Cancer Coalition Ovarian Cancer Dream Team: DNA Repair Therapies for Ovarian Cancer”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/dna-repair-thearpies-for-ovarian-cancer-dream-team/”,”publisher_year”:”Journal of Clinical Oncology, 2017″,”pub_med_id”:”28471727″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=28471727″},{“title”:”Gentile DR, Rathinaswamy MK, Jenkins ML, Moss SM, Siempelkamp BD, Renslo AR, Burke JE, Shokat KM. Ras Binder Induces a Modified Switch-II Pocket in GTP and GDP States. Cell Chem Biol. 2017 Dec 21;24(12):1455-1466.e14.”,”type”:”publication”,”url”:”https://www.cell.com/cell-chemical-biology/fulltext/S2451-9456(17)30323-9?_returnURL=https%3A%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2FS2451945617303239%3Fshowall%3Dtrue”,”cancer_type_terms_string”:”Non – site Specific”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–American Cancer Society Lung Cancer Dream Team: Targeting KRAS Mutant Lung Cancers”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/targeting-kras-mutant-lung-cancers-dream-team/”,”publisher_year”:”Cell Chemical Biology, 2017″,”pub_med_id”:”29033317″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=29033317″},{“title”:”Gettinger S, Choi J, Hastings K, Truini A, Datar I, Sowell R, Wurtz A, Dong W, Cai G, Melnick M, Du V, Schlessinger J, Goldberg S, Chiang A, Sanmamed M, Melero I, Agorreta J, Montuenga L, Lifton R, Ferrone S, Kavathas P, Rimm D, Kaech S, Schalper K, Herbst R, and Politi, K. Impaired HLA Class I Antigen Processing and Presentation as a Mechanism of Acquired Resistance to Immune Checkpoint Inhibitors in Lung Cancer. Cancer Discov. 2017 Dec;7(12):1420-1435.”,”type”:”publication”,”url”:”https://cancerdiscovery.aacrjournals.org/content/7/12/1420″,”cancer_type_terms_string”:”Lung”,”treatment_type_terms_string”:”Immunotherapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–American Cancer Society Lung Cancer Dream Team: Targeting KRAS Mutant Lung Cancers”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/targeting-kras-mutant-lung-cancers-dream-team/”,”publisher_year”:”Cancer Discovery, 2017″,”pub_med_id”:”29025772″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=29025772″},{“title”:”Sanmamed MF, Perez-Gracia JL, Schalper KA, Fusco JP, Gonzalez A, Rodriguez-Ruiz ME, Oñate C, Perez G, Alfaro C, Martín-Algarra S, Andueza MP, Gurpide A, Morgado M, Wang J, Bacchiocchi A, Halaban R, Kluger H, Chen L, Sznol M, Melero I. Changes in serum interleukin-8 (IL-8) levels reflect and predict response to anti-PD-1 treatment in melanoma and non-small-cell lung cancer patients. Ann Oncol. 2017 Aug 1;28(8):1988-1995.”,”type”:”publication”,”url”:”https://academic.oup.com/annonc/article/28/8/1988/3863084″,”cancer_type_terms_string”:”Lung, Melanoma”,”treatment_type_terms_string”:”Immunotherapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–American Cancer Society Lung Cancer Dream Team: Targeting KRAS Mutant Lung Cancers”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/targeting-kras-mutant-lung-cancers-dream-team/”,”publisher_year”:”Annals of Oncology, 2017″,”pub_med_id”:”28595336″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=28595336″},{“title”:”Yao Z, Yaeger R, Rodrik-Outmezguine VS, Tao A, Torres NM, Chang MT, Drosten M, Zhao H, Cecchi F, Hembrough T, Michels J, Baumert H, Miles L, Campbell NM, De Stanchina E, Solit DB, Barbacid M, Taylor BS, Rosen N. Tumors with class 3 BRAF mutants are sensitive to the inhibition of activated RAS. Nature. 2017 Aug 10;548(7666):234-238.”,”type”:”publication”,”url”:”https://www.nature.com/articles/nature23291″,”cancer_type_terms_string”:”Non – site Specific”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–American Cancer Society Lung Cancer Dream Team: Targeting KRAS Mutant Lung Cancers”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/targeting-kras-mutant-lung-cancers-dream-team/”,”publisher_year”:”Nature, 2017″,”pub_med_id”:”28783719″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=28783719″},{“title”:”Nieto P, Ambrogio C, de Esteban L, Gómez-López G, Blasco T, Yao Z, Marais R, Rosen N, Chiarle R, Pisano DG, Barbacid M, and Santamaría D. A Braf kinase-inactive mutant induces lung adenocarcinoma. Nature. 2017 Aug 10;548(7666):239-243.”,”type”:”publication”,”url”:”https://www.nature.com/articles/nature23297″,”cancer_type_terms_string”:”Lung”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–American Cancer Society Lung Cancer Dream Team: Targeting KRAS Mutant Lung Cancers”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/targeting-kras-mutant-lung-cancers-dream-team/”,”publisher_year”:”Nature, 2017″,”pub_med_id”:”28783725″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=28783725″},{“title”:”Novotny CJ, Hamilton GL, McCormick F, Shokat KM. Farnesyltransferase-Mediated Delivery of a Covalent Inhibitor Overcomes Alternative Prenylation to Mislocalize K-Ras. ACS Chem Biol. 2017 Jul 21;12(7):1956-1962.”,”type”:”publication”,”url”:”https://pubs.acs.org/doi/10.1021/acschembio.7b00374″,”cancer_type_terms_string”:”Non – site Specific”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–American Cancer Society Lung Cancer Dream Team: Targeting KRAS Mutant Lung Cancers”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/targeting-kras-mutant-lung-cancers-dream-team/”,”publisher_year”:”ACS Chemical Biology, 2017″,”pub_med_id”:”28530791″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=28530791″},{“title”:”McGregor LM, Jenkins ML, Kerwin C, Burke JE, Shokat KM. Expanding the Scope of Electrophiles Capable of Targeting K-Ras Oncogenes. Biochemistry. 2017 Jun 27;56(25):3178-3183.”,”type”:”publication”,”url”:”https://pubs.acs.org/doi/10.1021/acs.biochem.7b00271″,”cancer_type_terms_string”:”Non – site Specific”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–American Cancer Society Lung Cancer Dream Team: Targeting KRAS Mutant Lung Cancers”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/targeting-kras-mutant-lung-cancers-dream-team/”,”publisher_year”:”Biochemistry, 2017″,”pub_med_id”:”28621541″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=28621541″},{“title”:”Schalper KA, Carvajal-Hausdorf D, McLaughlin J, Altan M, Velcheti V, Gaule P, Sanmamed MF, Chen L, Herbst RS, Rimm DL. 2017. Differential Expression and Significance of PD-L1, IDO-1, and B7-H4 in Human Lung Cancer. Clin Cancer Res. 2017 Jan 15;23(2):370-378.”,”type”:”publication”,”url”:”https://clincancerres.aacrjournals.org/content/23/2/370″,”cancer_type_terms_string”:”Lung”,”treatment_type_terms_string”:”Immunotherapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–American Cancer Society Lung Cancer Dream Team: Targeting KRAS Mutant Lung Cancers”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/targeting-kras-mutant-lung-cancers-dream-team/”,”publisher_year”:”Clinical Cancer Research, 2017″,”pub_med_id”:”27440266″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=27440266″},{“title”:”Kortlever, R.M., Sodir, N.M., Wilson, C.H., Burkhart, D.L., Pellegrinet, L., Swigart, L.B., Littlewood, T.D., and Evan, G.I.. Myc Cooperates with Ras by Programming Inflammation and Immune Suppression. Cell. 2017 Nov 30;171(6):1301-1315.e14.”,”type”:”publication”,”url”:”https://www.cell.com/cell/fulltext/S0092-8674(17)31322-3?_returnURL=https%3A%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2FS0092867417313223%3Fshowall%3Dtrue”,”cancer_type_terms_string”:”Non – site Specific”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–Cancer Research UK–Lustgarten Foundation Pancreatic Cancer Dream Team: Reprogramming of Transcriptional Circuitry to Control Pancreatic Cancer”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/reprogramming-of-pancreatic-cancer-dream-team/”,”publisher_year”:”Cell, 2017″,”pub_med_id”:”29195074″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=29195074″},{“title”:”Todoric J, Antonucci L, Di Caro G, Li N, Wu X, Lytle NK, Dhar D, Banerjee S, FagmanJB, Browne C, Umemura A, Valasek MA, Kessler H, Tarin D, Goggins M, Reya T, Diaz-Meco M, Moscat J Karin M. 2017. Stress activated NRF2-MDM2 cascade controls neoplastic progression in pancreas. Cancer Cell. 2017 Dec 11;32(6):824-839.e8.”,”type”:”publication”,”url”:”https://www.cell.com/cancer-cell/fulltext/S1535-6108(17)30464-6″,”cancer_type_terms_string”:”Pancreatic”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–Cancer Research UK–Lustgarten Foundation Pancreatic Cancer Dream Team: Reprogramming of Transcriptional Circuitry to Control Pancreatic Cancer”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/reprogramming-of-pancreatic-cancer-dream-team/”,”publisher_year”:”Cancer Cell, 2017″,”pub_med_id”:”29153842″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=29153842″},{“title”:”Hui S, Ghergurovich JM, Morscher RJ, Jang C, Teng X, Lu W, Esparza LA, Reya T, Zhan L, Guo JY, White E , Rabinowitz JD. Glucose feeds the TCA cycle via circulating lactate. Nature. 2017 Nov 2;551(7678):115-118.”,”type”:”publication”,”url”:”https://www.nature.com/articles/nature24057″,”cancer_type_terms_string”:”Non – site Specific”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–Cancer Research UK–Lustgarten Foundation Pancreatic Cancer Dream Team: Reprogramming of Transcriptional Circuitry to Control Pancreatic Cancer”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/reprogramming-of-pancreatic-cancer-dream-team/”,”publisher_year”:”Nature, 2017″,”pub_med_id”:”29045397″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=29045397″},{“title”:”Korn RL, Von Hoff DD, Borad MJ, Renschler MF, McGovern D, Curtis Bay R, Ramanathan RK. 18F-FDG PET/CT response in a phase 1/2 trial of nab-paclitaxel plus gemcitabine for advanced pancreatic cancer. Cancer Imaging. 2017 Aug 3;17(1):23.”,”type”:”publication”,”url”:”https://cancerimagingjournal.biomedcentral.com/articles/10.1186/s40644-017-0125-5″,”cancer_type_terms_string”:”Pancreatic”,”treatment_type_terms_string”:”Chemotherapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–Cancer Research UK–Lustgarten Foundation Pancreatic Cancer Dream Team: Reprogramming of Transcriptional Circuitry to Control Pancreatic Cancer”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/reprogramming-of-pancreatic-cancer-dream-team/”,”publisher_year”:”Cancer Imaging, 2017″,”pub_med_id”:”28774338″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=28774338″},{“title”:”Borazanci E., Dang CV, Rbey RW, Bates SE, Chabot JA, Von Hoff DD. Pancreatic Cancer: “A Riddle Wrapped in a Mystery inside an Enigma”. Clin Cancer Res. 2017 Apr 1;23(7):1629-1637.”,”type”:”publication”,”url”:”https://clincancerres.aacrjournals.org/content/23/7/1629″,”cancer_type_terms_string”:”Pancreatic”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–Cancer Research UK–Lustgarten Foundation Pancreatic Cancer Dream Team: Reprogramming of Transcriptional Circuitry to Control Pancreatic Cancer”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/reprogramming-of-pancreatic-cancer-dream-team/”,”publisher_year”:”Clinical Cancer Research, 2017″,”pub_med_id”:”28373361″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=28373361″},{“title”:”Evan GI, Hah N, Littleword TD, Sodir NM, Campos T, Downes M, Evans RM. Re-engineering the Pancreas Tumor Microenvironment: A “Regenerative Program” Hacked. Clin Cancer Res. 2017 Apr 1;23(7):1647-1655.”,”type”:”publication”,”url”:”https://clincancerres.aacrjournals.org/content/23/7/1647″,”cancer_type_terms_string”:”Pancreatic”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–Cancer Research UK–Lustgarten Foundation Pancreatic Cancer Dream Team: Reprogramming of Transcriptional Circuitry to Control Pancreatic Cancer”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/reprogramming-of-pancreatic-cancer-dream-team/”,”publisher_year”:”Clinical Cancer Research, 2017″,”pub_med_id”:”28373363″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=28373363″},{“title”:”Sherman MH, Yu RT, Tseng TW, Sousa CM, Liu S, Truitt ML, He N, Ding N, Liddle C, Atkins AR, Leblanc M, Collisson EA, Asara JM, Kimmelman AC, Downes M, Evans RM. Stromal cues regulate the pancreatic cancer epigenome and metabolome. Proc Natl Acad Sci U S A. 2017 Jan 31;114(5):1129-1134.”,”type”:”publication”,”url”:”https://www.pnas.org/content/114/5/1129″,”cancer_type_terms_string”:”Pancreatic”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–Cancer Research UK–Lustgarten Foundation Pancreatic Cancer Dream Team: Reprogramming of Transcriptional Circuitry to Control Pancreatic Cancer”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/reprogramming-of-pancreatic-cancer-dream-team/”,”publisher_year”:”PNAS, 2017″,”pub_med_id”:”28096419″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=28096419″},{“title”:”Bullman S, Pedamallu CS, Sicinska E, Clancy TE, Zhang X, Cai D, Neuberg D, Huang K, Guevara F, Nelson T, Chipashvili O, Hagan T, Walker M, Ramachandran A, Diosdado B, Serna G, Mulet N, Landolfi S, Ramon YCS, Fasani R, Aguirre AJ, Ng K, Elez E, Ogino S, Tabernero J, Fuchs CS, Hahn WC, Nuciforo P, Meyerson M. Analysis of Fusobacterium persistence and antibiotic response in colorectal cancer. Science. 2017 Dec 15;358(6369):1443-1448.”,”type”:”publication”,”url”:”https://science.sciencemag.org/content/358/6369/1443″,”cancer_type_terms_string”:”Colorectal”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C Colorectal Cancer Dream Team: Targeting Genomic, Metabolic, and Immunological Vulnerabilities of Colorectal Cancer”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/colorectal-cancer-vulnerabilities-dream-team/”,”publisher_year”:”Science, 2017″,”pub_med_id”:”29170280″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=29170280″},{“title”:”Savage P, Blanchet-Cohen A, Revil T, Badescu D, Saleh SMI, Wang YC, Zuo D, Liu L, Bertos NR, Munoz-Ramos V, Basik M, Petrecca K, Asselah J, Meterissian S, Guiot MC, Omeroglu A, Kleinman CL, Park M, Ragoussis J. A Targetable EGFR-Dependent Tumor-Initiating Program in Breast Cancer. Cell Rep. 2017 Oct 31;21(5):1140-1149.”,”type”:”publication”,”url”:”https://www.cell.com/cell-reports/fulltext/S2211-1247(17)31447-X?_returnURL=https%3A%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2FS221112471731447X%3Fshowall%3Dtrue”,”cancer_type_terms_string”:”Breast”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C Canada–Canadian Cancer Society Breast Cancer Dream Team: Translational Development of Novel Drugs Targeting Tumor Vulnerabilities”,”research_project_url”:”http://www.standuptocancer.ca/en/dream_teams/view/cbcf_breast_cancer_dream_team”,”publisher_year”:”Cell Reports, 2017″,”pub_med_id”:”29091754″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=29091754″},{“title”:”Safikhani Z, Smirnov P, Thu KL, Silvester J, El-Hachem N, Quevedo R, Lupien M, Mak TW, Cescon D, Haibe-Kains B. Gene isoforms as expression-based biomarkers predictive of drug response in vitro. Nat Commun. 2017 Oct 24;8(1):1126. doi:”,”type”:”publication”,”url”:”https://www.nature.com/articles/s41467-017-01153-8″,”cancer_type_terms_string”:”Non – site Specific”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C Canada–Canadian Cancer Society Breast Cancer Dream Team: Translational Development of Novel Drugs Targeting Tumor Vulnerabilities”,”research_project_url”:”http://www.standuptocancer.ca/en/dream_teams/view/cbcf_breast_cancer_dream_team”,”publisher_year”:”Nature Communications, 2017″,”pub_med_id”:”29066719″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=29066719″},{“title”:”Xu H, Di Antonio M, McKinney S, Mathew V, Ho B, O’Neil NJ, Santos ND, Silvester J, Wei V, Garcia J, Kabeer F, Lai D, Soriano P, Banáth J, Chiu DS, Yap D, Le DD, Ye FB, Zhang A, Thu K, Soong J, Lin SC, Tsai AH, Osako T, Algara T, Saunders DN, Wong J, Xian J, Bally MB, Brenton JD, Brown GW, Shah SP, Cescon D, Mak TW, Caldas C, Stirling PC, Hieter P, Balasubramanian S, Aparicio S. CX-5461 is a DNA G-quadruplex stabilizer with selective lethality in BRCA1/2 deficient tumours. Nat Commun. 2017 Feb 17;8:14432.”,”type”:”publication”,”url”:”https://www.nature.com/articles/ncomms14432″,”cancer_type_terms_string”:”Breast”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C Canada–Canadian Cancer Society Breast Cancer Dream Team: Translational Development of Novel Drugs Targeting Tumor Vulnerabilities”,”research_project_url”:”http://www.standuptocancer.ca/en/dream_teams/view/cbcf_breast_cancer_dream_team”,”publisher_year”:”Nature Communications, 2017″,”pub_med_id”:”28211448″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=28211448″},{“title”:”Lan X, Jörg DJ, Cavalli FMG, Richards LM, Nguyen LV, Vanner RJ, Guilhamon P, Lee L, Kushida MM, Pellacani D, Park NI, Coutinho FJ, Whetstone H, Selvadurai HJ, Che C, Luu B, Carles A, Moksa M, Rastegar N, Head R, Dolma S, Prinos P, Cusimano MD, Das S, Bernstein M, Arrowsmith CH, Mungall AJ, Moore RA, Ma Y, Gallo M, Lupien M, Pugh TJ, Taylor MD, Hirst M, Eaves CJ, Simons BD, Dirks PB. Fate mapping of human glioblastoma reveals an invariant stem cell hierarchy. Nature. 2017 Sep 14;549(7671):227-232.”,”type”:”publication”,”url”:”https://www.nature.com/articles/nature23666″,”cancer_type_terms_string”:”Brain/Nervous System, Pediatric – Solid Tumor”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C Canada Cancer Stem Cell Dream Team: Targeting Brain Tumour Stem Cell Epigenetic and Molecular Networks”,”research_project_url”:”http://www.standuptocancer.ca/en/dream_teams/view/cancer_stem_cell_dream_team”,”publisher_year”:”Nature, 2017″,”pub_med_id”:”28854171″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=28854171″},{“title”:”Park NI, Guilhamon P, Desai K, McAdam RF, Langille E, O’Connor M, Lan X, Whetstone H, Coutinho FJ, Vanner RJ, Ling E, Prinos P, Lee L, Selvadurai H, Atwal G, Kushida M, Clarke I, Voisin V, Cusimano MD, Bernstein M, Das S, Bader G, Arrowsmith CH, Angers S, Huang X, Lupien M, Dirks PB. ASCL1 reorganizes chromatin to direct neuronal fate and suppress tumorigenicity of glioblastoma stem cells. Cell Stem Cell. 2017 Aug 3;21(2):209-224.e7.”,”type”:”publication”,”url”:”https://www.cell.com/cell-stem-cell/fulltext/S1934-5909(17)30326-0?_returnURL=https%3A%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2FS1934590917303260%3Fshowall%3Dtrue”,”cancer_type_terms_string”:”Brain/Nervous System, Pediatric – Solid Tumor”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C Canada Cancer Stem Cell Dream Team: Targeting Brain Tumour Stem Cell Epigenetic and Molecular Networks”,”research_project_url”:”http://www.standuptocancer.ca/en/dream_teams/view/cancer_stem_cell_dream_team”,”publisher_year”:”Cell Stem Cell, 2017″,”pub_med_id”:”28886368″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=28886368″},{“title”:”Deb D, Rajaram S, Larsen JE, Dospoy PD, Marullo R, Li LS, Avila K, Xue F, Cerchietti L, Minna JD, Altschuler SJ, Wu LF. Combination Therapy Targeting BCL6 and Phospho-STAT3 Defeats Intratumor Heterogeneity in a Subset of Non-Small Cell Lung Cancers. Cancer Res. 2017 Jun 1;77(11):3070-3081.”,”type”:”publication”,”url”:”https://cancerres.aacrjournals.org/content/77/11/3070″,”cancer_type_terms_string”:”Lung”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Convergence Team”,”research_project”:”SU2C–National Science Foundation Lung Cancer Convergence Research Team: Genetic, Epigenetic, and Immunological Underpinnings of Cancer Evolution Through Treatment”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/convergence-teams/cancer-evolution-convergence-team/”,”publisher_year”:”Cancer Research, 2017″,”pub_med_id”:”28377453″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=28377453″},{“title”:”Rajaram S, Heinrich LE, Gordan JD, Avva J, Bonness KM, Witkiewicz AK, Malter JS, Atreya CE, Warren RS, Wu LF, Altschuler SJ. Sampling strategies to capture single-cell heterogeneity. Nat Methods. 2017 Oct;14(10):967-970.”,”type”:”publication”,”url”:”https://www.nature.com/articles/nmeth.4427″,”cancer_type_terms_string”:”Non – site Specific”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Convergence Team”,”research_project”:”SU2C–National Science Foundation Lung Cancer Convergence Research Team: Genetic, Epigenetic, and Immunological Underpinnings of Cancer Evolution Through Treatment”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/convergence-teams/cancer-evolution-convergence-team/”,”publisher_year”:”Nature Methods, 2017″,”pub_med_id”:”28869755″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=28869755″},{“title”:”Coombs CC, Zehir A, Devlin SM, Kishtagari A, Syed A, Jonsson P, Hyman DM, Solit DB, Robson ME, Baselga J, Arcila ME, Ladanyi M, Tallman MS, Levine RL, Berger MF. Therapy-Related Clonal Hematopoiesis in Patients with Non-hematologic Cancers Is Common and Associated with Adverse Clinical Outcomes. Cell Stem Cell. 2017 Sep 7;21(3):374-382.e4.”,”type”:”publication”,”url”:”https://www.cell.com/cell-stem-cell/fulltext/S1934-5909(17)30289-8?_returnURL=https%3A%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2FS1934590917302898%3Fshowall%3Dtrue”,”cancer_type_terms_string”:”Non – site Specific”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Convergence Team”,”research_project”:”SU2C–National Science Foundation Lung Cancer Convergence Research Team: Genetic, Epigenetic, and Immunological Underpinnings of Cancer Evolution Through Treatment”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/convergence-teams/cancer-evolution-convergence-team/”,”publisher_year”:”Cell Stem Cell, 2017″,”pub_med_id”:”28803919″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=28803919″},{“title”:”Toska E, Osmanbeyoglu HU, Castel P, Chan C, Hendrickson RC, Elkabets M, Dickler MN, Scaltriti M, Leslie CS, Armstrong SA, Baselga J. PI3K pathway regulates ER-dependent transcription in breast cancer through the epigenetic regulator KMT2D. Science. 2017 Mar 24;355(6331):1324-1330.”,”type”:”publication”,”url”:”https://science.sciencemag.org/content/355/6331/1324″,”cancer_type_terms_string”:”Breast”,”treatment_type_terms_string”:”Epigenetic Therapy”,”grant_type_terms_string”:”Convergence Team”,”research_project”:”SU2C–National Science Foundation Drug Combinations Convergence Research Team: Rational Design of Anticancer Drug Combinations with Dynamic Multi-Dimensional Input”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/convergence-teams/rational-design-of-anticancer-drug-combinations-convergence-research-team/”,”publisher_year”:”Science, 2017″,”pub_med_id”:”28336670″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=28336670″},{“title”:”Zañudo JGT, Yang G, Albert R. Structure-based control of complex networks with nonlinear dynamics. Proc Natl Acad Sci U S A. 2017 Jul 11;114(28):7234-7239.”,”type”:”publication”,”url”:”https://www.pnas.org/content/114/28/7234″,”cancer_type_terms_string”:”Non – site Specific”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Convergence Team”,”research_project”:”SU2C–National Science Foundation Drug Combinations Convergence Research Team: Rational Design of Anticancer Drug Combinations with Dynamic Multi-Dimensional Input”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/convergence-teams/rational-design-of-anticancer-drug-combinations-convergence-research-team/”,”publisher_year”:”PNAS USA, 2017″,”pub_med_id”:”28655847″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=28655847″},{“title”:”Gómez Tejeda Zañudo J, Scaltriti M, Albert R. A network modeling approach to elucidate drug resistance mechanisms and predict combinatorial drug treatments in breast cancer. Cancer Converg. 2017;1(1):5.”,”type”:”publication”,”url”:”https://cancerconvergence.biomedcentral.com/articles/10.1186/s41236-017-0007-6″,”cancer_type_terms_string”:”Breast”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Convergence Team”,”research_project”:”SU2C–National Science Foundation Drug Combinations Convergence Research Team: Rational Design of Anticancer Drug Combinations with Dynamic Multi-Dimensional Input”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/convergence-teams/rational-design-of-anticancer-drug-combinations-convergence-research-team/”,”publisher_year”:”Cancer Convergence, 2017″,”pub_med_id”:”29623959″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=29623959″},{“title”:”Desai N, Sajed D, Arora KS, Solovyov A, Rajurkar M, Bledsoe JR, Sil S, Amri R, Tai E, MacKenzie OC, Mino-Kenudson M, Aryee MJ, Ferrone CR, Berger DL, Rivera MN, Greenbaum BD, Deshpande V, Ting DT. Diverse repetitive element RNA expression defines epigenetic and immunologic features of colon cancer. JCI Insight. 2017 Feb 9;2(3):e91078. doi: 10.1172/jci.insight.91078.”,”type”:”publication”,”url”:”https://insight.jci.org/articles/view/91078″,”cancer_type_terms_string”:”Colorectal”,”treatment_type_terms_string”:”Epigenetic Therapy, Immunotherapy”,”grant_type_terms_string”:”Convergence Team”,”research_project”:”SU2C–National Science Foundation–Lustgarten Foundation Pancreatic Cancer Convergence Research Team: Liberating T-Cell Mediated Immunity to Pancreatic Cancer”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/convergence-teams/mediated-immunity-in-pancreatic-cancer-convergence-team/”,”publisher_year”:”JCI Insight, 2017″,”pub_med_id”:”28194445″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=28194445″},{“title”:”Vabret N, Bhardwaj N, Greenbaum BD. Sequence-Specific Sensing of Nucleic Acids. Trends Immunol. 2017 Jan;38(1):53-65.”,”type”:”publication”,”url”:”https://www.cell.com/trends/immunology/fulltext/S1471-4906(16)30170-3?_returnURL=https%3A%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2FS1471490616301703%3Fshowall%3Dtrue”,”cancer_type_terms_string”:”Non – site Specific”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Convergence Team”,”research_project”:”SU2C–National Science Foundation–Lustgarten Foundation Pancreatic Cancer Convergence Research Team: Liberating T-Cell Mediated Immunity to Pancreatic Cancer”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/convergence-teams/mediated-immunity-in-pancreatic-cancer-convergence-team/”,”publisher_year”:”Trends in Immunology, 2017″,”pub_med_id”:”27856145″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=27856145″},{“title”:”Badal B, Solovyov A, Di Cecilia S, Chan JM, Chang LW, Iqbal R, Aydin IT, Rajan GS, Chen C, Abbate F, Arora KS, Tanne A, Gruber SB, Johnson TM, Fullen DR, Raskin L, Phelps R, Bhardwaj N, Bernstein E, Ting DT, Brunner G, Schadt EE, Greenbaum BD, Celebi JT. Transcriptional dissection of melanoma identifies a high-risk subtype underlying TP53 family genes and epigenome deregulation. JCI Insight. 2017 May 4;2(9). pii: 92102. doi: 10.1172/jci.insight.92102.”,”type”:”publication”,”url”:”https://insight.jci.org/articles/view/92102″,”cancer_type_terms_string”:”Melanoma”,”treatment_type_terms_string”:”Epigenetic Therapy, Other”,”grant_type_terms_string”:”Convergence Team”,”research_project”:”SU2C–National Science Foundation–Lustgarten Foundation Pancreatic Cancer Convergence Research Team: Liberating T-Cell Mediated Immunity to Pancreatic Cancer”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/convergence-teams/mediated-immunity-in-pancreatic-cancer-convergence-team/”,”publisher_year”:”JCI Insight, 2017″,”pub_med_id”:”28469092″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=28469092″},{“title”:”Balachandran VP, Łuksza M, Zhao JN, Makarov V, Moral JA, Remark R, Herbst B, Askan G, Bhanot U, Senbabaoglu Y, Wells DK, Cary CIO, Grbovic-Huezo O, Attiyeh M, Medina B, Zhang J, Loo J, Saglimbeni J, Abu-Akeel M, Zappasodi R, Riaz N, Smoragiewicz M, Kelley ZL, Basturk O; Australian Pancreatic Cancer Genome Initiative; Garvan Institute of Medical Research; Prince of Wales Hospital; Royal North Shore Hospital; University of Glasgow; St Vincent’s Hospital; QIMR Berghofer Medical Research Institute; University of Melbourne, Centre for Cancer Research; University of Queensland, Institute for Molecular Bioscience; Bankstown Hospital; Liverpool Hospital; Royal Prince Alfred Hospital, Chris O’Brien Lifehouse; Westmead Hospital; Fremantle Hospital; St John of God Healthcare; Royal Adelaide Hospital; Flinders Medical Centre; Envoi Pathology; Princess Alexandria Hospital; Austin Hospital; Johns Hopkins Medical Institutes; ARC-Net Centre for Applied Research on Cancer, Gönen M, Levine AJ, Allen PJ, Fearon DT, Merad M, Gnjatic S, Iacobuzio-Donahue CA, Wolchok JD, DeMatteo RP, Chan TA, Greenbaum BD, Merghoub T, Leach SD. Identification of unique neoantigen qualities in long-term survivors of pancreatic cancer. Nature. 2017 Nov 23;551(7681):512-516.”,”type”:”publication”,”url”:”https://www.nature.com/articles/nature24462″,”cancer_type_terms_string”:”Pancreatic”,”treatment_type_terms_string”:”Immunotherapy”,”grant_type_terms_string”:”Convergence Team”,”research_project”:”SU2C–National Science Foundation–Lustgarten Foundation Pancreatic Cancer Convergence Research Team: Liberating T-Cell Mediated Immunity to Pancreatic Cancer”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/convergence-teams/mediated-immunity-in-pancreatic-cancer-convergence-team/”,”publisher_year”:”Nature, 2017″,”pub_med_id”:”29132146″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=29132146″},{“title”:”Łuksza M, Riaz N, Makarov V, Balachandran VP, Hellmann MD, Solovyov A, Rizvi NA, Merghoub T, Levine AJ, Chan TA, Wolchok JD, Greenbaum BD. A neoantigen fitness model predicts tumour response to checkpoint blockade immunotherapy. Nature. 2017 Nov 23;551(7681):517-520.”,”type”:”publication”,”url”:”https://www.nature.com/articles/nature24473″,”cancer_type_terms_string”:”Lung, Melanoma”,”treatment_type_terms_string”:”Immunotherapy, Other”,”grant_type_terms_string”:”Convergence Team”,”research_project”:”SU2C–National Science Foundation–Lustgarten Foundation Pancreatic Cancer Convergence Research Team: Liberating T-Cell Mediated Immunity to Pancreatic Cancer”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/convergence-teams/mediated-immunity-in-pancreatic-cancer-convergence-team/”,”publisher_year”:”Nature, 2017″,”pub_med_id”:”29132144″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=29132144″},{“title”:”Sethna Z, Elhanati Y, Dudgeon CS, Callan CG Jr, Levine AJ, Mora T, Walczak AM. Insights into immune system development and function from mouse T-cell repertoires. Proc Natl Acad Sci U S A. 2017 Feb 28;114(9):2253-2258.”,”type”:”publication”,”url”:”https://www.pnas.org/content/114/9/2253″,”cancer_type_terms_string”:”Non – site Specific”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Convergence Team”,”research_project”:”SU2C–National Science Foundation–Lustgarten Foundation Pancreatic Cancer Convergence Research Team: Liberating T-Cell Mediated Immunity to Pancreatic Cancer”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/convergence-teams/mediated-immunity-in-pancreatic-cancer-convergence-team/”,”publisher_year”:”PNAS USA, 2017″,”pub_med_id”:”28196891″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=28196891″},{“title”:”B Greenbaum, Innate immune driven evolution via immunostimulatory RNA: Viruses that mimic hosts, tumors that mimic viruses, Current Opinions in Systems Biology, 2017 https://doi.org/10.1016/j.coisb.2016.12.008″,”type”:”publication”,”url”:”https://www.sciencedirect.com/science/article/pii/S2452310016300282″,”cancer_type_terms_string”:”Non – site Specific”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Convergence Team”,”research_project”:”Laura Ziskin Prize: Jonkers & Piwinick-Worms”,”research_project_url”:””,”publisher_year”:”Current Opinion in Systems Biology, 2017″,”pub_med_id”:”Science Direct: S2452310016300282″,”pub_med_url”:”https://www.sciencedirect.com/science/article/pii/S2452310016300282″},{“title”:”Wang L, Miyahira AK, Simons DL, Lu X, Chang AY, Wang C, Suni MA, Maino VC, Dirbas FM, Yim J, Waisman J, Lee PP. IL6 Signaling in Peripheral Blood T Cells Predicts Clinical Outcome in Breast Cancer. Cancer Res. 2017 Mar 1;77(5):1119-1126.”,”type”:”publication”,”url”:”https://cancerres.aacrjournals.org/content/77/5/1119″,”cancer_type_terms_string”:”Breast”,”treatment_type_terms_string”:”Immunotherapy”,”grant_type_terms_string”:”Convergence Team”,”research_project”:”SU2C–Breast Cancer Research Foundation Breast Cancer Convergence Research Team: Ecology of the Tumor Microenvironment in Breast Cancer”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/convergence-teams/breast-cancer-tumor-microenvironment/”,”publisher_year”:”Cancer Research, 2017″,”pub_med_id”:”27879265″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=27879265″},{“title”:”Chung B, Esmaeili AA, Gopalakrishna-Pillai S, Murad JP, Andersen ES, Kumar Reddy N, Srinivasan G, Armstrong B, Chu C, Kim Y, Tong T, Waisman J, Yim JH, Badie B, Lee PP. Human brain metastatic stroma attracts breast cancer cells via chemokines CXCL16 and CXCL12. NPJ Breast Cancer. 2017 Mar 2;3:6.”,”type”:”publication”,”url”:”https://www.nature.com/articles/s41523-017-0008-8″,”cancer_type_terms_string”:”Breast”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Convergence Team”,”research_project”:”SU2C–Breast Cancer Research Foundation Breast Cancer Convergence Research Team: Ecology of the Tumor Microenvironment in Breast Cancer”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/convergence-teams/breast-cancer-tumor-microenvironment/”,”publisher_year”:”NPJ Breast Cancer, 2017″,”pub_med_id”:”28649646″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=28649646″},{“title”:”Li X, Balagam R, He TF, Lee PP, Igoshin OA, Levine H. On the mechanism of long-range orientational order of fibroblasts. Proc Natl Acad Sci U S A. 2017 Aug 22;114(34):8974-8979.”,”type”:”publication”,”url”:”https://www.pnas.org/content/114/34/8974″,”cancer_type_terms_string”:”Non – site Specific”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Convergence Team”,”research_project”:”SU2C–Breast Cancer Research Foundation Breast Cancer Convergence Research Team: Ecology of the Tumor Microenvironment in Breast Cancer”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/convergence-teams/breast-cancer-tumor-microenvironment/”,”publisher_year”:”PNAS USA, 2017″,”pub_med_id”:”28784754″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=28784754″},{“title”:”Yu CC, Reddy BJN, Wortman JC, Gross SP. Axonal Transport: A Constrained System. J Neurol Neuromedicine. 2017;2(3):20-24.”,”type”:”publication”,”url”:”https://www.jneurology.com/articles/axonal-transport-a-constrained-system.html”,”cancer_type_terms_string”:”Non – site Specific”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Convergence Team”,”research_project”:”SU2C–Breast Cancer Research Foundation Breast Cancer Convergence Research Team: Ecology of the Tumor Microenvironment in Breast Cancer”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/convergence-teams/breast-cancer-tumor-microenvironment/”,”publisher_year”:”Journal of Neurology & Neuromedicine, 2017″,”pub_med_id”:”30467560″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=30467560″},{“title”:”Yu C, Mitchell JK. Non-randomness of the anatomical distribution of tumors. Cancer Converg. 2017;1(1):4.”,”type”:”publication”,”url”:”https://cancerconvergence.biomedcentral.com/articles/10.1186/s41236-017-0006-7″,”cancer_type_terms_string”:”Breast”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Convergence Team”,”research_project”:”SU2C–Breast Cancer Research Foundation Breast Cancer Convergence Research Team: Ecology of the Tumor Microenvironment in Breast Cancer”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/convergence-teams/breast-cancer-tumor-microenvironment/”,”publisher_year”:”Cancer Convergence, 2017″,”pub_med_id”:”29623957″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=29623957″},{“title”:”Milling L, Zhang Y, Irvine DJ. Delivering safer immunotherapies for cancer. Adv Drug Deliv Rev. 2017 May 15;114:79-101.”,”type”:”publication”,”url”:”https://www.sciencedirect.com/science/article/pii/S0169409X17300674?via%3Dihub”,”cancer_type_terms_string”:”Non – site Specific”,”treatment_type_terms_string”:”Immunotherapy”,”grant_type_terms_string”:”Convergence Team”,”research_project”:”SU2C–Breast Cancer Research Foundation Breast Cancer Convergence Research Team: Ecology of the Tumor Microenvironment in Breast Cancer”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/convergence-teams/breast-cancer-tumor-microenvironment/”,”publisher_year”:”Advanced Drug Delivery Reviews, 2017″,”pub_med_id”:”28545888″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=28545888″},{“title”:”Xuefei Li, Herbert Levine, Bistability of the cytokine-immune cell network in cancer microenvironment. 2017 Converg. Sci. Phys. Oncology 3, no. 2 (2017): 024002″,”type”:”publication”,”url”:”https://iopscience.iop.org/article/10.1088/2057-1739/aa6c07″,”cancer_type_terms_string”:”Non – site Specific”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Convergence Team”,”research_project”:”SU2C–Breast Cancer Research Foundation Breast Cancer Convergence Research Team: Ecology of the Tumor Microenvironment in Breast Cancer”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/convergence-teams/breast-cancer-tumor-microenvironment/”,”publisher_year”:”Convergent Science Physical Oncology, 2017″,”pub_med_id”:”IOP Science”,”pub_med_url”:”https://iopscience.iop.org/article/10.1088/2057-1739/aa6c07″},{“title”:”Kristina Grigaityte, Jason A. Carter, Stephen J. Goldfless, Eric W. Jeffery, Ronald J. Hause, Yu Jiang, David Koppstein, Adrian W. Brigs, George M. Church, Fancois Vigneault, Gurinder S. Atwal, Single-cell sequencing reveals aB chain pairing shapes the T cell repertoire, bioRxiv 213462: doi: https//doi.org/10.1101/213462.”,”type”:”publication”,”url”:”https://www.biorxiv.org/content/10.1101/213462v1″,”cancer_type_terms_string”:”Non – site Specific”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Convergence Team”,”research_project”:”SU2C–Breast Cancer Research Foundation Breast Cancer Convergence Research Team: Ecology of the Tumor Microenvironment in Breast Cancer”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/convergence-teams/breast-cancer-tumor-microenvironment/”,”publisher_year”:”bioRxiv, 2017″,”pub_med_id”:”bioRxiv”,”pub_med_url”:”https://www.biorxiv.org/content/10.1101/213462v1″},{“title”:”Feng Y, Brazin KN, Kobayashi E, Mallis RJ, Reinherz EL, Lang MJ. Mechanosensing drives acuity of αb T-cell recognition. Proc Natl Acad Sci U S A. 2017 Sep 26;114(39):E8204-E8213.”,”type”:”publication”,”url”:”https://www.pnas.org/content/114/39/E8204″,”cancer_type_terms_string”:”Non – site Specific”,”treatment_type_terms_string”:”Immunotherapy, Other”,”grant_type_terms_string”:”Research Team”,”research_project”:”SU2C–Farrah Fawcett Foundation Human Papillomavirus (HPV) Research Team: Therapeutic CD8 Vaccines Against Conserved E7 HPV Epitopes Identified by MS”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/research-teams/hpv-research-team/”,”publisher_year”:”PNAS, 2017″,”pub_med_id”:”28811364″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=28811364″},{“title”:”Olsen LR, Tongchusak S, Lin H, Reinherz EL, Brusic V, Zhang GL. TANTIGEN: A comprehensive database of tumor antigens. Cancer Immunol Immunother. 2017 Jun;66(6):731-735.”,”type”:”publication”,”url”:”https://link.springer.com/article/10.1007%2Fs00262-017-1978-y”,”cancer_type_terms_string”:”Non – site Specific”,”treatment_type_terms_string”:”Immunotherapy, Other”,”grant_type_terms_string”:”Research Team”,”research_project”:”SU2C–Farrah Fawcett Foundation Human Papillomavirus (HPV) Research Team: Therapeutic CD8 Vaccines Against Conserved E7 HPV Epitopes Identified by MS”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/research-teams/hpv-research-team/”,”publisher_year”:”Cancer Immunology and Immunotherapy, 2017″,”pub_med_id”:”28280852″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=28280852″},{“title”:”Topper MJ, Vaz M, Chiappinelli KB, DeStefano Shields CE, Niknafs N, Yen RC, Wenzel A, Hicks J, Ballew M, Stone M, Tran PT, Zahnow CA, Hellmann MD, Anagnostou V, Strissel PL, Strick R, Velculescu VE, Baylin SB. Epigenetic Therapy Ties MYC Depletion to Reversing Immune Evasion and Treating Lung Cancer. Cell. 2017 Nov 30;171(6):1284-1300.e21.”,”type”:”publication”,”url”:”https://www.cell.com/cell/fulltext/S0092-8674(17)31244-8?_returnURL=https%3A%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2FS0092867417312448%3Fshowall%3Dtrue”,”cancer_type_terms_string”:”Lung”,”treatment_type_terms_string”:”Epigenetic Therapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”Van Andel Institute–SU2C Cancer Epigenetics Dream Team: The Epigenetics Dream Team II”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/epigenetics-dream-team-ii/”,”publisher_year”:”Cell, 2017″,”pub_med_id”:”29195073″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=29195073″},{“title”:”Lee G, Zheng Y, Cho S, Jang C, England C, Dempsey JM, Yu Y, Liu X, He L, Cavaliere PM, Chavez A, Zhang E, Isik M, Couvillon A, Dephoure NE, Blackwell TK, Yu JJ, Rabinowitz JD, Cantley LC, Blenis J. Post-transcriptional Regulation of De Novo Lipogenesis by mTORC1-S6K1-SRPK2 Signaling. Cell. 2017 Dec 14;171(7):1545-1558.e18.”,”type”:”publication”,”url”:”https://www.cell.com/cell/fulltext/S0092-8674(17)31263-1?_returnURL=https%3A%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2FS0092867417312631%3Fshowall%3Dtrue”,”cancer_type_terms_string”:”Non – site Specific”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–Cancer Research UK–Lustgarten Foundation Pancreatic Cancer Dream Team: Reprogramming of Transcriptional Circuitry to Control Pancreatic Cancer”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/reprogramming-of-pancreatic-cancer-dream-team/”,”publisher_year”:”Cell, 2017″,”pub_med_id”:”29153836″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=29153836″},{“title”:”Johnson BA 3rd, Yarchoan M, Lee V, Laheru DA, Jaffee EM. Strategies for Increasing Pancreatic Tumor Immunogenicity. Clin Cancer Res. 2017 Apr 1;23(7):1656-1669.”,”type”:”publication”,”url”:”https://clincancerres.aacrjournals.org/content/23/7/1656″,”cancer_type_terms_string”:”Pancreatic”,”treatment_type_terms_string”:”Immunotherapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–Lustgarten Foundation Pancreatic Cancer Dream Team: Transforming Pancreatic Cancer to Treatable Disease”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/transforming-pancreatic-cancer-dream-team/”,”publisher_year”:”ClinicaL Cancer Research, 2017″,”pub_med_id”:”28373364″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=28373364″},{“title”:”Łuksza M, Riaz N, Makarov V, Balachandran VP, Hellmann MD, Solovyov A, Rizvi NA, Merghoub T, Levine AJ, Chan TA, Wolchok JD, Greenbaum BD. A neoantigen fitness model predicts tumour response to checkpoint blockade immunotherapy. Nature. 2017 Nov 23;551(7681):517-520.”,”type”:”publication”,”url”:”https://www.nature.com/articles/nature24473″,”cancer_type_terms_string”:”Non – site Specific”,”treatment_type_terms_string”:”Immunotherapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–American Cancer Society Lung Cancer Dream Team: Targeting KRAS Mutant Lung Cancers”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/targeting-kras-mutant-lung-cancers-dream-team/”,”publisher_year”:”Nature, 2017″,”pub_med_id”:”29132144″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=29132144″},{“title”:”Gentile DR, Rathinaswamy MK, Jenkins ML, Moss SM, Siempelkamp BD, Renslo AR, Burke JE, Shokat KM. Ras Binder Induces a Modified Switch-II Pocket in GTP and GDP States. Cell Chem Biol. 2017 Dec 21;24(12):1455-1466.e14.”,”type”:”publication”,”url”:”https://www.cell.com/cell-chemical-biology/fulltext/S2451-9456(17)30323-9?_returnURL=https%3A%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2FS2451945617303239%3Fshowall%3Dtrue”,”cancer_type_terms_string”:”Non – site Specific”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–American Cancer Society Lung Cancer Dream Team: Targeting KRAS Mutant Lung Cancers”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/targeting-kras-mutant-lung-cancers-dream-team/”,”publisher_year”:”Cell Chemical Biology, 2017″,”pub_med_id”:”29033317″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=29033317″},{“title”:”Vabret N, Bhardwaj N, Greenbaum BD. Sequence-Specific Sensing of Nucleic Acids. Trends Immunol. 2017 Jan;38(1):53-65.”,”type”:”publication”,”url”:”https://www.cell.com/trends/immunology/fulltext/S1471-4906(16)30170-3?_returnURL=https%3A%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2FS1471490616301703%3Fshowall%3Dtrue”,”cancer_type_terms_string”:”Non – site Specific”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Convergence Team”,”research_project”:”SU2C–National Science Foundation–Lustgarten Foundation Pancreatic Cancer Convergence Research Team: Liberating T-Cell Mediated Immunity to Pancreatic Cancer”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/convergence-teams/mediated-immunity-in-pancreatic-cancer-convergence-team/”,”publisher_year”:”Trends in Immunology, 2017″,”pub_med_id”:”27856145″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=27856145″},{“title”:”Laurent Jacob, Johann Gagnon-Bartsch, and Terence P. Speed. Correcting gene expression data when neither the unwanted variation nor the factor of interest are observed Biostatistics. 2016 Jan;17(1):16-28″,”type”:”publication”,”url”:”https://academic.oup.com/biostatistics/article/17/1/16/1744198″,”cancer_type_terms_string”:”Non – site Specific”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C Breast Cancer Dream Team: An Integrated Approach to Targeting Breast Cancer Molecular Subtypes and Their Resistance Phenotypes”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/breast-cancer-resistant-phenotypes-dream-team/”,”publisher_year”:”Biostatistics, 2016″,”pub_med_id”:”26286812″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=26286812″},{“title”:”Sundaresan TK, Sequist LV, Heymach JV, Riely GJ, Janne PA, Koch WH, Sullivan JP, Fox DB, Maher R, Muzikansky A, Webb A, Tran HT, Giri U, Fleisher M, Yu H, Wei W, Johnson BE, Barber TA, Walsh JR, Engelman JA, Stott SL, Kapur R, Maheswaran S, Toner M, Haber DA. Detection of T790M, the Acquired Resistance EGFR Mutation, by Tumor Biopsy versus Noninvasive Blood-Based Analyses. Clin Cancer Res. 2016 Mar 1;22(5):1103-10″,”type”:”publication”,”url”:”https://clincancerres.aacrjournals.org/content/22/5/1103″,”cancer_type_terms_string”:”Lung”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C Circulating Tumor Cell Dream Team: Bioengineering and Clinical Applications of Circulating Tumor Cell Chip”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/circulating-tumor-cells-dream-team/”,”publisher_year”:”Clinical Cancer Research, 2016″,”pub_med_id”:”26446944″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=26446944″},{“title”:”Berns K, Sonnenblick A, Gennissen A, Brohée S, Hijmans EM, Evers B, Fumagalli D, Desmedt C, Loibl S, Denkert C, Neven P, Guo W, Zhang F, Knijnenburg TA, Bosse T, van der Heijden MS, Hindriksen S, Nijkamp W, Wessels LF, Joensuu H, Mills GB, Beijersbergen RL, Sotiriou C, Bernards R. Loss of ARID1A activates ANXA1, which serves as a predictive biomarker for trastuzumab resistance. Clin Cancer Res. 2016 Nov 1;22(21):5238-5248.”,”type”:”publication”,”url”:”https://clincancerres.aacrjournals.org/content/22/21/5238″,”cancer_type_terms_string”:”Breast”,”treatment_type_terms_string”:”Chemotherapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C PI3K Dream Team: Targeting the PI3K Pathway in Women’s Cancers”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/womens-cancers-pi3k-dream-team/”,”publisher_year”:”Clinical Cancer Research, 2016″,”pub_med_id”:”27172896″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=27172896″},{“title”:”Byron SA, Van Keuren-Jensen KR, Engelthaler DM, Carpten JD, Craig DW. Translating RNA sequencing into clinical diagnostics: opportunities and challenges. Nat Rev Genet. 2016 May;17(5):257-71.”,”type”:”publication”,”url”:”https://www.nature.com/articles/nrg.2016.10″,”cancer_type_terms_string”:”Non – site Specific”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–Melanoma Research Alliance Melanoma Dream Team: Personalized Medicine for Patients with BRAF Wild-Type (BRAFwt) Cancer”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/melanoma-braf-wildtype-dream-team/”,”publisher_year”:”Nature Reviews Genetics, 2016″,”pub_med_id”:”26996076″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=26996076″},{“title”:”Craig DW, Nasser S, Corbett R, Chan SK, Murray L, Legendre C, Tembe W, Adkins J, Kim N, Wong S, Baker A, Enriquez D, Pond S, Pleasance E, Mungall AJ, Moore RA, McDaniel T, Ma Y, Jones SJ, Marra MA, Carpten JD, Liang WS. A somatic reference standard for cancer genome sequencing. Sci Rep. 2016 Apr 20;6:24607.”,”type”:”publication”,”url”:”https://www.nature.com/articles/srep24607″,”cancer_type_terms_string”:”Melanoma”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–Melanoma Research Alliance Melanoma Dream Team: Personalized Medicine for Patients with BRAF Wild-Type (BRAFwt) Cancer”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/melanoma-braf-wildtype-dream-team/”,”publisher_year”:”Scientific Reports, 2016″,”pub_med_id”:”27094764″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=27094764″},{“title”:”Sima C, Hua J, Cypert M, Miller T, Wilson-Robles HM, Trent JM, Dougherty ER, Bittner ML. Assessing Combinational Drug Efficacy in Cancer Cells by Using Image-based Dynamic Response Analysis. Cancer Inform. 2016 Mar 9;14(Suppl 5):33-43.”,”type”:”publication”,”url”:”https://journals.sagepub.com/doi/10.4137/CIN.S30799″,”cancer_type_terms_string”:”Non – site Specific”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–Melanoma Research Alliance Melanoma Dream Team: Personalized Medicine for Patients with BRAF Wild-Type (BRAFwt) Cancer”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/melanoma-braf-wildtype-dream-team/”,”publisher_year”:”Cancer Informatics, 2016″,”pub_med_id”:”26997864″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=26997864″},{“title”:”Chapuis AG, Roberts IM, Thompson JA, Margolin KA, Bhatia S, Lee SM, Sloan HL, Lai IP, Farrar EA, Wagener F, Shibuya KC, Cao J, Wolchok JD, Greenberg PD, Yee C. T-Cell Therapy Using Interleukin-21–Primed Cytotoxic T-Cell Lymphocytes Combined With Cytotoxic T-Cell Lymphocyte Antigen-4 Blockade Results in Long-Term Cell Persistence and Durable Tumor Regression. J Clin Oncol. 2016 Nov 1;34(31):3787-3795.”,”type”:”publication”,”url”:”https://ascopubs.org/doi/10.1200/JCO.2015.65.5142″,”cancer_type_terms_string”:”Melanoma”,”treatment_type_terms_string”:”Immunotherapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–Cancer Research Institute Cancer Immunology Dream Team: Immunologic Checkpoint Blockade and Adoptive Cell Transfer in Cancer Therapy”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/immunologic-checkpoint-blockade-dream-team/”,”publisher_year”:”Journal of Clinical Oncology, 2016″,”pub_med_id”:”27269940″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=27269940″},{“title”:”Shi LZ, Fu T, Guan B, Chen J, Blando JM, Allison JP, Xiong L, Subudhi SK, Gao J, Sharma P. Interdependent IL-7 and IFN-y Signaling in T-Cell controls tumour eradication by combined α-CTLA-4+α-PD-1 therapy. Nat Commun. 2016 Aug 8;7:12335.”,”type”:”publication”,”url”:”https://www.nature.com/articles/ncomms12335″,”cancer_type_terms_string”:”Non – site Specific”,”treatment_type_terms_string”:”Immunotherapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–Cancer Research Institute Cancer Immunology Dream Team: Immunologic Checkpoint Blockade and Adoptive Cell Transfer in Cancer Therapy”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/immunologic-checkpoint-blockade-dream-team/”,”publisher_year”:”Nature Communications, 2016″,”pub_med_id”:”27498556″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=27498556″},{“title”:”Bilen M, Subudhi S, Gao JJ, Tannir N, Tu SM, Sharma P. Acute rhabdomyolysis with severe polymyositis following ipilimumab-nivolumab treatment in a cancer patient with elevated anti- striated muscle antibody. J Immunother Cancer. 2016 Jun 21;4:36.”,”type”:”publication”,”url”:”https://jitc.biomedcentral.com/articles/10.1186/s40425-016-0139-8″,”cancer_type_terms_string”:”Bladder”,”treatment_type_terms_string”:”Immunotherapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–Cancer Research Institute Cancer Immunology Dream Team: Immunologic Checkpoint Blockade and Adoptive Cell Transfer in Cancer Therapy”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/immunologic-checkpoint-blockade-dream-team/”,”publisher_year”:”Journal for Immunotherapy of Cancer, 2016″,”pub_med_id”:”27330809″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=27330809″},{“title”:”Mayor M, Zeltsman M, McGee E, Adusumilli PS. A regional approach for CAR T-cell therapy for mesothelioma: from mouse models to clinical trial. Immunotherapy. 2016 May;8(5):491-4.”,”type”:”publication”,”url”:”https://www.futuremedicine.com/doi/10.2217/imt-2016-0008″,”cancer_type_terms_string”:”Mesothelioma”,”treatment_type_terms_string”:”Immunotherapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–Cancer Research Institute Cancer Immunology Dream Team: Immunologic Checkpoint Blockade and Adoptive Cell Transfer in Cancer Therapy”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/immunologic-checkpoint-blockade-dream-team/”,”publisher_year”:”Immunotherapy, 2016″,”pub_med_id”:”27140404″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=27140404″},{“title”:”Chapuis AG, Lee SM, Thompson JA, Roberts IM, Margolin KA, Bhatia S, Sloan HL, Lai I, Wagener F, Shibuya K, Cao J, Wolchok JD, Greenberg PD, Yee C. Combined IL-21–primed polyclonal CTL plus CTLA4 blockade controls refractory metastatic melanoma in a patient. J Exp Med. 2016 Jun 27;213(7):1133-9.”,”type”:”publication”,”url”:”http://jem.rupress.org/content/213/7/1133″,”cancer_type_terms_string”:”Melanoma”,”treatment_type_terms_string”:”Immunotherapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–Cancer Research Institute Cancer Immunology Dream Team: Immunologic Checkpoint Blockade and Adoptive Cell Transfer in Cancer Therapy”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/immunologic-checkpoint-blockade-dream-team/”,”publisher_year”:”Journal of Experimental Medicine, 2016″,”pub_med_id”:”27242164″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=27242164″},{“title”:”Patel MA, Kim JE, Theodros D, Tam A, Velarde E, Kochel CM, Francica B, Nirschl TR, Ghasemzadeh A, Mathios D, Harris-Bookman S, Jackson CC, Jackson C4 Ye X, Tran PT, Tyler B, Coric V, Selby M, Brem H, Drake CG, Pardoll DM, Lim M. Agonist anti-GITR monoclonal antibody and stereotactic radiation induce immune-mediated survival advantage in murine intracranial glioma. J Immunother Cancer. 2016 May 17;4:28.”,”type”:”publication”,”url”:”https://jitc.biomedcentral.com/articles/10.1186/s40425-016-0132-2″,”cancer_type_terms_string”:”Brain/Nervous System”,”treatment_type_terms_string”:”Immunotherapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–Cancer Research Institute Cancer Immunology Dream Team: Immunologic Checkpoint Blockade and Adoptive Cell Transfer in Cancer Therapy”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/immunologic-checkpoint-blockade-dream-team/”,”publisher_year”:”Journal for Immunotherapy of Cancer, 2016″,”pub_med_id”:”27190629″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=27190629″},{“title”:”Topalian SL, Taube JM, Anders RA, Pardoll DM. Mechanism-driven biomarkers to guide immune checkpoint blockade in cancer therapy. Nat Rev Cancer. 2016 May;16(5):275-87.”,”type”:”publication”,”url”:”https://www.nature.com/articles/nrc.2016.36″,”cancer_type_terms_string”:”Kidney, Lung, Melanoma”,”treatment_type_terms_string”:”Immunotherapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–Cancer Research Institute Cancer Immunology Dream Team: Immunologic Checkpoint Blockade and Adoptive Cell Transfer in Cancer Therapy”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/immunologic-checkpoint-blockade-dream-team/”,”publisher_year”:”Nature Reviews Cancer, 2016″,”pub_med_id”:”27079802″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=27079802″},{“title”:”Blank CU, Haanen JB, Ribas A, Schumacher TN. CANCER IMMUNOLOGY. The “cancer immunogram”. Science. 2016 May 6;352(6286):658-60.”,”type”:”publication”,”url”:”https://science.sciencemag.org/content/352/6286/658″,”cancer_type_terms_string”:”Non – site Specific”,”treatment_type_terms_string”:”Immunotherapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–Cancer Research Institute Cancer Immunology Dream Team: Immunologic Checkpoint Blockade and Adoptive Cell Transfer in Cancer Therapy”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/immunologic-checkpoint-blockade-dream-team/”,”publisher_year”:”Science, 2016″,”pub_med_id”:”27151852″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=27151852″},{“title”:”Mayor M, Yang N, Sterman D, Jones DR, Adusumilli PS*. Immunotherapy for non-small cell lung cancer: current concepts and clinical trials. Eur J Cardiothorac Surg. 2016 May;49(5):1324-33.”,”type”:”publication”,”url”:”https://academic.oup.com/ejcts/article/49/5/1324/2570750″,”cancer_type_terms_string”:”Lung”,”treatment_type_terms_string”:”Immunotherapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–Cancer Research Institute Cancer Immunology Dream Team: Immunologic Checkpoint Blockade and Adoptive Cell Transfer in Cancer Therapy”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/immunologic-checkpoint-blockade-dream-team/”,”publisher_year”:”European Journal of Cardiothorasic Surgery, 2016″,”pub_med_id”:”26516195″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=26516195″},{“title”:”Willy Hugo, Jesse M. Zaretsky, Lu Sun, Chunying Song, Blanca Homet-Moreno, Siwen Hu-Lieskovan, Beata Berent-Maoz, Jia Pang, Bartosz Chmielowski, Grace Cherry, Elizabeth Seja, Shirley Lomeli, Xiangju Kong, Mark C. Kelley,Jeffrey A. Sosman, Douglas B. Johnson, Antoni Ribas, Roger S. Lo. Genomic and Transcriptomic Features of Resistance and Sensitivity to Anti-PD-1 Therapy in Metastatic Melanoma.Cell. 2016 Mar 24;165(1):35-44.”,”type”:”publication”,”url”:”https://www.cell.com/cell/fulltext/S0092-8674(16)30215-X?_returnURL=https%3A%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2FS009286741630215X%3Fshowall%3Dtrue”,”cancer_type_terms_string”:”Melanoma”,”treatment_type_terms_string”:”Immunotherapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–Cancer Research Institute Cancer Immunology Dream Team: Immunologic Checkpoint Blockade and Adoptive Cell Transfer in Cancer Therapy”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/immunologic-checkpoint-blockade-dream-team/”,”publisher_year”:”Cell, 2016″,”pub_med_id”:”26997480″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=26997480″},{“title”:”Heath, JR; Ribas, A; Mischel, PM. Single Cell analysis tools for drug discovery and development. Nat Rev Drug Discov. 2016 Mar;15(3):204-16.”,”type”:”publication”,”url”:”https://www.nature.com/articles/nrd.2015.16″,”cancer_type_terms_string”:”Non – site Specific”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–Cancer Research Institute Cancer Immunology Dream Team: Immunologic Checkpoint Blockade and Adoptive Cell Transfer in Cancer Therapy”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/immunologic-checkpoint-blockade-dream-team/”,”publisher_year”:”Nature Reviews Drug Discovery, 2016″,”pub_med_id”:”26669673″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=26669673″},{“title”:”Lipson E, Moore J, Jang S, Patel M, Zachary A, Pardoll D, Taube J, Drake C. Tumor regression and allograft rejection after anti-PD-1 in a patient on chronic immunosuppression. N Engl J Med. 2016 Mar 3;374(9):896-8.”,”type”:”publication”,”url”:”https://www.nejm.org/doi/10.1056/NEJMc1509268″,”cancer_type_terms_string”:”Non – site Specific”,”treatment_type_terms_string”:”Immunotherapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–Cancer Research Institute Cancer Immunology Dream Team: Immunologic Checkpoint Blockade and Adoptive Cell Transfer in Cancer Therapy”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/immunologic-checkpoint-blockade-dream-team/”,”publisher_year”:”New England Journal of Medicine, 2016″,”pub_med_id”:”26962927″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=26962927″},{“title”:”Ribas A, Shin DS, Zaretsky J, Frederiksen J, Cornish A, Avramis E, Seja E, Kivork C, Siebert J, Kaplan-Lefko P, Wang X, Chmielowski B, Glaspy JA, Tumeh PC, Chodon T, Pe’er D, Comin-Anduix B. PD-1 blockade expands intratumoral T memory cells. Cancer Immunol Res. 2016 Mar;4(3):194-203.”,”type”:”publication”,”url”:”https://cancerimmunolres.aacrjournals.org/content/4/3/194″,”cancer_type_terms_string”:”Non – site Specific”,”treatment_type_terms_string”:”Immunotherapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–Cancer Research Institute Cancer Immunology Dream Team: Immunologic Checkpoint Blockade and Adoptive Cell Transfer in Cancer Therapy”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/immunologic-checkpoint-blockade-dream-team/”,”publisher_year”:”Cancer Immunology Research, 2016″,”pub_med_id”:”26787823″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=26787823″},{“title”:”Takahashi Y, Eguchi T, Bains S, Adusumilli PS. Significance of IASLC/ATS/ERS classification for early-stage lung adenocarcinoma patients in predicting benefit from adjuvant chemotherapy. Ann Transl Med. 2016 Feb;4(4):66.”,”type”:”publication”,”url”:”http://atm.amegroups.com/article/view/8291/9958″,”cancer_type_terms_string”:”Lung”,”treatment_type_terms_string”:”Chemotherapy, Immunotherapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–Cancer Research Institute Cancer Immunology Dream Team: Immunologic Checkpoint Blockade and Adoptive Cell Transfer in Cancer Therapy”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/immunologic-checkpoint-blockade-dream-team/”,”publisher_year”:”Annals of Translational Medicine, 2016″,”pub_med_id”:”27004213″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=27004213″},{“title”:”Morello A, Sadelain M, Adusumilli PS*. Mesothelin-Targeted CARs: Driving T cells to Solid Tumors. Cancer Discov. 2016 Feb;6(2):133-46.”,”type”:”publication”,”url”:”https://cancerdiscovery.aacrjournals.org/content/6/2/133″,”cancer_type_terms_string”:”Non – site Specific”,”treatment_type_terms_string”:”Immunotherapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–Cancer Research Institute Cancer Immunology Dream Team: Immunologic Checkpoint Blockade and Adoptive Cell Transfer in Cancer Therapy”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/immunologic-checkpoint-blockade-dream-team/”,”publisher_year”:”Cancer Discovery, 2016″,”pub_med_id”:”26503962″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=26503962″},{“title”:”Lorente D, Omlin A, Zafeiriou Z, Nava-Rodrigues D, Pérez-López R, Pezaro C, Mehra N, Sheridan E, Figueiredo I, Riisnaes R, Miranda S, Crespo M, Flohr P, Mateo J, Altavilla A, Ferraldeschi R, Bianchini D, Attard G, Tunariu N, de Bono J. Castration-Resistant Prostate Cancer Tissue Acquisition From Bone Metastases for Molecular Analyses. Clin Genitourin Cancer. 2016 Dec;14(6):485-493. Clinical Genitourinary Cancer. 2016, in press”,”type”:”publication”,”url”:”https://www.clinical-genitourinary-cancer.com/article/S1558-7673(16)30106-9/fulltext”,”cancer_type_terms_string”:”Prostate”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C−Prostate Cancer Foundation Prostate Dream Team: Precision Therapy of Advanced Prostate Cancer”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/prostate-cancer-precision-therapy-dream-team/”,”publisher_year”:”Clinical Genitourinary Cancer, 2016″,”pub_med_id”:”27246360″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=27246360″},{“title”:”Pritchard CC, Mateo J, Walsh M, De Sarkar N, Abida W, Beltran H, Gulati R, Carreira S, Eeles R, Elemento O, Rubin MA, Robinson S, Lonigro R, Chinnaiyan A, Vinson J, Filipenko J, Garofalo A, Garraway L, Taplin ME, AlDubayan S, Han GC, Beightol M, Morrissey C, Noteboom J, Nghiem B, Cheng HH, Montgomery B, Walsh T, Casadei S, Joseph V, Scher H, Sawyers C, Schultz N, Kantoff P, Solit D, Robson M, Van Allen E, Offit K, deBono J, Nelson PS. Inherited DNA Repair Gene Mutations in Men with Metastatic Prostate Cancer. N Engl J Med. 2016 Aug 4;375(5):443-53.”,”type”:”publication”,”url”:”https://www.nejm.org/doi/10.1056/NEJMoa1603144″,”cancer_type_terms_string”:”Prostate”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C−Prostate Cancer Foundation Prostate Dream Team: Precision Therapy of Advanced Prostate Cancer”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/prostate-cancer-precision-therapy-dream-team/”,”publisher_year”:”New England Journal of Medicine, 2016″,”pub_med_id”:”27433846″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=27433846″},{“title”:”Van Allen EM, Robinson D, Morrissey C, Pritchard C, Imamovic A, Carter S, Rosenberg M, McKenna A, Wu Y, Cao X, Chinnaiyan A, Garraway L, Nelson P. A comparative assessment of clinical whole exome and transcriptome profiling across sequencing centers: Implications for precision cancer medicine. Oncotarget. 2016 Aug 16;7(33):52888-52899.”,”type”:”publication”,”url”:”http://www.oncotarget.com/index.php?journal=oncotarget&page=article&op=view&path[]=9184&path[]=28151″,”cancer_type_terms_string”:”Non – site Specific”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C−Prostate Cancer Foundation Prostate Dream Team: Precision Therapy of Advanced Prostate Cancer”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/prostate-cancer-precision-therapy-dream-team/”,”publisher_year”:”Oncotarget, 2016″,”pub_med_id”:”27167109″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=27167109″},{“title”:”Coleman DJ, Van Hook K, King CJ, Schwartzman J, Lisac R, Urrutia J, Sehrawat A, Woodward J, Wang NJ, Gulati R, Thomas GV, Beer TM, Gleave M, Korkola JE, Gao L, Heiser LM, Alumkal JJ. Cellular androgen content influences enzalutamide agonism of F877L mutant androgen receptor. Oncotarget. 2016 Jun 28;7(26):40690-40703.”,”type”:”publication”,”url”:”http://www.oncotarget.com/index.php?journal=oncotarget&page=article&op=view&path[]=9816&path[]=30809″,”cancer_type_terms_string”:”Prostate”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–Prostate Cancer Foundation Prostate Dream Team: Targeting Adaptive Pathways in Metastatic Castration-Resistant Prostate Cancer”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/metastatic-treatment-resistant-prostate-cancer-dream-team/”,”publisher_year”:”Oncotarget, 2016″,”pub_med_id”:”27276681″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=27276681″},{“title”:”Wang J, Zou JX, Xue X, Cai D, Zhang Y, Duan Z, Xiang Q, Yang JC, Louie MC, Borowsky AD, Gao AC, Evans CP, Lam KS, Xu J, Kung HJ, Evans RM, Xu Y, Chen HW. ROR-γ drives androgen receptor expression and represents a therapeutic target in castration-resistant prostate cancer. Nat Med. 2016 May;22(5):488-96.”,”type”:”publication”,”url”:”https://www.nature.com/articles/nm.4070″,”cancer_type_terms_string”:”Prostate”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–Prostate Cancer Foundation Prostate Dream Team: Targeting Adaptive Pathways in Metastatic Castration-Resistant Prostate Cancer”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/metastatic-treatment-resistant-prostate-cancer-dream-team/”,”publisher_year”:”Nature Medicine, 2016″,”pub_med_id”:”27019329″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=27019329″},{“title”:”Kumar A, Colmena I, Morrissey C, Zhang X, True LD, Gulati R, Etzioni R, Bolouri H, Montgomery B, White T, Lucas JM, Brown LG, Dumpit RF, DeSarkar N, Higano C, Yu EY, Colman R, Schultz N, Fang M, Lange PH, Shendure J, Vessella RL, Nelson PS. Substantial interindividual and limited intraindividual genomic diversity among tumors from men with metastatic prostate cancer. Nat Med. 2016 Apr;22(4):369-78.”,”type”:”publication”,”url”:”https://www.nature.com/articles/nm.4053″,”cancer_type_terms_string”:”Prostate”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C−Prostate Cancer Foundation Prostate Dream Team: Precision Therapy of Advanced Prostate Cancer”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/prostate-cancer-precision-therapy-dream-team/”,”publisher_year”:”Nature Medicine, 2016″,”pub_med_id”:”26928463″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=26928463″},{“title”:”Lee JK, Phillips JW, Smith BA, Park JW, Stoyanova T, McCaffrey EF, Baertsch R, Sokolov A, Meyerowitz JG, Mathis C, Cheng D, Stuart JM, Shokat KM, Gustafson WC, Huang J, Witte ON. N-Myc drives neuroendocrine prostate cancer initiated from human prostate epithelial cells. Cancer Cell. 2016 Apr 11;29(4):536-547.”,”type”:”publication”,”url”:”https://www.cell.com/cancer-cell/fulltext/S1535-6108(16)30054-X”,”cancer_type_terms_string”:”Prostate”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–Prostate Cancer Foundation Prostate Dream Team: Targeting Adaptive Pathways in Metastatic Castration-Resistant Prostate Cancer”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/metastatic-treatment-resistant-prostate-cancer-dream-team/”,”publisher_year”:”Cancer Cell, 2016″,”pub_med_id”:”27050099″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=27050099″},{“title”:”Park JW, Lee JK, Phillips JW, Huang P, Cheng D, Huang J, Witte ON. Prostate epithelial cell of origin determines cancer differentiation state in an organoid transformation assay. Proc Natl Acad Sci U S A. 2016 Apr 19;113(16):4482-7.”,”type”:”publication”,”url”:”https://www.pnas.org/content/113/16/4482″,”cancer_type_terms_string”:”Prostate”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–Prostate Cancer Foundation Prostate Dream Team: Targeting Adaptive Pathways in Metastatic Castration-Resistant Prostate Cancer”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/metastatic-treatment-resistant-prostate-cancer-dream-team/”,”publisher_year”:”PNAS, 2016″,”pub_med_id”:”27044116″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=27044116″},{“title”:”Beltran H, Prandi D, Mosquera JM, Benelli M, Puca L, Cyrta J, Marotz C, Giannopoulou E, Chadravarthi BVSK, Varambally S, Tomlins SA, Nanus DM, Tagawa ST, Van Allen EM, Elemento O, Sboner A, Garraway LA, Rubin MA, Demichelis F. Divergent clonal evolution of castration-resistant neuroendocrine prostate cancer. Nat Med. 2016 Mar;22(3):298-305.”,”type”:”publication”,”url”:”https://www.nature.com/articles/nm.4045″,”cancer_type_terms_string”:”Prostate”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C−Prostate Cancer Foundation Prostate Dream Team: Precision Therapy of Advanced Prostate Cancer”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/prostate-cancer-precision-therapy-dream-team/”,”publisher_year”:”Nature Medicine, 2016″,”pub_med_id”:”26855148″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=26855148″},{“title”:”Faltermeier CM, Drake JM, Clark PM, Smith BA, Zong Y, Volpe C, Mathis C, Morrissey C, Castor B, Huang J, Witte ON. Functional screen identifies kinases driving prostate cancer visceral and bone metastasis. Proc Natl Acad Sci U S A. 2016 Jan 12;113(2):E172-81.”,”type”:”publication”,”url”:”https://www.pnas.org/content/113/2/E172″,”cancer_type_terms_string”:”Prostate”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–Prostate Cancer Foundation Prostate Dream Team: Targeting Adaptive Pathways in Metastatic Castration-Resistant Prostate Cancer”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/metastatic-treatment-resistant-prostate-cancer-dream-team/”,”publisher_year”:”PNAS, 2016″,”pub_med_id”:”26621741″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=26621741″},{“title”:”Wang W, Erbe AK, Gallenberger M, Kim KM, Carmichael L, Hess D, Mendonca EA, Song Y, Hank JA, Cheng S-C, Signoretti S, Atkins M, Carlson A, Weiss JM, Mier J, Panka D, McDermott DF, Sondel PM. Killer immunoglobulin-like receptor (KIR) and KIR-ligand genotype do not correlate with clinical outcome of renal cell carcinoma patients receiving high-dose IL2. Cancer Immunol Immunother. 2016 Dec;65(12):1523-1532.”,”type”:”publication”,”url”:”https://link.springer.com/article/10.1007%2Fs00262-016-1904-8″,”cancer_type_terms_string”:”Kidney”,”treatment_type_terms_string”:”Immunotherapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–St. Baldrick’s Foundation Pediatric Cancer Dream Team: Immunogenomics to Create New Therapies for High-Risk Childhood Cancers”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/high-risk-pediatric-cancers-dream-team/”,”publisher_year”:”Cancer Immunology, Immunotherapy, 2016″,”pub_med_id”:”27695964″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=27695964″},{“title”:”Davis KL, Mackall CL. Immunotherapy for acute lymphoblastic leukemia: from famine to feast. Blood Adv. 2016 Dec 27;1(3):265-269.”,”type”:”publication”,”url”:”http://www.bloodadvances.org/content/1/3/265?sso-checked=true”,”cancer_type_terms_string”:”Leukemia (all types), Pediatric – Blood Related”,”treatment_type_terms_string”:”Immunotherapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–St. Baldrick’s Foundation Pediatric Cancer Dream Team: Immunogenomics to Create New Therapies for High-Risk Childhood Cancers”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/high-risk-pediatric-cancers-dream-team/”,”publisher_year”:”Blood Advances, 2016″,”pub_med_id”:”29296941″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=29296941″},{“title”:”Padovan-Merhar OM, Raman P, Ostrovnaya I, Kalletla K, Rubnitz KR, Sanford EM, Ali SM, Miller VA, Mossé YP, Granger MP, Weiss B, Maris JM, Modak S. Enrichment of Targetable Mutations in the Relapsed Neuroblastoma Genome. PLoS Genet. 2016 Dec 20;12(12):e1006501.”,”type”:”publication”,”url”:”https://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.1006501″,”cancer_type_terms_string”:”Pediatric – Solid Tumor”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–St. Baldrick’s Foundation Pediatric Cancer Dream Team: Immunogenomics to Create New Therapies for High-Risk Childhood Cancers”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/high-risk-pediatric-cancers-dream-team/”,”publisher_year”:”PLoS Genetics, 2016″,”pub_med_id”:”27997549″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=27997549″},{“title”:”Gad AZ, El-Naggar S, Ahmed N. Realism and pragmatism in developing an effective CAR T cell product for solid cancers. Cytotherapy. 2016 Nov;18(11):1382-1392.”,”type”:”publication”,”url”:”https://www.celltherapyjournal.org/article/S1465-3249(16)30471-6/fulltext”,”cancer_type_terms_string”:”Non – site Specific”,”treatment_type_terms_string”:”Immunotherapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–St. Baldrick’s Foundation Pediatric Cancer Dream Team: Immunogenomics to Create New Therapies for High-Risk Childhood Cancers”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/high-risk-pediatric-cancers-dream-team/”,”publisher_year”:”Cytotherapy, 2016″,”pub_med_id”:”27601331″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=27601331″},{“title”:”Ruella M, Barrett DM, Kenderian SS, Shestova O, Hofmann TJ, Perazzelli J, Klichinsky M, Aikawa V, Nazimuddin F, Kozlowski M, Scholler J, Lacey SF, Melenhorst JJ, Morrissette JJ, Christian DA, Hunter CA, Kalos M, Porter DL, June CH, Grupp SA, Gill S. Dual CD19 and CD123 targeting prevents antigen-loss relapses after CD19-directed immunotherapies. J Clin Invest. 2016 Oct 3;126(10):3814-3826.”,”type”:”publication”,”url”:”https://www.jci.org/articles/view/87366″,”cancer_type_terms_string”:”Leukemia (all types), Pediatric – Blood Related”,”treatment_type_terms_string”:”Immunotherapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–St. Baldrick’s Foundation Pediatric Cancer Dream Team: Immunogenomics to Create New Therapies for High-Risk Childhood Cancers”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/high-risk-pediatric-cancers-dream-team/”,”publisher_year”:”Journal of Clinical Investigation, 2016″,”pub_med_id”:”27571406″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=27571406″},{“title”:”Teachey DT, Grupp SA. Cytokine Release Syndrome after Haploidentical Stem Cell Transplantation. Biol Blood Marrow Transplant. 2016 Oct;22(10):1736-1737.”,”type”:”publication”,”url”:”https://www.bbmt.org/article/S1083-8791(16)30285-3/fulltext”,”cancer_type_terms_string”:”Non – site Specific”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–St. Baldrick’s Foundation Pediatric Cancer Dream Team: Immunogenomics to Create New Therapies for High-Risk Childhood Cancers”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/high-risk-pediatric-cancers-dream-team/”,”publisher_year”:”Biology of Blood and Marrow Transplant, 2016″,”pub_med_id”:”27543158″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=27543158″},{“title”:”Perez Horta Z, Goldberg JL, Sondel PM. Anti-GD2 mAbs and next generation mAb-based agents for cancer therapy. Immunotherapy. 2016 Sep;8(9):1097-117.”,”type”:”publication”,”url”:”https://www.futuremedicine.com/doi/10.2217/imt-2016-0021″,”cancer_type_terms_string”:”Pediatric – Solid Tumor”,”treatment_type_terms_string”:”Immunotherapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–St. Baldrick’s Foundation Pediatric Cancer Dream Team: Immunogenomics to Create New Therapies for High-Risk Childhood Cancers”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/high-risk-pediatric-cancers-dream-team/”,”publisher_year”:”Immunotherapy, 2016″,”pub_med_id”:”27485082″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=27485082″},{“title”:”Wang W, Erbe AK, Alderson KA, Phillips E, Gallenberger M,Gan J, Campana D, Hank JA, Sondel PM. NK cells maintain licensing status and are subject to KIR/KIR-ligand inhibition following ex vivo expansion. Cancer Immunol Immunother. 2016 Sep;65(9):1047-59.”,”type”:”publication”,”url”:”https://link.springer.com/article/10.1007%2Fs00262-016-1864-z”,”cancer_type_terms_string”:”Non – site Specific”,”treatment_type_terms_string”:”Immunotherapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–St. Baldrick’s Foundation Pediatric Cancer Dream Team: Immunogenomics to Create New Therapies for High-Risk Childhood Cancers”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/high-risk-pediatric-cancers-dream-team/”,”publisher_year”:”Cancer Immunology and Immunotherapy, 2016″,”pub_med_id”:”27392940″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=27392940″},{“title”:”Hegde M, Mukherjee M, Grada Z, Pignata A, Landi D, Navai S, Wakefield A, Fousek K, Bielamowicz K,Chow K, Brawley V, Byrd T, Krebs S, Gottschalk S,Wels W, Baker M, Dotti G, Mamonkin M, Brenner M,Orange J, Ahmed N. Tandem CAR T cells targeting HER2 and IL13Rα2 mitigate tumor antigen escape. J Clin Invest. 2016 Aug 1;126(8):3036-52.”,”type”:”publication”,”url”:”https://www.jci.org/articles/view/83416″,”cancer_type_terms_string”:”Pediatric – Solid Tumor”,”treatment_type_terms_string”:”Immunotherapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–St. Baldrick’s Foundation Pediatric Cancer Dream Team: Immunogenomics to Create New Therapies for High-Risk Childhood Cancers”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/high-risk-pediatric-cancers-dream-team/”,”publisher_year”:”Journal of Clinical Investigation, 2016″,”pub_med_id”:”27427982″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=27427982″},{“title”:”Albertini MR, Ranheim EA, Zuleger CL, Sondel PM, Hank JA, Bridges A, Newton MA, McFarland T, Collins J, Clements E, Henry MB, Neuman HB, Weber S, Whalen G, Galili U. Phase I study to evaluate toxicity and feasibility of intratumoral injection of α-gal glycolipids in patients with advanced melanoma. Cancer Immunol Immunother. 2016 Aug;65(8):897-907.”,”type”:”publication”,”url”:”https://link.springer.com/article/10.1007%2Fs00262-016-1846-1″,”cancer_type_terms_string”:”Melanoma, Pediatric – Solid Tumor”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–St. Baldrick’s Foundation Pediatric Cancer Dream Team: Immunogenomics to Create New Therapies for High-Risk Childhood Cancers”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/high-risk-pediatric-cancers-dream-team/”,”publisher_year”:”Cancer Immunology, Immunotherapy, 2016″,”pub_med_id”:”27207605″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=27207605″},{“title”:”Chen F, Teachey DT, Pequignot E, Frey N, Porter D, Maude SL, Grupp SA, June CH, Melenhorst JJ, Lacey SF. Measuring IL-6 and sIL-6R in serum from patients treated with tocilizumab and/or siltuximab following CAR T cell therapy. J Immunol Methods. 2016 Jul;434:1-8.”,”type”:”publication”,”url”:”https://www.sciencedirect.com/science/article/pii/S0022175916300540?via%3Dihub”,”cancer_type_terms_string”:”Pediatric – Blood Related”,”treatment_type_terms_string”:”Immunotherapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–St. Baldrick’s Foundation Pediatric Cancer Dream Team: Immunogenomics to Create New Therapies for High-Risk Childhood Cancers”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/high-risk-pediatric-cancers-dream-team/”,”publisher_year”:”Journal of Immunological Methods, 2016″,”pub_med_id”:”27049586″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=27049586″},{“title”:”Morris ZS, Emily I, Guy EI, Francis DM, Gressett MM, Carmichael LL, Yang RK, Armstrong EA, Huang S, Bavid F, Gillies SD, Hank JA, Rakhmilevich AL, Harari PM, Sondel PM. In Situ tumor vaccination by combining local radiation and tumor-specific antibody or immunocytokine treatments. Cancer Res. 2016 Jul 1;76(13):3929-41.”,”type”:”publication”,”url”:”https://cancerres.aacrjournals.org/content/76/13/3929″,”cancer_type_terms_string”:”Head and Neck, Melanoma, Pediatric – Solid Tumor”,”treatment_type_terms_string”:”Immunotherapy, Radiation Therapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–St. Baldrick’s Foundation Pediatric Cancer Dream Team: Immunogenomics to Create New Therapies for High-Risk Childhood Cancers”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/high-risk-pediatric-cancers-dream-team/”,”publisher_year”:”Cancer Research, 2016″,”pub_med_id”:”27197149″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=27197149″},{“title”:”Jacoby E, Nguyen SM, Fountaine TJ, Welp K, Gryder B, Qin H, Yang Y, Chien CD, Seif AE, Lei H, Song YK, Khan J, Lee DW, Mackall CL, Gardner RA, Jensen MC, Shern JF, Fry TJ. CD19 CAR immune pressure induces B-precursor acute lymphoblastic leukaemia lineage switch exposing inherent leukaemic plasticity. Nat Commun. 2016 Jul 27;7:12320.”,”type”:”publication”,”url”:”https://www.nature.com/articles/ncomms12320″,”cancer_type_terms_string”:”Leukemia (all types), Pediatric – Blood Related”,”treatment_type_terms_string”:”Immunotherapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–St. Baldrick’s Foundation Pediatric Cancer Dream Team: Immunogenomics to Create New Therapies for High-Risk Childhood Cancers”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/high-risk-pediatric-cancers-dream-team/”,”publisher_year”:”Nature Communications, 2016″,”pub_med_id”:”27460500″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=27460500″},{“title”:”Stroncek DF, Ren J, Lee DW, Tran M, Frodigh SE, Sabatino M, Khuu H, Merchant MS, Mackall CL. Myeloid cells in peripheral blood mononuclear cell concentrates inhibit the expansion of chimeric antigen receptor T cells. Cytotherapy. 2016 Jul;18(7):893-901.”,”type”:”publication”,”url”:”https://www.celltherapyjournal.org/article/S1465-3249(16)30345-0/fulltext”,”cancer_type_terms_string”:”Leukemia (all types), Pediatric – Blood Related”,”treatment_type_terms_string”:”Immunotherapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–St. Baldrick’s Foundation Pediatric Cancer Dream Team: Immunogenomics to Create New Therapies for High-Risk Childhood Cancers”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/high-risk-pediatric-cancers-dream-team/”,”publisher_year”:”Cytotherapy, 2016″,”pub_med_id”:”27210719″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=27210719″},{“title”:”Bhoj VG, Arhontoulis D, Wertheim G, Capobianchi J, Callahan CA, Ellebrecht CT, Obstfeld AE, Lacey SF, Melenhorst JJ, Nazimuddin F, Hwang WT, Maude SL, Wasik MA, Bagg A, Schuster S, Feldman MD, Porter DL, Grupp SA, June CH, Milone MC. Persistence of long-lived plasma cells and humoral immunity in individuals responding to CD19-directed CAR T-cell therapy. Blood. 2016 Jul 21;128(3):360-70.”,”type”:”publication”,”url”:”http://www.bloodjournal.org/content/128/3/360?sso-checked=true”,”cancer_type_terms_string”:”Lymphoma, Pediatric – Blood Related”,”treatment_type_terms_string”:”Immunotherapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–St. Baldrick’s Foundation Pediatric Cancer Dream Team: Immunogenomics to Create New Therapies for High-Risk Childhood Cancers”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/high-risk-pediatric-cancers-dream-team/”,”publisher_year”:”Blood, 2016″,”pub_med_id”:”27166358″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=27166358″},{“title”:”Neri D, Sondel PM. Immunocytokines for cancer treatment: past, present and future. Curr Opin Immunol. 2016 Jun;40:96-102.”,”type”:”publication”,”url”:”https://www.sciencedirect.com/science/article/abs/pii/S0952791516300231?via%3Dihub”,”cancer_type_terms_string”:”Non – site Specific”,”treatment_type_terms_string”:”Immunotherapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–St. Baldrick’s Foundation Pediatric Cancer Dream Team: Immunogenomics to Create New Therapies for High-Risk Childhood Cancers”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/high-risk-pediatric-cancers-dream-team/”,”publisher_year”:”Current Opition in Immunology, 2016″,”pub_med_id”:”27060634″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=27060634″},{“title”:”Teachey DT, Lacey SF, Shaw PA, Melenhorst JJ, Maude SL, Frey N, Pequignot E, Gonzalez VE, Chen F, Finklestein J, Barrett DM, Weiss SL, Fitzgerald JC, Berg RA, Aplenc R, Callahan C, Rheingold SR, Zheng Z, Rose-John S, White JC, Nazimuddin F, Wertheim G, Levine BL, June CH, Porter DL, Grupp SA. Identification of Predictive Biomarkers for Cytokine Release Syndrome after Chimeric Antigen Receptor T-cell Therapy for Acute Lymphoblastic Leukemia. Cancer Discov. 2016 Jun;6(6):664-79.”,”type”:”publication”,”url”:”https://cancerdiscovery.aacrjournals.org/content/6/6/664″,”cancer_type_terms_string”:”Leukemia (all types), Pediatric – Blood Related”,”treatment_type_terms_string”:”Immunotherapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–St. Baldrick’s Foundation Pediatric Cancer Dream Team: Immunogenomics to Create New Therapies for High-Risk Childhood Cancers”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/high-risk-pediatric-cancers-dream-team/”,”publisher_year”:”Cancer Discovery, 2016″,”pub_med_id”:”27076371″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=27076371″},{“title”:”Liu X, Barrett DM, Jiang S, Fang C, Kalos M1, Grupp SA, June CH, Zhao Y. Improved anti-leukemia activities of adoptively transferred T cells expressing bispecific T-cell engager in mice. Blood Cancer J. 2016 Jun 3;6(6):e430.”,”type”:”publication”,”url”:”https://www.nature.com/articles/bcj201638″,”cancer_type_terms_string”:”Leukemia (all types), Pediatric – Blood Related”,”treatment_type_terms_string”:”Immunotherapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–St. Baldrick’s Foundation Pediatric Cancer Dream Team: Immunogenomics to Create New Therapies for High-Risk Childhood Cancers”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/high-risk-pediatric-cancers-dream-team/”,”publisher_year”:”Blood Cancer Journal, 2016″,”pub_med_id”:”27258611″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=27258611″},{“title”:”Singh N, Frey NV, Grupp SA, Maude SL. CAR T Cell Therapy in Acute Lymphoblastic Leukemia and Potential for Chronic Lymphocytic Leukemia. Curr Treat Options Oncol. 2016 Jun;17(6):28.”,”type”:”publication”,”url”:”https://link.springer.com/article/10.1007%2Fs11864-016-0406-4″,”cancer_type_terms_string”:”Leukemia (all types), Pediatric – Blood Related”,”treatment_type_terms_string”:”Immunotherapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–St. Baldrick’s Foundation Pediatric Cancer Dream Team: Immunogenomics to Create New Therapies for High-Risk Childhood Cancers”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/high-risk-pediatric-cancers-dream-team/”,”publisher_year”:”Current Treatment Options in Oncology, 2016″,”pub_med_id”:”27098534″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=27098534″},{“title”:”Feng Y, Wang Y, Zhu Z, Li W, Sussman RT, Randall M, Bosse KR, Maris JM, Dimitrov DS. Differential killing of CD56-expressing cells by drug-conjugated human antibodies targeting membrane-distal and membrane-proximal non-overlapping epitopes. MAbs. 2016 May-Jun;8(4):799-810.”,”type”:”publication”,”url”:”https://www.tandfonline.com/doi/full/10.1080/19420862.2016.1155014″,”cancer_type_terms_string”:”Non – site Specific”,”treatment_type_terms_string”:”Immunotherapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–St. Baldrick’s Foundation Pediatric Cancer Dream Team: Immunogenomics to Create New Therapies for High-Risk Childhood Cancers”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/high-risk-pediatric-cancers-dream-team/”,”publisher_year”:”MAbs, 2016″,”pub_med_id”:”26910291″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=26910291″},{“title”:”Navai SA, Ahmed N. Broad Spectrum Chimeric Antigen Receptor T Cells to Target the Tumor Profile. Biochem Soc Trans. 2016 Apr 15;44(2):391-6.”,”type”:”publication”,”url”:”http://www.biochemsoctrans.org/content/44/2/391″,”cancer_type_terms_string”:”Non – site Specific”,”treatment_type_terms_string”:”Immunotherapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–St. Baldrick’s Foundation Pediatric Cancer Dream Team: Immunogenomics to Create New Therapies for High-Risk Childhood Cancers”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/high-risk-pediatric-cancers-dream-team/”,”publisher_year”:”Biochemical Society Transactions, 2016″,”pub_med_id”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=27068945″,”pub_med_url”:””},{“title”:”Kohrt HE, Tumeh PC, Benson D, Bhardwaj N, Brody J, Formenti S, Fox BA, Galon J, June CH, Kalos M, Kirsch I, Kleen T, Kroemer G, Lanier L, Levy R, Lyerly HK, Maecker H, Marabelle A, Melenhorst J, Miller J, Melero I, Odunsi K, Palucka K, Peoples G, Ribas A, Robins H, Robinson W, Serafini T, Sondel P, Vivier E, Weber J, Wolchok J, Zitvogel L, Disis ML, Cheever MA; Cancer Immunotherapy Trials Network (CITN). Immunodynamics: a cancer immunotherapy trials network review of immune monitoring in immuno-oncology clinical trials. J Immunother Cancer. 2016 Mar 15;4:15.”,”type”:”publication”,”url”:”https://jitc.biomedcentral.com/articles/10.1186/s40425-016-0118-0″,”cancer_type_terms_string”:”Non – site Specific”,”treatment_type_terms_string”:”Immunotherapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–St. Baldrick’s Foundation Pediatric Cancer Dream Team: Immunogenomics to Create New Therapies for High-Risk Childhood Cancers”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/high-risk-pediatric-cancers-dream-team/”,”publisher_year”:”Journal for Immunotherapy of Cancer, 2016″,”pub_med_id”:”26981245″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=26981245″},{“title”:”Yu W, Denu RA, Krautkramer KA, Grindle KM, Yang DT, Asimakopoulos F, Hematti P, Denu JM. Loss of SIRT3 Provides Growth Advantage for B Cell Malignancies. Journal of Biological Chemistry. 2016 Feb 12;291(7):3268-79.”,”type”:”publication”,”url”:”http://www.jbc.org/content/291/7/3268″,”cancer_type_terms_string”:”Lymphoma, Pediatric – Blood Related”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–St. Baldrick’s Foundation Pediatric Cancer Dream Team: Immunogenomics to Create New Therapies for High-Risk Childhood Cancers”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/high-risk-pediatric-cancers-dream-team/”,”publisher_year”:”Journal of Biological Chemistry, 2016″,”pub_med_id”:”26631723″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=26631723″},{“title”:”MN Bouchlaka, KD Ludwig, JW Gordon, M Kutz, B Bednarz, SB Fain, CM Capitini. (19)F-MRI for monitoring human NK cells in vivo. Oncoimmunology. 2016 Feb 18;5(5):e1143996.”,”type”:”publication”,”url”:”https://www.tandfonline.com/doi/full/10.1080/2162402X.2016.1143996″,”cancer_type_terms_string”:”Non – site Specific”,”treatment_type_terms_string”:”Immunotherapy, Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–St. Baldrick’s Foundation Pediatric Cancer Dream Team: Immunogenomics to Create New Therapies for High-Risk Childhood Cancers”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/high-risk-pediatric-cancers-dream-team/”,”publisher_year”:”Oncoimmunology, 2016″,”pub_med_id”:”27467963″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=27467963″},{“title”:”Jiao P, Otto M, Geng Q, Li C, Li, F, Butch ER, Snyder SE, Zhou H, Yan B. Enhancing both CT imaging and natural killer cell-mediated cancer cell killing by a GD2-targeting nanoconstruct. J Mater Chem B. 2016 Jan 20;4(3):513-520.”,”type”:”publication”,”url”:”https://pubs.rsc.org/en/content/articlelanding/2016/TB/C5TB02243F#!divAbstract”,”cancer_type_terms_string”:”Melanoma, Pediatric – Solid Tumor”,”treatment_type_terms_string”:”Immunotherapy, Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–St. Baldrick’s Foundation Pediatric Cancer Dream Team: Immunogenomics to Create New Therapies for High-Risk Childhood Cancers”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/high-risk-pediatric-cancers-dream-team/”,”publisher_year”:”Journal of Materials Chemistry, 2016″,”pub_med_id”:”27087966″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=27087966″},{“title”:”Morrissy AS, Garzia L, Shih DJ, Zuyderduyn S, Huang X, Skowron P, Remke M, Cavalli FM, Ramaswamy V, Lindsay PE, Jelveh S, Donovan LK, Wang X, Luu B, Zayne K, Li Y, Mayoh C, Thiessen N, Mercier E, Mungall KL, Ma Y, Tse K, Zeng T, Shumansky K, Roth AJ, Shah S, Farooq H, Kijima N, Holgado BL, Lee JJ, Matan-Lithwick S, Liu J, Mack SC, Manno A, Michealraj KA, Nor C, Peacock J, Qin L, Reimand J, Rolider A, Thompson YY, Wu X, Pugh T, Ally A, Bilenky M, Butterfield YS, Carlsen R, Cheng Y, Chuah E, Corbett RD, Dhalla N, He A, Lee D, Li HI, Long W, Mayo M, Plettner P, Qian JQ, Schein JE, Tam A, Wong T, Birol I, Zhao Y, Faria CC, Pimentel J, Nunes S, Shalaby T, Grotzer M, Pollack IF, Hamilton RL, Li XN, Bendel AE, Fults DW, Walter AW, Kumabe T, Tominaga T, Collins VP, Cho YJ, Hoffman C, Lyden D, Wisoff JH, Garvin JH Jr, Stearns DS, Massimi L, Schüller U, Sterba J, Zitterbart K, Puget S, Ayrault O, Dunn SE, Tirapelli DP, Carlotti CG, Wheeler H, Hallahan AR, Ingram W, MacDonald TJ, Olson JJ, Van Meir EG, Lee JY, Wang KC, Kim SK, Cho BK, Pietsch T, Fleischhack G, Tippelt S, Ra YS, Bailey S, Lindsey JC, Clifford SC, Eberhart CG, Cooper MK, Packer RJ, Massimino M, Garre ML, Bartels U, Tabori U, Hawkins CE, Dirks P, Bouffet E, Rutka JT, Wechsler-Reya RJ, Weiss WA, Collier LS, Dupuy AJ, Korshunov A, Jones DT, Kool M, Northcott PA, Pfister SM, Largaespada DA, Mungall AJ, Moore RA, Jabado N, Bader GD, Jones SJ, Malkin D, Marra MA, Taylor MD. Divergent clonal selection dominates medulloblastoma at recurrence. Nature. 2016 Jan 21;529(7586):351-7.”,”type”:”publication”,”url”:”https://www.nature.com/articles/nature16478″,”cancer_type_terms_string”:”Pediatric – Solid Tumor”,”treatment_type_terms_string”:”Immunotherapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–St. Baldrick’s Foundation Pediatric Cancer Dream Team: Immunogenomics to Create New Therapies for High-Risk Childhood Cancers”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/high-risk-pediatric-cancers-dream-team/”,”publisher_year”:”Nature, 2016″,”pub_med_id”:”26760213″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=26760213″},{“title”:”Singh N, Perazzelli J, Grupp SA, Barrett DM. Early memory phenotypes drive T cell proliferation in patients with pediatric malignancies. Sci Transl Med. 2016 Jan 6;8(320):320ra3.”,”type”:”publication”,”url”:”https://stm.sciencemag.org/content/8/320/320ra3″,”cancer_type_terms_string”:”Pediatric – Blood Related, Pediatric – Solid Tumor”,”treatment_type_terms_string”:”Immunotherapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–St. Baldrick’s Foundation Pediatric Cancer Dream Team: Immunogenomics to Create New Therapies for High-Risk Childhood Cancers”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/high-risk-pediatric-cancers-dream-team/”,”publisher_year”:”Science Translational Medicine, 2016″,”pub_med_id”:”26738796″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=26738796″},{“title”:”Erbe AK, Wang W, Gallenberger M, Hank JA, Sondel PM. Genotyping Single Nucleotide Polymorphisms and Copy Number Variability of the FcGRs expressed on NK cells. Methods Mol Biol. 2016;1441:43-56.”,”type”:”publication”,”url”:”https://link.springer.com/protocol/10.1007%2F978-1-4939-3684-7_4″,”cancer_type_terms_string”:”Non – site Specific”,”treatment_type_terms_string”:”Immunotherapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–St. Baldrick’s Foundation Pediatric Cancer Dream Team: Immunogenomics to Create New Therapies for High-Risk Childhood Cancers”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/high-risk-pediatric-cancers-dream-team/”,”publisher_year”:”Methods In Molecular Biology, 2016″,”pub_med_id”:”27177655″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=27177655″},{“title”:”Carla S Verissimo René M Overmeer Bas Ponsioen Jarno Drost Sander Mertens Ingrid Verlaan-Klink Bastiaan van Gerwen Marieke van der Ven Marc van de Wetering David A Egan René Bernards Hans Clevers Johannes L Bos Hugo J Snippert. Targeting mutant RAS in patient-derived colorectal cancer organoids by combinatorial drug screening. Elife. 2016 Nov 15;5. pii: e18489.”,”type”:”publication”,”url”:”https://elifesciences.org/articles/18489″,”cancer_type_terms_string”:”Colorectal”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–Dutch Cancer Society Tumor Organoids Dream Team: A New Preclinical Model for Drug Sensitivity Analysis”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/tumor-organoids-preclinical-models-dream-team/”,”publisher_year”:”eLife, 2016″,”pub_med_id”:”27845624″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=27845624″},{“title”:”Koppens MA, Bounova G, Cornelissen-Steijger P, de Vries N, Sansom OJ, Wessels LFA, van Lohuizen M. Large variety in a panel of human colon cancer organoids in response to EZH2 inhibition. Oncotarget. 2016 Oct 25;7(43):69816-69828.”,”type”:”publication”,”url”:”http://www.oncotarget.com/index.php?journal=oncotarget&page=article&op=view&path[]=12002&path[]=37982″,”cancer_type_terms_string”:”Colorectal”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–Dutch Cancer Society Tumor Organoids Dream Team: A New Preclinical Model for Drug Sensitivity Analysis”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/tumor-organoids-preclinical-models-dream-team/”,”publisher_year”:”Oncotarget, 2016″,”pub_med_id”:”27634879″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=27634879″},{“title”:”Koppens MA, Bounova G, Gargiulo G, Tanger E, Janssen H, Cornelissen-Steijger P, Blom M, Song JY, Wessels LFA, van Lohuizen M. Deletion of Polycomb Repressive Complex 2 From Mouse Intestine Causes Loss of Stem Cells. Gastroenterology. 2016 Oct;151(4):684-697.e12.”,”type”:”publication”,”url”:”https://www.gastrojournal.org/article/S0016-5085(16)34677-7/fulltext?referrer=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2F”,”cancer_type_terms_string”:”Other”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–Dutch Cancer Society Tumor Organoids Dream Team: A New Preclinical Model for Drug Sensitivity Analysis”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/tumor-organoids-preclinical-models-dream-team/”,”publisher_year”:”Gastroenterology, 2016″,”pub_med_id”:”27342214″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=27342214″},{“title”:”Lindsey A. Baker, Hervé Tiriac, Hans Clevers, and David A. Tuveson. Modeling Pancreatic Cancer with Organoids. Trends Cancer. 2016 Apr;2(4):176-190.”,”type”:”publication”,”url”:”https://www.cell.com/trends/cancer/fulltext/S2405-8033(16)00043-1?_returnURL=https%3A%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2FS2405803316000431%3Fshowall%3Dtrue”,”cancer_type_terms_string”:”Pancreatic”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–Dutch Cancer Society Tumor Organoids Dream Team: A New Preclinical Model for Drug Sensitivity Analysis”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/tumor-organoids-preclinical-models-dream-team/”,”publisher_year”:”Trend in Cancer, 2016″,”pub_med_id”:”27135056″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=27135056″},{“title”:”Hwang CI, Boj SF, Clevers H, Tuveson DA. Pre-clinical Models of Pancreatic Ductal Adenocarcinoma. J Pathol. 2016 Jan;238(2):197-204.”,”type”:”publication”,”url”:”https://onlinelibrary.wiley.com/doi/full/10.1002/path.4651″,”cancer_type_terms_string”:”Pancreatic”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–Dutch Cancer Society Tumor Organoids Dream Team: A New Preclinical Model for Drug Sensitivity Analysis”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/tumor-organoids-preclinical-models-dream-team/”,”publisher_year”:”Journal of Pathology, 2016″,”pub_med_id”:”26419819″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=26419819″},{“title”:”Zanganeh S, Hutter G, Spitler R, Lenkov O, Mahmoudi M, Shaw A, Pajarinen JS, Nejadnik H, Goodman S, Moseley M, Coussens LM, Daldrup-Link HE. Iron oxide nanoparticles inhibit tumour growth by inducing pro-inflammatory macrophage polarization in tumour tissues. Nat Nanotechnol. 2016 Nov;11(11):986-994.”,”type”:”publication”,”url”:”https://www.nature.com/articles/nnano.2016.168″,”cancer_type_terms_string”:”Breast, Lung”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–Lustgarten Foundation Pancreatic Cancer Dream Team: Transforming Pancreatic Cancer to Treatable Disease”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/transforming-pancreatic-cancer-dream-team/”,”publisher_year”:”Nature Nanotechnology, 2016″,”pub_med_id”:”27668795″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=27668795″},{“title”:”Wilson RA, Espinoza-Diez C, Kanner N, Chattejee N, Ruhl R, Hipfinger C, Advani S, Li J, Khan O, Franovic A, Weis S, Kumar S, Coussens LM, Anderson D, Chen CC, Cheresh D, Anand S. MicroRNA regulation of endothelial TREX1 reprograms the tumor microenvironment. Nat Commun. 2016 Nov 25;7:13597.”,”type”:”publication”,”url”:”https://www.nature.com/articles/ncomms13597″,”cancer_type_terms_string”:”Non – site Specific”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–Lustgarten Foundation Pancreatic Cancer Dream Team: Transforming Pancreatic Cancer to Treatable Disease”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/transforming-pancreatic-cancer-dream-team/”,”publisher_year”:”Nature Communications, 2016″,”pub_med_id”:”27886180″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=27886180″},{“title”:”Davidson N, Armstrong S, Coussens LM, Cruz-Correa M, DeBerardinis R, Doroshow J, Hwu P, Kensler T, Morrow M, Mulligan C, Pao W, Platz E, Smith T, Willman C. AACR Cancer Progress Report 2016. Clin Cancer Res. 2016 Oct 1;22 Suppl 19:S1-S137.”,”type”:”publication”,”url”:”https://clincancerres.aacrjournals.org/content/22/19_Supplement/S1″,”cancer_type_terms_string”:”Non – site Specific”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–Lustgarten Foundation Pancreatic Cancer Dream Team: Transforming Pancreatic Cancer to Treatable Disease”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/transforming-pancreatic-cancer-dream-team/”,”publisher_year”:”Clinical Cancer Research, 2016″,”pub_med_id”:”27697776″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=27697776″},{“title”:”Daldrup-Link HE, Mohanty S, Ansari C, Lenkov O, Shaw A, Ito K, Hong SH, Hoffman M, Pisani L, Boudreau N, Gambhir SS, Coussens LM. (2016) Alk5-inhibition increases delivery of macromolecular and protein-bound contrast agents to tumors. JCI Insight. 2016 May 6;1(6).”,”type”:”publication”,”url”:”https://insight.jci.org/articles/view/85608″,”cancer_type_terms_string”:”Non – site Specific”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–Lustgarten Foundation Pancreatic Cancer Dream Team: Transforming Pancreatic Cancer to Treatable Disease”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/transforming-pancreatic-cancer-dream-team/”,”publisher_year”:”JCI Insight, 2016″,”pub_med_id”:”27182558″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=27182558″},{“title”:”Gunderson AJ, Kaneda M, Tsujikawa T, Affara NI, Nguyen, Ruffell B, Gorjestani S, Liudahl SM, Truitt M, Olson P, Kim G, Hanahan D, Tempero M, Sheppard B, Irving B, Varner JA, Coussens LM. Bruton’s tyrosine kinase-dependent immune cell crosstalk drives pancreas cancer. Cancer Discov. 2016 Mar;6(3):270-85.”,”type”:”publication”,”url”:”https://cancerdiscovery.aacrjournals.org/content/6/3/270″,”cancer_type_terms_string”:”Pancreatic”,”treatment_type_terms_string”:”Immunotherapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–Lustgarten Foundation Pancreatic Cancer Dream Team: Transforming Pancreatic Cancer to Treatable Disease”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/transforming-pancreatic-cancer-dream-team/”,”publisher_year”:”Cancer Discovery, 2016″,”pub_med_id”:”26715645″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=26715645″},{“title”:”Palucka AK, Coussens LM. The basis of OncoImmunology. Cell. 2016 Mar 10;164(6):1233-1247.”,”type”:”publication”,”url”:”https://www.cell.com/cell/fulltext/S0092-8674(16)30063-0?_returnURL=https%3A%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2FS0092867416300630%3Fshowall%3Dtrue”,”cancer_type_terms_string”:”Non – site Specific”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–Lustgarten Foundation Pancreatic Cancer Dream Team: Transforming Pancreatic Cancer to Treatable Disease”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/transforming-pancreatic-cancer-dream-team/”,”publisher_year”:”Cell, 2016″,”pub_med_id”:”26967289″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=26967289″},{“title”:”Ward JP, Gubin MM, Schreiber RD. The role of neoantigens in naturally occurring and therapeutically induced immune responses to cancer. Adv Immunol. 2016;130:25-74.”,”type”:”publication”,”url”:”https://www.sciencedirect.com/science/article/pii/S0065277616300013?via%3Dihub”,”cancer_type_terms_string”:”Non – site Specific”,”treatment_type_terms_string”:”Immunotherapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–Lustgarten Foundation Pancreatic Cancer Dream Team: Transforming Pancreatic Cancer to Treatable Disease”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/transforming-pancreatic-cancer-dream-team/”,”publisher_year”:”Advances in Immunology, 2016″,”pub_med_id”:”26922999″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=26922999″},{“title”:”Cooper ZA, Reuben A, Spencer CN, Prieto PA, Austin-Breneman JL, Jiang H, Haymaker C, Gopalakrishnan V, Tetzlaff MT, Frederick DT, Sullivan RJ, Amaria RN, Patel SP, Hwu P, Woodman SE, Glitza IC, Diab A, Vence LM, Rodriguez-Canales J, Parra ER, Wistuba II, Coussens LM, Sharpe AH, Flaherty KT, Gershenwald JE, Chin L, Davies MA, Clise-Dwyer K, Allison JP, Sharma P, Wargo JA. (2016) Distinct clinical patterns and immune infiltrates are observed at time of progression on targeted therapy versus immune checkpoint blockade for melanoma. Oncoimmunology. 2016 Feb 2;5(3):e1136044.”,”type”:”publication”,”url”:”https://www.tandfonline.com/doi/full/10.1080/2162402X.2015.1136044″,”cancer_type_terms_string”:”Melanoma”,”treatment_type_terms_string”:”Immunotherapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–Lustgarten Foundation Pancreatic Cancer Dream Team: Transforming Pancreatic Cancer to Treatable Disease”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/transforming-pancreatic-cancer-dream-team/”,”publisher_year”:”Oncoimmunology, 2016″,”pub_med_id”:”27141370″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=27141370″},{“title”:”Lund AW, Medler TR, Leachman SA, Coussens LM. Lymphatic vessels regulate the regional immune landscape: Implications for malignant and non-malignant cutaneous disease. Cancer Discov. 2016 Jan;6(1):22-35.”,”type”:”publication”,”url”:”https://cancerdiscovery.aacrjournals.org/content/6/1/22″,”cancer_type_terms_string”:”Other”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–Lustgarten Foundation Pancreatic Cancer Dream Team: Transforming Pancreatic Cancer to Treatable Disease”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/transforming-pancreatic-cancer-dream-team/”,”publisher_year”:”Cancer Discovery, 2016″,”pub_med_id”:”26552413″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=26552413″},{“title”:”Ruhland M, Coussens LM, Stewart S. Senescence and cancer: an evolving inflammatory paradox. Biochim Biophys Acta. 2016 Jan;1865(1):14-22.”,”type”:”publication”,”url”:”https://www.sciencedirect.com/science/article/abs/pii/S0304419X15000712?via%3Dihub”,”cancer_type_terms_string”:”Non – site Specific”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–Lustgarten Foundation Pancreatic Cancer Dream Team: Transforming Pancreatic Cancer to Treatable Disease”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/transforming-pancreatic-cancer-dream-team/”,”publisher_year”:”Biochimica Biophysica et Acta, 2016″,”pub_med_id”:”26453912″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=26453912″},{“title”:”Burbach JP, Kurk SA, Coebergh van den Braak RR, Dik VK, May AM, Meijer GA, Punt CJ, Vink GR, Los M, Hoogerbrugge N, Huijgens PC, Ijzermans JN, Kuipers EJ, de Noo ME, Pennings JP, van der Velden AM, Verhoef C, Siersema PD, van Oijen MG, Verkooijen HM, Koopman M. Prospective Dutch Colorectal Cancer Cohort: an infrastructure for long-term observational, prognostic, predictive and (randomized) intervention research. Acta Oncol. 2016 Nov;55(11):1273-1280.”,”type”:”publication”,”url”:”https://www.tandfonline.com/doi/full/10.1080/0284186X.2016.1189094″,”cancer_type_terms_string”:”Colorectal”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–Dutch Cancer Society Colorectal Cancer Early Detection Dream Team: Molecular Early Detection of Colorectal Cancer”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/colorectal-cancer-early-detection-dream-team/”,”publisher_year”:”Acta Oncologica, 2016″,”pub_med_id”:”27560599″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=27560599″},{“title”:”Budke B, Lv W, Kozikowski AP, Connell PP: Recent developments using small molecules to target RAD51. How to best modulate RAD51 for anticancer therapy? ChemMedChem. 2016 Nov 21;11(22):2468-2473.”,”type”:”publication”,”url”:”https://onlinelibrary.wiley.com/doi/abs/10.1002/cmdc.201600426″,”cancer_type_terms_string”:”Non – site Specific”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–Ovarian Cancer Research Alliance–National Ovarian Cancer Coalition Ovarian Cancer Dream Team: DNA Repair Therapies for Ovarian Cancer”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/dna-repair-thearpies-for-ovarian-cancer-dream-team/”,”publisher_year”:”ChemMedChem, 2016″,”pub_med_id”:”27781374″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=27781374″},{“title”:”Ceccaldi R, Sarangi P, D’Andrea AD. The Fanconi anaemia pathway: new players and new functions. Nat Rev Mol Cell Biol. 2016 Jun;17(6):337-49.”,”type”:”publication”,”url”:”https://www.nature.com/articles/nrm.2016.48″,”cancer_type_terms_string”:”Non – site Specific”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–Ovarian Cancer Research Alliance–National Ovarian Cancer Coalition Ovarian Cancer Dream Team: DNA Repair Therapies for Ovarian Cancer”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/dna-repair-thearpies-for-ovarian-cancer-dream-team/”,”publisher_year”:”Nature Reviews. Molecular Cell Biology, 2016″,”pub_med_id”:”27145721″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=27145721″},{“title”:”Strickland KC, Howitt BE, Shukla SA, Rodig S, Ritterhouse LL, Liu JF, Garber JE, Chowdhury D, Wu CJ, D’Andrea AD, Matulonis UA, Konstantinopoulos PA. Association and prognostic significance of BRCA1/2-mutation status with neoantigen load, number of tumor-infiltrating lymphocytes and expression of PD-1/PD-L1 in high grade serous ovarian cancer. Oncotarget. 2016 Mar 22;7(12):13587-98.”,”type”:”publication”,”url”:”http://www.oncotarget.com/index.php?journal=oncotarget&page=article&op=view&path[]=7277&path[]=20796″,”cancer_type_terms_string”:”Ovarian”,”treatment_type_terms_string”:”Immunotherapy, Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–Ovarian Cancer Research Alliance–National Ovarian Cancer Coalition Ovarian Cancer Dream Team: DNA Repair Therapies for Ovarian Cancer”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/dna-repair-thearpies-for-ovarian-cancer-dream-team/”,”publisher_year”:”Oncotarget, 2016″,”pub_med_id”:”26871470″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=26871470″},{“title”:”Swisher EM, Harrell MI, Norquist BM, Walsh T, Brady M, Lee M, Hershberg R, Kalli KR, Lankes H, Konnick EQ, Pritchard CC, Monk BJ, Chan JK, Burger R, Kaufmann SH, Birrer MJ. Somatic Mosaic Mutations in PPM1D and TP53 in the Blood of Women With Ovarian Carcinoma. JAMA Oncol. 2016 Mar 1;2(3):370-2.”,”type”:”publication”,”url”:”https://oncology.jamanetwork.com/article.aspx?doi=10.1001/jamaoncol.2015.6053″,”cancer_type_terms_string”:”Ovarian”,”treatment_type_terms_string”:”Screening/ Early Detection”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–Ovarian Cancer Research Alliance–National Ovarian Cancer Coalition Ovarian Cancer Dream Team: DNA Repair Therapies for Ovarian Cancer”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/dna-repair-thearpies-for-ovarian-cancer-dream-team/”,”publisher_year”:”JAMA Oncology, 2016″,”pub_med_id”:”26847329″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=26847329″},{“title”:”Lizotte PH, Ivanova EV, Awad MM, Jones RE, Keogh L, Liu H, Dries R, Almonte C, Herter-Sprie GS, Santos A, Feeney NB, Paweletz CP, Kulkarni MM, Bass AJ, Rustgi AK, Yuan GC, Kufe DW, Jänne PA, Hammerman PS, Sholl LM, Hodi FS, Richards WG, Bueno R, English JM, Bittinger MA, Wong KK. Multiparametric profiling of non-small-cell lung cancers reveals distinct immunophenotypes. JCI Insight. 2016 Sep 8;1(14):e89014.”,”type”:”publication”,”url”:”https://insight.jci.org/articles/view/89014″,”cancer_type_terms_string”:”Lung”,”treatment_type_terms_string”:”Immunotherapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–American Cancer Society Lung Cancer Dream Team: Targeting KRAS Mutant Lung Cancers”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/targeting-kras-mutant-lung-cancers-dream-team/”,”publisher_year”:”JCI Insight, 2016″,”pub_med_id”:”27699239″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=27699239″},{“title”:”Gainor JF, Shaw AT, Sequist LV, Fu X, Azzoli CG, Piotrowska Z, Huynh TG, Zhao L, Fulton L, Schultz K, Howe E, Farago AF, Sullivan RJ, Stone JR, Digumarthy S, Moran T, Hata AN, Yagi Y, Yeap BY, Engelman JA, Mino-Kenudson M. EGFR Mutations and ALK Rearrangements Are Associated with Low Response Rates to PD-1 Pathway Blockade in Non-Small Cell Lung Cancer: A Retrospective Analysis. Clin Cancer Res. 2016 Sep 15;22(18):4585-93.”,”type”:”publication”,”url”:”https://clincancerres.aacrjournals.org/content/22/18/4585″,”cancer_type_terms_string”:”Lung”,”treatment_type_terms_string”:”Immunotherapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–American Cancer Society Lung Cancer Dream Team: Targeting KRAS Mutant Lung Cancers”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/targeting-kras-mutant-lung-cancers-dream-team/”,”publisher_year”:”Clinical Cancer Research, 2016″,”pub_med_id”:”27225694″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=27225694″},{“title”:”Manchado E, Weissmueller S, Morris JP 4th, Chen CC, Wullenkord R, Lujambio A, de Stanchina E, Poirier JT, Gainor JF, Corcoran RB, Engelman JA, Rudin CM, Rosen N, Lowe SW. A combinatorial strategy for treating KRAS-mutant lung cancer. Nature. 2016 Jun 30;534(7609):647-51.”,”type”:”publication”,”url”:”https://www.nature.com/articles/nature18600″,”cancer_type_terms_string”:”Lung”,”treatment_type_terms_string”:”Chemotherapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–American Cancer Society Lung Cancer Dream Team: Targeting KRAS Mutant Lung Cancers”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/targeting-kras-mutant-lung-cancers-dream-team/”,”publisher_year”:”Nature, 2016″,”pub_med_id”:”27338794″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=27338794″},{“title”:”Rodrik-Outmezguine VS, Okaniwa M, Yao Z, Novotny CJ, McWhirter C, Banaji A, Won H, Wong W, Berger M, de Stanchina E, Barratt DG, Cosulich S, Klinowska T, Rosen N, Shokat KM. Overcoming mTOR resistance mutations with a new-generation mTOR inhibitor. Nature. 2016 Jun 9;534(7606):272-6.”,”type”:”publication”,”url”:”https://www.nature.com/articles/nature17963″,”cancer_type_terms_string”:”Non – site Specific”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–American Cancer Society Lung Cancer Dream Team: Targeting KRAS Mutant Lung Cancers”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/targeting-kras-mutant-lung-cancers-dream-team/”,”publisher_year”:”Nature, 2016″,”pub_med_id”:”27279227″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=27279227″},{“title”:”Koyama S, Akbay EA, Li YY, Aref AR, Skoulidis F, Herter-Sprie GS, Buczkowski KA, Liu Y, Awad MM, Denning WL, Diao L, Wang J, Parra-Cuentas ER, Wistuba II, Soucheray M, Thai TC, Asahina H, Kitajima S, Altabef A, Cavanaugh JD, Rhee K, Gao P, Zhang H, Fecci PE, Shimamura T, Hellmann MD, Heymach JV, Hodi FS, Freeman GJ, Barbie DA, Dranoff G, Hammerman PS, Wong K-K. STK11/LKB1 Deficiency Promotes Neutrophil Recruitment and Proinflammatory Cytokine Production to Suppress T-cell Activity in the Lung Tumor Microenvironment. Cancer Res. 2016 Mar 1;76(5):999-1008.”,”type”:”publication”,”url”:”https://cancerres.aacrjournals.org/content/76/5/999″,”cancer_type_terms_string”:”Lung”,”treatment_type_terms_string”:”Immunotherapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–American Cancer Society Lung Cancer Dream Team: Targeting KRAS Mutant Lung Cancers”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/targeting-kras-mutant-lung-cancers-dream-team/”,”publisher_year”:”Cancer Research, 2016″,”pub_med_id”:”26833127″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=26833127″},{“title”:”Lito P, Solomon M, Li LS, Hansen R, Rosen N. Allele-specific inhibitors inactivate mutant KRAS G12C by a trapping mechanism. Science. 2016 Feb 5;351(6273):604-8.”,”type”:”publication”,”url”:”https://science.sciencemag.org/content/351/6273/604″,”cancer_type_terms_string”:”Non – site Specific”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–American Cancer Society Lung Cancer Dream Team: Targeting KRAS Mutant Lung Cancers”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/targeting-kras-mutant-lung-cancers-dream-team/”,”publisher_year”:”Science, 2016″,”pub_med_id”:”26841430″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=26841430″},{“title”:”Koyama S, Akbay EA, Li YY, Herter-Sprie GS, Buczkowski KA, Richards WG, Gandhi L, Redig AJ, Rodig SJ, Asahina H, Jones RE, Kulkarni MM, Fecci PE, Johnson BE, Janne PA, Engelman JA, Gangadhara SP, Costa DB, Freeman GJ, Bueno R, Hodi FS, Dranoof G, Wong K-K, Hammerman PS. Adaptive resistance to therapeutic PD-1: PD-L1 blockade is associated with upregulation of alternative immune checkpoints. Nat Commun. 2016 Feb 17;7:10501.”,”type”:”publication”,”url”:”https://www.nature.com/articles/ncomms10501″,”cancer_type_terms_string”:”Lung”,”treatment_type_terms_string”:”Immunotherapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–American Cancer Society Lung Cancer Dream Team: Targeting KRAS Mutant Lung Cancers”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/targeting-kras-mutant-lung-cancers-dream-team/”,”publisher_year”:”Nature Communication, 2016″,”pub_med_id”:”26883990″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=26883990″},{“title”:”Rajeshkumar MV, Yabuuchi S, Pai SG, Ton Z, Hou S, Bateman S, Pierce DW, Heise C, VonHoff DD, Maitra A, Hidalgo M. Superior therapeutic efficacy of nab-paclitaxel over cremphor-based paclitaxel in locally advanced and metastatic models of human pancreatic cancer. Br J Cancer. 2016 Aug 9;115(4):442-53.”,”type”:”publication”,”url”:”https://www.nature.com/articles/bjc2016215″,”cancer_type_terms_string”:”Pancreatic”,”treatment_type_terms_string”:”Chemotherapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–Cancer Research UK–Lustgarten Foundation Pancreatic Cancer Dream Team: Reprogramming of Transcriptional Circuitry to Control Pancreatic Cancer”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/reprogramming-of-pancreatic-cancer-dream-team/”,”publisher_year”:”British Journal of Cancer, 2016″,”pub_med_id”:”27441498″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=27441498″},{“title”:”Zagorac S, Alcala S, Fernandez Bayon G, Bou Kheir T, Schoenhals M, González-Neira A, Fernandez Fraga M, Aicher A, Heeschen C, Sainz B Jr. DNMT1 Inhibition Reprograms Pancreatic Cancer Stem Cells via Upregulation of the miR-17-92 Cluster. Cancer Res. 2016 Aug 1;76(15):4546-58.”,”type”:”publication”,”url”:”https://cancerres.aacrjournals.org/content/76/15/4546″,”cancer_type_terms_string”:”Pancreatic”,”treatment_type_terms_string”:”Epigenetic Therapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–Cancer Research UK–Lustgarten Foundation Pancreatic Cancer Dream Team: Reprogramming of Transcriptional Circuitry to Control Pancreatic Cancer”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/reprogramming-of-pancreatic-cancer-dream-team/”,”publisher_year”:”Cancer Research, 2016″,”pub_med_id”:”27261509″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=27261509″},{“title”:”Hata AN, Niederst MJ, Archibald HL, Gomez-Caraballo M, Siddiqui FM, Mulvey HE, Maruvka YE, Ji F, Bhang HE, Krishnamurthy Radhakrishna V, Siravegna G, Hu H, Raoof S, Lockerman E, Kalsy A, Lee D, Keating CL, Ruddy DA, Damon LJ, Crystal AS, Costa C, Piotrowska Z, Bardelli A, Iafrate AJ, Sadreyev RI, Stegmeier F, Getz G, Sequist LV, Faber AC, Engelman JA. Tumor cells can follow distinct evolutionary paths to become resistant to epidermal growth factor receptor inhibition. Nat Med. 2016 Mar;22(3):262-9.”,”type”:”publication”,”url”:”https://www.nature.com/articles/nm.4040″,”cancer_type_terms_string”:”Non – site Specific”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Convergence Team”,”research_project”:”SU2C–National Science Foundation Lung Cancer Convergence Research Team: Genetic, Epigenetic, and Immunological Underpinnings of Cancer Evolution Through Treatment”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/convergence-teams/cancer-evolution-convergence-team/”,”publisher_year”:”Nature Medicine, 2016″,”pub_med_id”:”26828195″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=26828195″},{“title”:”Le X, Antony R, Razavi P, Treacy DJ, Luo F, Ghandi M, Castel P, Scaltriti M, Baselga J, Garraway LA. Systematic Functional Characterization of Resistance to PI3K Inhibition in Breast Cancer. Cancer Discov. 2016 Oct;6(10):1134-1147.”,”type”:”publication”,”url”:”https://cancerdiscovery.aacrjournals.org/content/6/10/1134″,”cancer_type_terms_string”:”Breast”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Convergence Team”,”research_project”:”SU2C–National Science Foundation Drug Combinations Convergence Research Team: Rational Design of Anticancer Drug Combinations with Dynamic Multi-Dimensional Input”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/convergence-teams/rational-design-of-anticancer-drug-combinations-convergence-research-team/”,”publisher_year”:”Cancer Discovery, 2016″,”pub_med_id”:”27604488″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=27604488″},{“title”:”Levine AJ, Ting DT, Greenbaum BD. p53 and the defenses against genome instability caused by transposons and repetitive elements. Bioessays. 2016 Jun;38(6):508-13.”,”type”:”publication”,”url”:”https://onlinelibrary.wiley.com/doi/full/10.1002/bies.201600031″,”cancer_type_terms_string”:”Non – site Specific”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Convergence Team”,”research_project”:”SU2C–National Science Foundation–Lustgarten Foundation Pancreatic Cancer Convergence Research Team: Liberating T-Cell Mediated Immunity to Pancreatic Cancer”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/convergence-teams/mediated-immunity-in-pancreatic-cancer-convergence-team/”,”publisher_year”:”Bioessays, 2016″,”pub_med_id”:”27172878″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=27172878″},{“title”:”Munson DJ, Egelston CA, Chiotti KE, Parra ZE, Bruno TC, Moore BL, Nakano TA, Simons DL, Jimenez G, Yim JH, Rozanov DV, Falta MT, Fontenot AP, Reynolds PR, Leach SM, Borges VF, Kappler JW, Spellman PT, Lee PP, Slansky JE. Identification of shared TCR sequences from T cells in human breast cancer using emulsion RT-PCR. Proc Natl Acad Sci U S A. 2016 Jul 19;113(29):8272-7.”,”type”:”publication”,”url”:”https://www.pnas.org/content/113/29/8272″,”cancer_type_terms_string”:”Breast”,”treatment_type_terms_string”:”Immunotherapy”,”grant_type_terms_string”:”Convergence Team”,”research_project”:”SU2C–Breast Cancer Research Foundation Breast Cancer Convergence Research Team: Ecology of the Tumor Microenvironment in Breast Cancer”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/convergence-teams/breast-cancer-tumor-microenvironment/”,”publisher_year”:”PNAS USA, 2016″,”pub_med_id”:”27307436″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=27307436″},{“title”:”Das D, Mallis RJ, Duke-Cohan JS, Hussey RE, Tetteh P, Hilton M, Wagner G, Lang MJ, Reinherz EL. Pre-T cell receptors (Pre-TCRs) leverage Vβ complementary determining regions (CDRs) and hydrophobic patch in mechanosensing thymic self-ligands.J Biol Chem. 2016 Dec 2;291(49):25292-25305.”,”type”:”publication”,”url”:”http://www.jbc.org/content/291/49/25292″,”cancer_type_terms_string”:”Non – site Specific”,”treatment_type_terms_string”:”Immunotherapy, Other”,”grant_type_terms_string”:”Research Team”,”research_project”:”SU2C–Farrah Fawcett Foundation Human Papillomavirus (HPV) Research Team: Therapeutic CD8 Vaccines Against Conserved E7 HPV Epitopes Identified by MS”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/research-teams/hpv-research-team/”,”publisher_year”:”Journal of Biological Chemistry, 2016″,”pub_med_id”:”27707880″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=27707880″},{“title”:”Muvarak NE, Chowdhury K, Xia L, Robert C, Choi EY, Cai Y, Bellani M, Zou Y, Singh ZN, Duong VH, Rutherford T, Nagaria P, Bentzen SM, Seidman MM, Baer MR, Lapidus RG, Baylin SB, Rassool FV. Enhancing the Cytotoxic Effects of PARP Inhibitors by DNA Demethylating Agents – A Potential Therapy for Cancer. Cancer Cell. 2016 Oct 10;30(4):637-650.”,”type”:”publication”,”url”:”https://www.cell.com/cancer-cell/fulltext/S1535-6108(16)30437-8″,”cancer_type_terms_string”:”Non – site Specific”,”treatment_type_terms_string”:”Epigenetic Therapy, Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”Van Andel Institute–SU2C Cancer Epigenetics Dream Team: The Epigenetics Dream Team II”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/epigenetics-dream-team-ii/”,”publisher_year”:”Cancer Cell, 2016″,”pub_med_id”:”27728808″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=27728808″},{“title”:”Eskelund CW, Kolstad A, Jerkeman M, Räty R, Laurell A, Eloranta S, Smedby KE, Husby S, Pedersen LB, Andersen NS, Eriksson M, Kimby E, Bentzen H, Kuittinen O, Lauritzsen GF, Nilsson-Ehle H, Ralfkiaer E, Ehinger M, Sundström C, Delabie J, Karjalainen-Lindsberg ML, Workman CT, Garde C, Elonen E, Brown P, Grønbaek K, Geisler CH. 15-year follow-up of the Second Nordic Mantle Cell Lymphoma trial (MCL2): prolonged remissions without survival plateau. Br J Haematol. 2016 Nov;175(3):410-418.”,”type”:”publication”,”url”:”https://onlinelibrary.wiley.com/doi/full/10.1111/bjh.14241″,”cancer_type_terms_string”:”Lymphoma”,”treatment_type_terms_string”:”Chemotherapy, Immunotherapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”Van Andel Institute–SU2C Cancer Epigenetics Dream Team: The Epigenetics Dream Team II”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/epigenetics-dream-team-ii/”,”publisher_year”:”British Journal of Haemotology, 2016″,”pub_med_id”:”27378674″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=27378674″},{“title”:”Albertsson-Lindblad A , Kolstad A, Laurell A, Räty R, Grønbæk K, Sundberg J, Pedersen LB, Ralfkiær E, Karjalainen-Lindsberg ML, Sundström C, Ehinger M, Geisler C, Jerkeman M. Lenalidomide-bendamustine-rituximab in patients older than 65 years with untreated mantle cell lymphoma. Blood. 2016 Oct 6;128(14):1814-1820.”,”type”:”publication”,”url”:”https://ashpublications.org/blood/article/128/14/1814/35637/Lenalidomidebendamustinerituximab-in-patients”,”cancer_type_terms_string”:”Lymphoma”,”treatment_type_terms_string”:”Chemotherapy, Immunotherapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”Van Andel Institute–SU2C Cancer Epigenetics Dream Team: The Epigenetics Dream Team II”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/epigenetics-dream-team-ii/”,”publisher_year”:”Blood, 2016″,”pub_med_id”:”27354719″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=27354719″},{“title”:”Glenthøj A, Ørskov AD, Hansen JW, Hadrup SR, O’Connell C, Grønbæk K. Immune Mechanisms in Myelodysplastic Syndrome. Int J Mol Sci. 2016 Jun 15;17(6).”,”type”:”publication”,”url”:”https://www.mdpi.com/1422-0067/17/6/944″,”cancer_type_terms_string”:”Leukemia (all types)”,”treatment_type_terms_string”:”Immunotherapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”Van Andel Institute–SU2C Cancer Epigenetics Dream Team: The Epigenetics Dream Team II”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/epigenetics-dream-team-ii/”,”publisher_year”:”International Journal of Molecular Sciences, 2016″,”pub_med_id”:”27314337″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=27314337″},{“title”:”Aslan D, Garde C, Nygaard MK, Helbo AS, Dimopoulos K, Hansen JW, Severinsen MT, Treppendahl MB, Sjø LD, Grønbæk K, Kristensen LS. Tumor suppressor microRNAs are downregulated in myelodysplastic syndrome with spliceosome mutations. Oncotarget. 2016 Mar 1;7(9):9951-63.”,”type”:”publication”,”url”:”http://www.oncotarget.com/index.php?journal=oncotarget&page=article&op=view&path[]=7127&path[]=20297″,”cancer_type_terms_string”:”Leukemia (all types)”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”Van Andel Institute–SU2C Cancer Epigenetics Dream Team: The Epigenetics Dream Team II”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/epigenetics-dream-team-ii/”,”publisher_year”:”Oncotarget, 2016″,”pub_med_id”:”26848861″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=26848861″},{“title”:”Sharma A, Vatapalli R, Abdelfatah E, Wyatt McMahon K, Kerner Z, A Guzzetta A, Singh J, Zahnow C, B Baylin S, Yerram S, Hu Y, Azad N, Ahuja N. Hypomethylating agents synergize with irinotecan to improve response to chemotherapy in colorectal cancer cells. PLoS One. 2017 Apr 26;12(4):e0176139.”,”type”:”publication”,”url”:”https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0176139″,”cancer_type_terms_string”:”Colorectal”,”treatment_type_terms_string”:”Chemotherapy, Immunotherapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”Van Andel Institute–SU2C Cancer Epigenetics Dream Team: The Epigenetics Dream Team II”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/epigenetics-dream-team-ii/”,”publisher_year”:”PLoS One, 2016″,”pub_med_id”:”28445481″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=28445481″},{“title”:”Chiappinelli KB, Zahnow CA, Ahuja N, Baylin SB. Combining Epigenetic and Immunotherapy to Combat Cancer. Send to Cancer Res. 2016 Apr 1;76(7):1683-9.”,”type”:”publication”,”url”:”https://cancerres.aacrjournals.org/content/76/7/1683″,”cancer_type_terms_string”:”Non – site Specific”,”treatment_type_terms_string”:”Epigenetic Therapy, Immunotherapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”Van Andel Institute–SU2C Cancer Epigenetics Dream Team: The Epigenetics Dream Team II”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/epigenetics-dream-team-ii/”,”publisher_year”:”Cancer Research, 2016″,”pub_med_id”:”26988985″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=26988985″},{“title”:”Munch-Petersen HD, Asmar F, Dimopoulos K, Areškevičiūtė A, Brown P, Girkov MS, Pedersen A, Sjö LD, Heegaard S, Broholm H, Kristensen LS, Ralfkiaer E, Grønbæk K. TP53 hotspot mutations are predictive of survival in primary central nervous system lymphoma patients treated with combination chemotherapy. Acta Neuropathol Commun. 2016 Apr 22;4:40.”,”type”:”publication”,”url”:”https://actaneurocomms.biomedcentral.com/articles/10.1186/s40478-016-0307-6″,”cancer_type_terms_string”:”Lymphoma”,”treatment_type_terms_string”:”Chemotherapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”Van Andel Institute–SU2C Cancer Epigenetics Dream Team: The Epigenetics Dream Team II”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/epigenetics-dream-team-ii/”,”publisher_year”:”Acta Neuropathologica Communications, 2016″,”pub_med_id”:”27101868″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=27101868″},{“title”:”Ahuja N, Sharma A, Baylin SB. Epigenetic Therapeutics: A New Weapon in the War Against Cancer. Annu Rev Med. 2016;67:73-89.”,”type”:”publication”,”url”:”https://www.annualreviews.org/doi/10.1146/annurev-med-111314-035900″,”cancer_type_terms_string”:”Non – site Specific”,”treatment_type_terms_string”:”Epigenetic Therapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”Van Andel Institute–SU2C Cancer Epigenetics Dream Team: The Epigenetics Dream Team II”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/epigenetics-dream-team-ii/”,”publisher_year”:”Annual Review of Medicine, 2016″,”pub_med_id”:”26768237″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=26768237″},{“title”:”Canisius S, Martens JWM, Wessels LFA. A novel independence test for somatic alterations in cancer shows that biology drives mutual exclusivity but chance explains most co-occurrence. Genome Biol. 2016 Dec 16;17(1):261.”,”type”:”publication”,”url”:”https://genomebiology.biomedcentral.com/articles/10.1186/s13059-016-1114-x”,”cancer_type_terms_string”:”Non – site Specific”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Research Team”,”research_project”:”SU2C−Dutch Cancer Society Translational Research Team: Prospective Use of DNA-Guided Personalized Cancer Treatment”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/research-teams/dna-guided-care-research-team/”,”publisher_year”:”Genome Biology, 2016″,”pub_med_id”:”27986087″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=27986087″},{“title”:”Thijssen B, Dijkstra TMH, Heskes T, Wessels LFA. BCM: toolkit for Bayesian analysis of computational models using samplers. BMC Syst Biol. 2016 Oct 21;10(1):100.”,”type”:”publication”,”url”:”https://bmcsystbiol.biomedcentral.com/articles/10.1186/s12918-016-0339-3″,”cancer_type_terms_string”:”Non – site Specific”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Research Team”,”research_project”:”SU2C−Dutch Cancer Society Translational Research Team: Prospective Use of DNA-Guided Personalized Cancer Treatment”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/research-teams/dna-guided-care-research-team/”,”publisher_year”:”BMC Systems Biology, 2016″,”pub_med_id”:”27769238″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=27769238″},{“title”:”Vis DJ, Bombardelli L, Lightfoot H, Iorio F, Garnett MJ, Wessels LFA. Multilevel models improve precision and speed of IC50 estimates. Pharmacogenomics. 2016 May;17(7):691-700.”,”type”:”publication”,”url”:”https://www.futuremedicine.com/doi/10.2217/pgs.16.15″,”cancer_type_terms_string”:”Non – site Specific”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Research Team”,”research_project”:”SU2C−Dutch Cancer Society Translational Research Team: Prospective Use of DNA-Guided Personalized Cancer Treatment”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/research-teams/dna-guided-care-research-team/”,”publisher_year”:”Pharmacogenomics, 2016″,”pub_med_id”:”27180993″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=27180993″},{“title”:”Voest EE, Bernards R. DNA-Guided Precision Medicine for Cancer: A Case of Irrational Exuberance? Cancer Discov. 2016 Feb;6(2):130-2.”,”type”:”publication”,”url”:”https://cancerdiscovery.aacrjournals.org/content/6/2/130″,”cancer_type_terms_string”:”Non – site Specific”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Research Team”,”research_project”:”SU2C−Dutch Cancer Society Translational Research Team: Prospective Use of DNA-Guided Personalized Cancer Treatment”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/research-teams/dna-guided-care-research-team/”,”publisher_year”:”Cancer Discovery, 2016″,”pub_med_id”:”26851184″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=26851184″},{“title”:”Wang J, Cazzato E, Ladewig E, Frattini V, Rosenbloom DI, Zairis S, Abate F, Liu Z, Elliott O, Shin YJ, Lee JK, Lee IH, Park WY, Eoli M, Blumberg AJ, Lasorella A, Nam DH, Finocchiaro G, Iavarone A, Rabadan R. Clonal evolution of glioblastoma under therapy. Nat Genet. 2016 Jul;48(7):768-76.”,”type”:”publication”,”url”:”https://www.nature.com/articles/ng.3590″,”cancer_type_terms_string”:”Brain/Nervous System”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Convergence Team”,”research_project”:”SU2C–National Science Foundation Drug Combinations Convergence Research Team: Rational Design of Anticancer Drug Combinations with Dynamic Multi-Dimensional Input”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/convergence-teams/rational-design-of-anticancer-drug-combinations-convergence-research-team/”,”publisher_year”:”Nature Genetics, 2016″,”pub_med_id”:”27270107″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=27270107″},{“title”:”Oshima K, Khiabanian H, da Silva-Almeida AC, Tzoneva G, Abate F, Ambesi-Impiombato A, Sanchez-Martin M, Carpenter Z, Penson A, Perez-Garcia A, Eckert C, Nicolas C, Balbin M, Sulis ML, Kato M, Koh K, Paganin M, Basso G, Gastier-Foster JM, Devidas M, Loh ML, Kirschner-Schwabe R, Palomero T, Rabadan R, Ferrando AA. Mutational landscape, clonal evolution patterns, and role of RAS mutations in relapsed acute lymphoblastic leukemia. Proc Natl Acad Sci U S A. 2016 Oct 4;113(40):11306-11311.”,”type”:”publication”,”url”:”https://www.pnas.org/content/113/40/11306″,”cancer_type_terms_string”:”Leukemia (all types)”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Convergence Team”,”research_project”:”SU2C–National Science Foundation Drug Combinations Convergence Research Team: Rational Design of Anticancer Drug Combinations with Dynamic Multi-Dimensional Input”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/convergence-teams/rational-design-of-anticancer-drug-combinations-convergence-research-team/”,”publisher_year”:”PNAS USA, 2016″,”pub_med_id”:”27655895″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=27655895″},{“title”:”Lawson DA, Bhakta NR, Kessenbrock K, Prummel KD, Yu Y, Takai K, Zhou A, Eyob H, Balakrishnan S, Wang CY, Yaswen P, Goga A, Werb Z. Single-cell analysis reveals a stem-cell program in human metastatic breast cancer cells. Nature. 2015 Oct 1;526(7571):131-5.”,”type”:”publication”,”url”:”https://www.nature.com/articles/nature15260″,”cancer_type_terms_string”:”Breast”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C Breast Cancer Dream Team: An Integrated Approach to Targeting Breast Cancer Molecular Subtypes and Their Resistance Phenotypes”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/breast-cancer-resistant-phenotypes-dream-team/”,”publisher_year”:”Nature, 2015″,”pub_med_id”:”26416748″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=26416748″},{“title”:”Mario Giuliano, Huizhong Hu, Yen-Chao Wang, Xiaoyong Fu, Agostina Nardone, Sabrina Herrera, Sufeng Mao, Alejandro Contreras, Carolina Gutierrez, Tao Wang, Susan G. Hilsenbeck, Carmine De Angelis, Nicholas J. Wang, Laura M. Heiser, Joe W. Gray, Sara Lopez-Tarruella, Anne C. Pavlick, Meghana V. Trivedi, Gary C. Chamness, Jenny C. Chang, C. Kent Osborne, Mothaffar F. Rimawi, and Rachel Schiff. Upregulation of ER signaling as an adaptive mechanism of cell survival in HER2-positive breast tumors treated with anti-HER2 therapy. Clin Cancer Res. 2015 Sep 1;21(17):3995-4003.”,”type”:”publication”,”url”:”https://clincancerres.aacrjournals.org/content/21/17/3995″,”cancer_type_terms_string”:”Breast”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C Breast Cancer Dream Team: An Integrated Approach to Targeting Breast Cancer Molecular Subtypes and Their Resistance Phenotypes”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/breast-cancer-resistant-phenotypes-dream-team/”,”publisher_year”:”Clinical Cancer Research, 2015″,”pub_med_id”:”26015514″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=26015514″},{“title”:”A Fatih Sarioglu, Nicola Aceto, Nikola Kojic, Maria C Donaldson, Mahnaz Zeinali, Bashar Hamza, Amanda Engstrom, Huili Zhu, Tilak K Sundaresan, David T Miyamoto, Xi Luo, Aditya Bardia, Ben S Wittner, Sridhar Ramaswamy, Toshi Shioda, David T Ting, Shannon L Stott, Ravi Kapur, Shyamala Maheswaran, Daniel A Haber & Mehmet Toner. A microfluidic device for label-free, physical capture of circulating tumor cell clusters. Nat Methods. 2015 Jul;12(7):685-91.”,”type”:”publication”,”url”:”https://www.nature.com/articles/nmeth.3404″,”cancer_type_terms_string”:”Breast, Prostate”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C Circulating Tumor Cell Dream Team: Bioengineering and Clinical Applications of Circulating Tumor Cell Chip”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/circulating-tumor-cells-dream-team/”,”publisher_year”:”Nature Methods, 2015″,”pub_med_id”:”25984697″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=25984697″},{“title”:”Issa JP, Roboz G, Rizzieri D, Jabbour E, Stock W, O’Connell C, Yee K, Tibes R, Griffiths EA, Walsh K, Daver N, Chung W, Naim S, Taverna P, Oganesian A, Hao Y, Lowder JN, Azab M, Kantarjian H. Safety and tolerability of guadecitabine (SGI-110) in patients with myelodysplastic syndrome and acutemyeloid leukaemia: a multicentre, randomised, dose-escalation phase 1 study. Lancet Oncol. 2015 Sep;16(9):1099-1110.”,”type”:”publication”,”url”:”https://www.thelancet.com/journals/lanonc/article/PIIS1470-2045(15)00038-8/fulltext”,”cancer_type_terms_string”:”Leukemia (all types)”,”treatment_type_terms_string”:”Epigenetic Therapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C Epigenetics Dream Team: Bringing Epigenetic Therapy to the Forefront of Cancer Management”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/epigenetics-therapy-2009-dream-team/”,”publisher_year”:”The Lancet. Oncology, 2015″,”pub_med_id”:”26296954″,”pub_med_url”:”https://www.thelancet.com/journals/lanonc/article/PIIS1470-2045(15)00038-8/fulltext”},{“title”:”Roulois D, Loo Yau H, Singhania R, Wang Y, Danesh A, Shen SY, Han H, Liang G, Jones PA, Pugh TJ, O’Brien C, De Carvalho DD. DNA-Demethylating Agents Target Colorectal Cancer Cells by Inducing Viral Mimicry by Endogenous Transcripts. Cell. 2015 Aug 27;162(5):961-73.”,”type”:”publication”,”url”:”https://www.cell.com/cell/fulltext/S0092-8674(15)00972-1?_returnURL=https%3A%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2FS0092867415009721%3Fshowall%3Dtrue”,”cancer_type_terms_string”:”Colorectal”,”treatment_type_terms_string”:”Epigenetic Therapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C Epigenetics Dream Team: Bringing Epigenetic Therapy to the Forefront of Cancer Management”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/epigenetics-therapy-2009-dream-team/”,”publisher_year”:”Cell, 2015″,”pub_med_id”:”26317465″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=26317465″},{“title”:”Chiappinelli KB, Strissel PL, Desrichard A, Li H, Henke C, Akman B, Hein A, Rote NS, Cope LM, Snyder A, Makarov V, Buhu S, Slamon DJ, Wolchok JD, Pardoll DM, Beckmann MW, Zahnow CA, Mergoub T, Chan TA, Baylin SB, Strick R. Inhibiting DNA Methylation Causes an Interferon Response in Cancer via dsRNA Including Endogenous Retroviruses. Cell. 2015 Aug 27;162(5):974-86.”,”type”:”publication”,”url”:”https://www.cell.com/cell/fulltext/S0092-8674(15)00848-X?_returnURL=https%3A%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2FS009286741500848X%3Fshowall%3Dtrue”,”cancer_type_terms_string”:”Ovarian”,”treatment_type_terms_string”:”Epigenetic Therapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C Epigenetics Dream Team: Bringing Epigenetic Therapy to the Forefront of Cancer Management”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/epigenetics-therapy-2009-dream-team/”,”publisher_year”:”Cell, 2015″,”pub_med_id”:”26317466″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=26317466%5Buid%5D”},{“title”:”Yamazaki J, Jelinek J, Lu Y, Cesaroni M, Madzo J, Neumann F, He R, Taby R, Vasanthakumar A, Macrae T, Ostler KR, Kantarjian HM,Liang S, Estecio MR, Godley LA, Issa JP. TET2 Mutations Affect Non-CpG Island DNA Methylation at Enhancers and Transcription Factor-Binding Sites in Chronic Myelomonocytic Leukemia. Cancer Res. 2015 Jul 15;75(14):2833-43.”,”type”:”publication”,”url”:”https://cancerres.aacrjournals.org/content/75/14/2833″,”cancer_type_terms_string”:”Leukemia (all types)”,”treatment_type_terms_string”:”Epigenetic Therapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C Epigenetics Dream Team: Bringing Epigenetic Therapy to the Forefront of Cancer Management”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/epigenetics-therapy-2009-dream-team/”,”publisher_year”:”Cancer Research, 2015″,”pub_med_id”:”25972343″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=25972343″},{“title”:”Hidalgo M, Plaza C, Musteanul M, lllei P, Brachmanna C B, Heisea C, Piercea D, Lopez-Casasr PP, Menendezl C, Taberneros J, Romano A, Weia X, Lopez-Rios F, and Von Hoff DD. SPARC Expression Did Not Predict Efficacy of nab-Paclitaxel Plus Gemcitabine or Gemcitabine Alone for Metastatic Pancreatic Cancer in an Exploratory Analysis of the Phase lll MPACT Trial. Clin Cancer Res. 2015 Nov 1;21(21):4811-8.”,”type”:”publication”,”url”:”https://clincancerres.aacrjournals.org/content/21/21/4811″,”cancer_type_terms_string”:”Pancreatic”,”treatment_type_terms_string”:”Chemotherapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C Pancreatic Dream Team: Cutting Off the Fuel Supply: A New Approach in the Treatment of Pancreatic Cancer”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/cutting-fuel-supply-to-pancreatic-cancer-dream-team/”,”publisher_year”:”Clinical Cancer Research, 2015″,”pub_med_id”:”26169969″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=26169969″},{“title”:”Michael D. Arensman, Phillip Nguyen, Kathleen M. Kershaw, Anna R. Lay, Claire A. Ostertag-Hill, Mara H. Sherman, Michael Downes, Christopher Liddle, Ronald M. Evans, and David W. Dawson. Calcipotriol Targets LRP6 to Inhibit Wnt Signaling in Pancreatic Cancer. Mol Cancer Res. 2015 Nov;13(11):1509-19.”,”type”:”publication”,”url”:”https://mcr.aacrjournals.org/content/13/11/1509″,”cancer_type_terms_string”:”Pancreatic”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C Pancreatic Dream Team: Cutting Off the Fuel Supply: A New Approach in the Treatment of Pancreatic Cancer”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/cutting-fuel-supply-to-pancreatic-cancer-dream-team/”,”publisher_year”:”Molecular Cancer Research, 2015″,”pub_med_id”:”26224368″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=26224368″},{“title”:”Rajeshkumar NV, Dutta P, Yabuuchi S, de Wilde RF, Matrinez GV, Le A, Kamphorst JJ, Rabinowitz JD, Jain SK, Hidalgo M, Dang CV, Gillies RJ, Maitra A. Therapeutic targeting of the Warburg effect in pancreatic cancer relies on an absence of p53 function. Cancer Res. 2015 Aug 15;75(16):3355-64.”,”type”:”publication”,”url”:”https://cancerres.aacrjournals.org/content/75/16/3355″,”cancer_type_terms_string”:”Pancreatic”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C Pancreatic Dream Team: Cutting Off the Fuel Supply: A New Approach in the Treatment of Pancreatic Cancer”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/cutting-fuel-supply-to-pancreatic-cancer-dream-team/”,”publisher_year”:”Cancer Research, 2015″,”pub_med_id”:”26113084″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=26113084″},{“title”:”Sausen M, Phallen J, Adleff V, Jones S, Leary RJ, Barrett MT, Anagnostou V, Parpart-Li S, Murphy D, Kay Li Q, Hruban CA, Scharpf R, White JR, O’Dwyer PJ, Allen PJ, Eshleman JR, Thompson CB, Klimstra DS, Linehan DC, Maitra A, Hruban RH, Diaz LA Jr, Von Hoff DD, Johansen JS, Drebin JA, Velculescu VE. Clinical implications of genomic alterations in the tumour and circulation of pancreatic cancer patients. Nat Commun. 2015 Jul 7;6:7686.”,”type”:”publication”,”url”:”https://www.nature.com/articles/ncomms8686″,”cancer_type_terms_string”:”Pancreatic”,”treatment_type_terms_string”:”Screening/ Early Detection”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C Pancreatic Dream Team: Cutting Off the Fuel Supply: A New Approach in the Treatment of Pancreatic Cancer”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/cutting-fuel-supply-to-pancreatic-cancer-dream-team/”,”publisher_year”:”Nature Communications, 2015″,”pub_med_id”:”26154128″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=26154128″},{“title”:”Tabernero J, Chiorean EG, Infante JR, Hingorani SR, Ganju V, Weekes C, Scheithauer W, Ramanathan RK, Goldstein D, Penenberg DN, Romano A, Ferrara S, Von Hoff DD. Prognostic factors of survival in a randomized phase III trial (MPACT) of weekly nab-paclitaxel plus gemcitabine versus gemcitabine alone in patients with metastatic pancreatic cancer. Oncologist. 2015 Feb;20(2):143-50.”,”type”:”publication”,”url”:”http://theoncologist.alphamedpress.org/content/20/2/143″,”cancer_type_terms_string”:”Pancreatic”,”treatment_type_terms_string”:”Chemotherapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C Pancreatic Dream Team: Cutting Off the Fuel Supply: A New Approach in the Treatment of Pancreatic Cancer”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/cutting-fuel-supply-to-pancreatic-cancer-dream-team/”,”publisher_year”:”The Oncologist, 2015″,”pub_med_id”:”25582141″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=25582141″},{“title”:”Venneti S, Dunphy MP, Zhang H, Pitter KL, Zanzonico P, Campos C, Carlin SD, La Rocca G, Lyashchenko S, Ploessl K, Rohle D, Omuro AM, Cross JR, Brennan CW, Weber WA, Holland EC, Mellinghoff IK, Kung HF, Lewis JS, Thompson CB. Glutamine-based PET imaging facilitates enhanced metabolic evaluation of gliomas in vivo. Sci Transl Med. 2015 Feb 11;7(274):274ra17.”,”type”:”publication”,”url”:”https://stm.sciencemag.org/content/7/274/274ra17″,”cancer_type_terms_string”:”Pancreatic”,”treatment_type_terms_string”:”Screening/ Early Detection”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C Pancreatic Dream Team: Cutting Off the Fuel Supply: A New Approach in the Treatment of Pancreatic Cancer”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/cutting-fuel-supply-to-pancreatic-cancer-dream-team/”,”publisher_year”:”Science Translational Medicine, 2015″,”pub_med_id”:”25673762″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=25673762″},{“title”:”Jurre J. Kamphorst, Michel Nofal, Cosimo Commisso, Sean R. Hackett, Wenyun Lu, Elda Grabocka, Matthew G. Vander Heiden, George Miller, Jeffrey A. Drebin, Dafna Bar-Sagi, Craig B. Thompson & Joshua D. Rabinowitz. Human pancreatic cancer tumors are nutrient poor and tumor cells actively scavenge extracellular protein. Cancer Res. 2015 Feb 1;75(3):544-53″,”type”:”publication”,”url”:”https://cancerres.aacrjournals.org/content/75/3/544″,”cancer_type_terms_string”:”Pancreatic”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C Pancreatic Dream Team: Cutting Off the Fuel Supply: A New Approach in the Treatment of Pancreatic Cancer”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/cutting-fuel-supply-to-pancreatic-cancer-dream-team/”,”publisher_year”:”Cancer Research, 2015″,”pub_med_id”:”25644265″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=25644265″},{“title”:”Goldstein D, El-Maraghi RH, Hammel P, Heinemann V, Kunzmann V, Sastre J, Scheithauer W, Siena S, Tabernero J, Teixeira L, Tortora G, Van Laethem JL, Young R, Penenberg DN, Lu B, Romano A, Von Hoff DD. nab-Paclitaxel plus gemcitabine for metastatic pancreatic cancer: long-term survival from a phase III trial. J Natl Cancer Inst. 2015 Jan 31;107(2).”,”type”:”publication”,”url”:”https://academic.oup.com/jnci/article/107/2/dju413/902453″,”cancer_type_terms_string”:”Pancreatic”,”treatment_type_terms_string”:”Chemotherapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C Pancreatic Dream Team: Cutting Off the Fuel Supply: A New Approach in the Treatment of Pancreatic Cancer”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/cutting-fuel-supply-to-pancreatic-cancer-dream-team/”,”publisher_year”:”Journal of the National Cancer Institute, 2015″,”pub_med_id”:”25638248″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=25638248″},{“title”:”Melissa L. Fishel, Xue Wu, Cecilia M. Devlin, Derek P. Logsdon, Yanlin Jiang, Meihua Luo, Ying He, Zhangsheng Yu, Yan Tong, Kelsey P. Lipking, Anirban Maitra, N. V. Rajeshkumar, Glenda Scandura, Mark R. Kelley, Mircea Ivan. Apurinic/Apyrimidinic Endonuclease/Redox Factor-1 (APE1/Ref-1) redox function negatively regulates NRF2. J Biol Chem. 2015 Jan 30;290(5):3057-68.”,”type”:”publication”,”url”:”http://www.jbc.org/content/290/5/3057″,”cancer_type_terms_string”:”Pancreatic”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C Pancreatic Dream Team: Cutting Off the Fuel Supply: A New Approach in the Treatment of Pancreatic Cancer”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/cutting-fuel-supply-to-pancreatic-cancer-dream-team/”,”publisher_year”:”Journal of Biological Chemistry, 2015″,”pub_med_id”:”25492865″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=25492865″},{“title”:”Juric D, Castel P, Griffith M, Griffith OL, Won HH, Ellis H, Ebbesen SH, Ainscough BJ, Ramu A, Iyer G, Shah RH, Huynh T, Mino-Kenudson M, Sgroi D, Isakoff S, Thabet A, Elamine L, Solit DB, Lowe SW, Quadt C, Peters M, Derti A, Schegel R, Huang A, Mardis ER, Berger MF, Baselga J, Scaltriti M. Convergent loss of PTEN leads to clinical resistance to a PI3Kalpha inhibitor. Nature. 2015 Feb 12;518(7538):240-4.”,”type”:”publication”,”url”:”https://www.nature.com/articles/nature13948″,”cancer_type_terms_string”:”Breast”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C PI3K Dream Team: Targeting the PI3K Pathway in Women’s Cancers”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/womens-cancers-pi3k-dream-team/”,”publisher_year”:”Nature, 2015″,”pub_med_id”:”25409150″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=25409150″},{“title”:”LoRusso P, Boerner S, Pilot MJ, Forman K, Zuccaro C, Kiefer J, Liang W, Hunsberger S, Redman B, Markovic S, Sekulic A, Bryce A, Joseph R, Cowey CL, Fecher LA, Sosman J, Chapman P, Schwartz G, Craig DW, Carpten JD, and Trent JM. Pilot Trial of Selecting Molecularly Guided Therapy for Patients with Non–V600 BRAF-Mutant Metastatic Melanoma: Experience of the SU2C/MRA Melanoma Dream Team. Molecular Cancer Therapeutics. 2015 Aug;14(8):1962-71″,”type”:”publication”,”url”:”https://mct.aacrjournals.org/content/14/8/1962″,”cancer_type_terms_string”:”Melanoma”,”treatment_type_terms_string”:”Immunotherapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–Melanoma Research Alliance Melanoma Dream Team: Personalized Medicine for Patients with BRAF Wild-Type (BRAFwt) Cancer”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/melanoma-braf-wildtype-dream-team/”,”publisher_year”:”Molecular Cancer Therapeutics, 2015″,”pub_med_id”:”26063764″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=26063764″},{“title”:”Schork, NJ. Personalized medicine: Time for one-person trials. Nature. 2015 Apr 30;520(7549):609-11.”,”type”:”publication”,”url”:”https://www.nature.com/news/personalized-medicine-time-for-one-person-trials-1.17411″,”cancer_type_terms_string”:”Non – site Specific”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–Melanoma Research Alliance Melanoma Dream Team: Personalized Medicine for Patients with BRAF Wild-Type (BRAFwt) Cancer”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/melanoma-braf-wildtype-dream-team/”,”publisher_year”:”Nature, 2015″,”pub_med_id”:”25925459″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=25925459″},{“title”:”Nasser S, Kurdolgu AA, Izatt T, Aldrich J, Russell ML, Christoforides A, Tembe WD, Kiefer J, Corneveaux J, Byron SA, Forman KM, Zuccaro C, Keats JJ, LoRusso PM, Carpten JD, Trent JM, and Craig DW. An Integrated Framework for Reporting Clinically Relevant Biomarkers from Paired Tumor/Normal Genomic and Transcriptomic Sequencing Data in Support of Clinical Trials in Personalized Medicine Pac Symp Biocomputer 2015:56-67″,”type”:”publication”,”url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=25592568″,”cancer_type_terms_string”:”Non – site Specific”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–Melanoma Research Alliance Melanoma Dream Team: Personalized Medicine for Patients with BRAF Wild-Type (BRAFwt) Cancer”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/melanoma-braf-wildtype-dream-team/”,”publisher_year”:”Pacific Symposium on Biocomputing, 2015″,”pub_med_id”:”25592568″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=25592568″},{“title”:”Bains S, Adusumilli PS. Is spread through alveolar spaces, the newly recognized pattern of invasion, a potential game changer in lung adenocarcinoma? Ann Transl Med. 2015 Dec;3(22):350.”,”type”:”publication”,”url”:”http://atm.amegroups.com/article/view/7935/9327″,”cancer_type_terms_string”:”Lung”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–Cancer Research Institute Cancer Immunology Dream Team: Immunologic Checkpoint Blockade and Adoptive Cell Transfer in Cancer Therapy”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/immunologic-checkpoint-blockade-dream-team/”,”publisher_year”:”Annals of Translational Medicine, 2015″,”pub_med_id”:”26807405″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=26807405″},{“title”:”Schmitt TM, Stromnes IM, Chapuis AG, Greenberg PD. New strategies in engneering T-cell receptor gene-modified T cells to more effectively target malignacies.Clin Cancer Res. Clin Cancer Res. 2015 Dec 1;21(23):5191-7.”,”type”:”publication”,”url”:”https://clincancerres.aacrjournals.org/content/21/23/5191″,”cancer_type_terms_string”:”Non – site Specific”,”treatment_type_terms_string”:”Immunotherapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–Cancer Research Institute Cancer Immunology Dream Team: Immunologic Checkpoint Blockade and Adoptive Cell Transfer in Cancer Therapy”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/immunologic-checkpoint-blockade-dream-team/”,”publisher_year”:”Clinical Cancer Research, 2015″,”pub_med_id”:”26463711″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=26463711″},{“title”:”Yee C, Lizee G, Schueneman AJ. Endogenous T-Cell Therapy: Clinical Experience. Cancer J. 2015 Nov-Dec;21(6):492-500.”,”type”:”publication”,”url”:”https://insights.ovid.com/article/00130404-201511000-00009″,”cancer_type_terms_string”:”Melanoma, Non – site Specific”,”treatment_type_terms_string”:”Immunotherapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–Cancer Research Institute Cancer Immunology Dream Team: Immunologic Checkpoint Blockade and Adoptive Cell Transfer in Cancer Therapy”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/immunologic-checkpoint-blockade-dream-team/”,”publisher_year”:”Cancer Journal, 2015″,”pub_med_id”:”26588682″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=26588682″},{“title”:”Zhao Z, Condomines M, van der Stegen SJ, Perna F, Kloss CC, Gunset G, Plotkin J, Sadelain M. Structural design of engineered costimulation determines tumor rejection kinetics and persistence of CAR T cells.Cancer Cell. 2015 Oct 12;28(4):415-428.”,”type”:”publication”,”url”:”https://www.cell.com/cancer-cell/fulltext/S1535-6108(15)00335-9″,”cancer_type_terms_string”:”Non – site Specific”,”treatment_type_terms_string”:”Immunotherapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–Cancer Research Institute Cancer Immunology Dream Team: Immunologic Checkpoint Blockade and Adoptive Cell Transfer in Cancer Therapy”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/immunologic-checkpoint-blockade-dream-team/”,”publisher_year”:”Cancer Cell, 2015″,”pub_med_id”:”26461090″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=26461090″},{“title”:”Gao J, He Q, Subudhi S, Aparicio A, Zurita-Saavedra A, Lee DH, Jimenez C, Suarez-Almazor M, Sharma P. Review of immune-related adverse events in prostate cancer patients treated with ipilimumab: MD Anderson experience. Oncogene. 2015 Oct;34(43):5411-7.”,”type”:”publication”,”url”:”https://www.nature.com/articles/onc20155″,”cancer_type_terms_string”:”Prostate”,”treatment_type_terms_string”:”Immunotherapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–Cancer Research Institute Cancer Immunology Dream Team: Immunologic Checkpoint Blockade and Adoptive Cell Transfer in Cancer Therapy”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/immunologic-checkpoint-blockade-dream-team/”,”publisher_year”:”Oncogene, 2015″,”pub_med_id”:”25659583″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=25659583″},{“title”:”Ribas A. Releasing the Brakes on Cancer Immunotherapy. N Engl J Med. 2015 Oct 15;373(16):1490-2.”,”type”:”publication”,”url”:”https://www.nejm.org/doi/10.1056/NEJMp1510079″,”cancer_type_terms_string”:”Non – site Specific”,”treatment_type_terms_string”:”Immunotherapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–Cancer Research Institute Cancer Immunology Dream Team: Immunologic Checkpoint Blockade and Adoptive Cell Transfer in Cancer Therapy”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/immunologic-checkpoint-blockade-dream-team/”,”publisher_year”:”New England Journal of Medicine, 2015″,”pub_med_id”:”26348216″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=26348216″},{“title”:”Ribas A. Adaptive immune resistance: How cancer protects from immune attack. Cancer Discov. 2015 Sep;5(9):915-9.”,”type”:”publication”,”url”:”https://cancerdiscovery.aacrjournals.org/content/5/9/915″,”cancer_type_terms_string”:”Non – site Specific”,”treatment_type_terms_string”:”Immunotherapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–Cancer Research Institute Cancer Immunology Dream Team: Immunologic Checkpoint Blockade and Adoptive Cell Transfer in Cancer Therapy”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/immunologic-checkpoint-blockade-dream-team/”,”publisher_year”:”Cancer Discovery, 2015″,”pub_med_id”:”26272491″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=26272491″},{“title”:”Taube JM, Young GD, McMiller TL, Chen S, Salas JT, Pritchard TS, Xu H, Meeker AK, Fan J, Cheadle C, Berger AE, Pardoll DM, Topalian SL. Differential expression of immune-regulatory genes associated with PD-L1 display in melanoma: implications for PD-1 pathway blockade. Clin Cancer Res. 2015 Sep 1;21(17):3969-76. d”,”type”:”publication”,”url”:”https://clincancerres.aacrjournals.org/content/21/17/3969″,”cancer_type_terms_string”:”Melanoma”,”treatment_type_terms_string”:”Immunotherapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–Cancer Research Institute Cancer Immunology Dream Team: Immunologic Checkpoint Blockade and Adoptive Cell Transfer in Cancer Therapy”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/immunologic-checkpoint-blockade-dream-team/”,”publisher_year”:”Clinical Cancer Research, 2015″,”pub_med_id”:”25944800″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=25944800″},{“title”:”Lipson EJ, Forde PM, Hammers H-G, Emens LA, Taube JM, Topalian SL. Antagonists of PD-1 and PD-L1 in cancer treatment. Semin Oncol. 2015 Aug;42(4):587-600.”,”type”:”publication”,”url”:”https://www.sciencedirect.com/science/article/abs/pii/S0093775415001116?via%3Dihub”,”cancer_type_terms_string”:”Lung, Melanoma”,”treatment_type_terms_string”:”Immunotherapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–Cancer Research Institute Cancer Immunology Dream Team: Immunologic Checkpoint Blockade and Adoptive Cell Transfer in Cancer Therapy”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/immunologic-checkpoint-blockade-dream-team/”,”publisher_year”:”Seminars in Oncology, 2015″,”pub_med_id”:”26320063″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=26320063″},{“title”:”Chiappinelli KB, Strissel PL, Desrichard A, Li H, Henke C, Akman B, Hein A, Rote NS, Cope LM, Snyder A, Makarov V, Buhu S, Slamon DJ, Wolchok JD, Pardoll DM, Beckmann MW, Zahnow CA, Mergoub T, Chan TA, Baylin SB, Strick R. Inhibiting DNA Methylation Causes an Interferon Response in Cancer via dsRNA including Endogenous Retroviruses. Cell. 2015 Aug 27;162(5):974-86.”,”type”:”publication”,”url”:”https://www.cell.com/cell/fulltext/S0092-8674(15)00848-X?_returnURL=https%3A%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2FS009286741500848X%3Fshowall%3Dtrue”,”cancer_type_terms_string”:”Melanoma”,”treatment_type_terms_string”:”Immunotherapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–Cancer Research Institute Cancer Immunology Dream Team: Immunologic Checkpoint Blockade and Adoptive Cell Transfer in Cancer Therapy”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/immunologic-checkpoint-blockade-dream-team/”,”publisher_year”:”Cell, 2015″,”pub_med_id”:”26317466″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=26317466″},{“title”:”Kelderman S, Schumacher TN, Kvistborg P. Mismatch Repair-Deficient Cancers Are Targets for Anti-PD-1 Therapy. Cancer Cell. 2015 Jul 13;28(1):11-3.”,”type”:”publication”,”url”:”https://www.cell.com/cancer-cell/fulltext/S1535-6108(15)00222-6″,”cancer_type_terms_string”:”Non – site Specific”,”treatment_type_terms_string”:”Immunotherapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–Cancer Research Institute Cancer Immunology Dream Team: Immunologic Checkpoint Blockade and Adoptive Cell Transfer in Cancer Therapy”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/immunologic-checkpoint-blockade-dream-team/”,”publisher_year”:”Cancer Cell, 2015″,”pub_med_id”:”26175412″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=26175412″},{“title”:”Homet Moreno B, Parisi G, Robert L, Ribas A. Anti-PD-1 therapy in melanoma. Semin Oncol. 2015 Jun;42(3):466-73.”,”type”:”publication”,”url”:”https://www.sciencedirect.com/science/article/abs/pii/S009377541500024X?via%3Dihub”,”cancer_type_terms_string”:”Melanoma”,”treatment_type_terms_string”:”Immunotherapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–Cancer Research Institute Cancer Immunology Dream Team: Immunologic Checkpoint Blockade and Adoptive Cell Transfer in Cancer Therapy”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/immunologic-checkpoint-blockade-dream-team/”,”publisher_year”:”Seminars in Oncology, 2015″,”pub_med_id”:”25965365″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=25965365″},{“title”:”Hu-Lieskovan S, Homet Moreno B, Ribas A. Excluding T cells: Is β-catenin the full story? Cancer Cell. 2015 Jun 8;27(6):749-50.”,”type”:”publication”,”url”:”https://www.cell.com/cancer-cell/fulltext/S1535-6108(15)00190-7″,”cancer_type_terms_string”:”Non – site Specific”,”treatment_type_terms_string”:”Immunotherapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–Cancer Research Institute Cancer Immunology Dream Team: Immunologic Checkpoint Blockade and Adoptive Cell Transfer in Cancer Therapy”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/immunologic-checkpoint-blockade-dream-team/”,”publisher_year”:”Cancer Cell, 2015″,”pub_med_id”:”26058073″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=26058073″},{“title”:”Homet Moreno B, Ribas A. Anti-programmed cell death protein-1/ligand-1 therapy in different cancers. Br J Cancer. 2015 Apr 28;112(9):1421-7.”,”type”:”publication”,”url”:”https://www.nature.com/articles/bjc2015124″,”cancer_type_terms_string”:”Bladder, Breast, Kidney, Lung, Lymphoma, Melanoma”,”treatment_type_terms_string”:”Immunotherapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–Cancer Research Institute Cancer Immunology Dream Team: Immunologic Checkpoint Blockade and Adoptive Cell Transfer in Cancer Therapy”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/immunologic-checkpoint-blockade-dream-team/”,”publisher_year”:”British Journal of Cancer, 2015″,”pub_med_id”:”25856776″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=25856776″},{“title”:”Sharma P, Allison, JP. Immune checkpoint targeting in cancer therapy: toward combination strategies with curative potential. Cell. 2015 Apr 9;161(2):205-14.”,”type”:”publication”,”url”:”https://www.cell.com/cell/fulltext/S0092-8674(15)00317-7?_returnURL=https%3A%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2FS0092867415003177%3Fshowall%3Dtrue”,”cancer_type_terms_string”:”Non – site Specific”,”treatment_type_terms_string”:”Immunotherapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–Cancer Research Institute Cancer Immunology Dream Team: Immunologic Checkpoint Blockade and Adoptive Cell Transfer in Cancer Therapy”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/immunologic-checkpoint-blockade-dream-team/”,”publisher_year”:”Cell, 2015″,”pub_med_id”:”25860605″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=25860605″},{“title”:”Topalian SL, Drake CG, Pardoll DM. Immune checkpoint blockade: a common denominator approach to cancer therapy. Cancer Cell. 2015 Apr 13;27(4):450-61.”,”type”:”publication”,”url”:”https://www.cell.com/cancer-cell/fulltext/S1535-6108(15)00089-6″,”cancer_type_terms_string”:”Non – site Specific”,”treatment_type_terms_string”:”Immunotherapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–Cancer Research Institute Cancer Immunology Dream Team: Immunologic Checkpoint Blockade and Adoptive Cell Transfer in Cancer Therapy”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/immunologic-checkpoint-blockade-dream-team/”,”publisher_year”:”Cancer Cell, 2015″,”pub_med_id”:”25858804″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=25858804″},{“title”:”Ton N. Schumacher and Robert D. Schreiber. Neoantigens in cancer immunotherapy. Science. 2015 Apr 3;348(6230):69-74.”,”type”:”publication”,”url”:”https://science.sciencemag.org/content/348/6230/69″,”cancer_type_terms_string”:”Non – site Specific”,”treatment_type_terms_string”:”Immunotherapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–Cancer Research Institute Cancer Immunology Dream Team: Immunologic Checkpoint Blockade and Adoptive Cell Transfer in Cancer Therapy”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/immunologic-checkpoint-blockade-dream-team/”,”publisher_year”:”Science, 2015″,”pub_med_id”:”25838375″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=25838375″},{“title”:”Pardoll DM. Distinct mechanisms of tumor resistance to NK killing: of mice and men. Immunity. 2015 Apr 21;42(4):605-6.”,”type”:”publication”,”url”:”https://www.cell.com/immunity/fulltext/S1074-7613(15)00136-3?_returnURL=https%3A%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2FS1074761315001363%3Fshowall%3Dtrue”,”cancer_type_terms_string”:”Non – site Specific”,”treatment_type_terms_string”:”Immunotherapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–Cancer Research Institute Cancer Immunology Dream Team: Immunologic Checkpoint Blockade and Adoptive Cell Transfer in Cancer Therapy”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/immunologic-checkpoint-blockade-dream-team/”,”publisher_year”:”Immunity, 2015″,”pub_med_id”:”25902479″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=25902479″},{“title”:”Rizvi NA, Hellmann MD, Snyder A, Kvistborg P, Makarov V, Havel JJ, Lee W, Yuan J, Wong P, Ho TS, Miller ML, Rekhtman N, Moreira AL, Ibrahim F, Bruggeman C, Gasmi B, Zappasodi R, Maeda Y, Sander C, Garon EB, Merghoub T, Wolchok JD, Schumacher TN, Chan TA. Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science. 2015 Apr 3;348(6230):124-8.”,”type”:”publication”,”url”:”https://science.sciencemag.org/content/348/6230/124″,”cancer_type_terms_string”:”Lung”,”treatment_type_terms_string”:”Immunotherapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–Cancer Research Institute Cancer Immunology Dream Team: Immunologic Checkpoint Blockade and Adoptive Cell Transfer in Cancer Therapy”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/immunologic-checkpoint-blockade-dream-team/”,”publisher_year”:”Science, 2015″,”pub_med_id”:”25765070″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=25765070″},{“title”:”Piesche M, Ho VT, Kim H, Nakazaki Y, Nehil M, Yaghi NK, Kolodin D, Weiser J, Altevogt P, Kiefel H, Alyea EP, Antin JH, Cutler C, Koreth J, Canning C, Ritz J, Soiffer RJ, Dranoff G. Angiogenic cytokines are antibody targets during graft-versus-leukemia reactions. Clin Cancer Res. 2015 Mar 1;21(5):1010-8.”,”type”:”publication”,”url”:”https://clincancerres.aacrjournals.org/content/21/5/1010″,”cancer_type_terms_string”:”Leukemia (all types)”,”treatment_type_terms_string”:”Immunotherapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–Cancer Research Institute Cancer Immunology Dream Team: Immunologic Checkpoint Blockade and Adoptive Cell Transfer in Cancer Therapy”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/immunologic-checkpoint-blockade-dream-team/”,”publisher_year”:”Clinical Cancer Research, 2015″,”pub_med_id”:”25538258″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=25538258″},{“title”:”Sharma P, Allison, JP. The future of immune checkpoint therap. Science. 2015 Apr 3;348(6230):56-61.”,”type”:”publication”,”url”:”https://science.sciencemag.org/content/348/6230/56″,”cancer_type_terms_string”:”Non – site Specific”,”treatment_type_terms_string”:”Immunotherapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–Cancer Research Institute Cancer Immunology Dream Team: Immunologic Checkpoint Blockade and Adoptive Cell Transfer in Cancer Therapy”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/immunologic-checkpoint-blockade-dream-team/”,”publisher_year”:”Science, 2015″,”pub_med_id”:”25838373″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=25838373″},{“title”:”Rodic N, Anders RA, Eshleman JR, Lin MT, Xu H, Kim JH, Beierl K, Chen S, Luber BS, Wang H, Topalian SL, Pardoll DM, Taube JM. PD-L1 expression in melanocytic lesions does not correlate with the BRAF V600E mutation. Cancer Immunol Res. 2015 Feb;3(2):110-5.”,”type”:”publication”,”url”:”https://cancerimmunolres.aacrjournals.org/content/3/2/110″,”cancer_type_terms_string”:”Melanoma”,”treatment_type_terms_string”:”Immunotherapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–Cancer Research Institute Cancer Immunology Dream Team: Immunologic Checkpoint Blockade and Adoptive Cell Transfer in Cancer Therapy”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/immunologic-checkpoint-blockade-dream-team/”,”publisher_year”:”Cancer Immunology Research, 2015″,”pub_med_id”:”25370533″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=25370533″},{“title”:”Schumacher TN, Kesmir C, van Buuren MM. Biomarkers in cancer immunotherapy. Cancer Cell. 2015 Jan 12;27(1):12-4.”,”type”:”publication”,”url”:”https://www.cell.com/cancer-cell/fulltext/S1535-6108(14)00513-3″,”cancer_type_terms_string”:”Non – site Specific”,”treatment_type_terms_string”:”Immunotherapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–Cancer Research Institute Cancer Immunology Dream Team: Immunologic Checkpoint Blockade and Adoptive Cell Transfer in Cancer Therapy”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/immunologic-checkpoint-blockade-dream-team/”,”publisher_year”:”Cancer Cell, 2015″,”pub_med_id”:”25584891″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=25584891″},{“title”:”Linnemann C, van Buuren MM, Bies L, Verdegaal EM, Schotte R, Calis JJ, Behjati S, Velds A, Hilkmann H, Atmioui DE, Visser M, Stratton MR, Haanen JB, Spits H, van der Burg SH, Schumacher TN. High-throughput epitope discovery reveals frequent recognition of neo-antigens by CD4+ T cells in human melanoma. Nat Med. 2015 Jan;21(1):81-5.”,”type”:”publication”,”url”:”https://www.nature.com/articles/nm.3773″,”cancer_type_terms_string”:”Melanoma”,”treatment_type_terms_string”:”Immunotherapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–Cancer Research Institute Cancer Immunology Dream Team: Immunologic Checkpoint Blockade and Adoptive Cell Transfer in Cancer Therapy”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/immunologic-checkpoint-blockade-dream-team/”,”publisher_year”:”Nature Medicine, 2015″,”pub_med_id”:”25531942″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=25531942″},{“title”:”Llosa NJ, Cruise M, Tam A, Wicks EC, Hechenbleikner EM, Taube JM, Blosser RL, Fan H, Wang H, Luber BS, Zhang M, Papadopoulos N, Kinzler KW, Vogelstein B, Sears CL, Anders RB, Pardoll DM, Housseau F. The vigorous immune microenvironment of microsatellite instable colon cancer is balanced by multiple counter-inhibitory checkpoints. Cancer Discov. 2015 Jan;5(1):43-51.”,”type”:”publication”,”url”:”https://cancerdiscovery.aacrjournals.org/content/5/1/43″,”cancer_type_terms_string”:”Colorectal”,”treatment_type_terms_string”:”Immunotherapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–Cancer Research Institute Cancer Immunology Dream Team: Immunologic Checkpoint Blockade and Adoptive Cell Transfer in Cancer Therapy”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/immunologic-checkpoint-blockade-dream-team/”,”publisher_year”:”Cancer Discovery, 2015″,”pub_med_id”:”25358689″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=25358689″},{“title”:”Shi XB, Ma AH, Xue L, Li M, Nguyen HG, Yang JC, Tepper CG, Gandour-Edwards R, Evans CP, Kung HJ, deVere White RW. miR-124 and androgen receptor signaling inhibitors represses growth of prostate cancer cells through downregulation of AR splice variants, EZH2 and Src. Cancer Res. 2015 Dec 15;75(24):5309-17.”,”type”:”publication”,”url”:”https://cancerres.aacrjournals.org/content/75/24/5309″,”cancer_type_terms_string”:”Prostate”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–Prostate Cancer Foundation Prostate Dream Team: Targeting Adaptive Pathways in Metastatic Castration-Resistant Prostate Cancer”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/metastatic-treatment-resistant-prostate-cancer-dream-team/”,”publisher_year”:”Cancer Research, 2015″,”pub_med_id”:”26573802″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=26573802″},{“title”:”Hsieh AC, Nguyen HG, Wen L, Edlind MP, Carroll PR, Kim W, Ruggero D. Cell type-specific abundance of 4EBP1 primes porstate cancer sensitivity or resistance to PI3K pathway inhibitors. Sci Signal. 2015 Nov 17;8(403):ra116.”,”type”:”publication”,”url”:”https://stke.sciencemag.org/content/8/403/ra116″,”cancer_type_terms_string”:”Prostate”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–Prostate Cancer Foundation Prostate Dream Team: Targeting Adaptive Pathways in Metastatic Castration-Resistant Prostate Cancer”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/metastatic-treatment-resistant-prostate-cancer-dream-team/”,”publisher_year”:”Science Signaling, 2015″,”pub_med_id”:”26577921″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=26577921″},{“title”:”Smith BA, Sokolov A, Uzunangelov V, Baertsch R, Newton Y, Graim K, Mathis C, Cheng D, Stuart JM, Witte ON. A basal stem cell signature identifies aggressive prostate cancer phenotypes. Proc Natl Acad Sci U S A. 2015 Nov 24;112(47):E6544-52.”,”type”:”publication”,”url”:”https://www.pnas.org/content/112/47/E6544″,”cancer_type_terms_string”:”Prostate”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–Prostate Cancer Foundation Prostate Dream Team: Targeting Adaptive Pathways in Metastatic Castration-Resistant Prostate Cancer”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/metastatic-treatment-resistant-prostate-cancer-dream-team/”,”publisher_year”:”PNAS, 2015″,”pub_med_id”:”26460041″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=26460041″},{“title”:”Mateo J, Carreira S, Sandhu S, Miranda S, Mossop H, Perez-Lopez R, Nava Rodrigues D, Robinson D, Omlin A, Tunariu N, Boysen G, Porta N, Flohr P, Gillman A, Figueiredo I, Paulding C, Seed G, Jain S, Ralph C, Protheroe A, Hussain S, Jones R, Elliott T, McGovern U, Bianchini D, Goodall J, Zafeiriou Z, Williamson CT, Ferraldeschi R, Riisnaes R, Ebbs B, Fowler G, Roda D, Yuan W, Wu YM, Cao X, Brough R, Pemberton H, A’Hern R, Swain A, Kunju LP, Eeles R, Attard G, Lord CJ, Ashworth A, Rubin MA, Knudsen KE, Feng FY, Chinnaiyan AM, Hall E, de Bono JS. DNA-Repair Defects and Olaparib in Metastatic Prostate Cancer. N Engl J Med. 2015 Oct 29;373(18):1697-708.”,”type”:”publication”,”url”:”https://www.nejm.org/doi/10.1056/NEJMoa1506859″,”cancer_type_terms_string”:”Prostate”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C−Prostate Cancer Foundation Prostate Dream Team: Precision Therapy of Advanced Prostate Cancer”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/prostate-cancer-precision-therapy-dream-team/”,”publisher_year”:”New England Journal of Medicine, 2015″,”pub_med_id”:”26510020″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=26510020″},{“title”:”Nagalakshmi Nadiminty, Ramakumar Tummala, Chengfei Liu, Wei Lou, Christopher P. Evans, and Allen C. Gao. NF-kappaB2/p52:c-Myc:hnRNPA1 pathway regulates expression of androgen receptor splice variants and enzalutamide sensitivity in prostate cancer. Mol Cancer Ther. 2015 Aug; 14(8): 1884–1895.”,”type”:”publication”,”url”:”https://mct.aacrjournals.org/content/14/8/1884″,”cancer_type_terms_string”:”Prostate”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–Prostate Cancer Foundation Prostate Dream Team: Targeting Adaptive Pathways in Metastatic Castration-Resistant Prostate Cancer”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/metastatic-treatment-resistant-prostate-cancer-dream-team/”,”publisher_year”:”Molecular Cancer Therapeutics, 2015″,”pub_med_id”:”26056150″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=26056150″},{“title”:”Creixell P, Reimand J, Haider S, Wu G, Shibata T, Vazquez M, Mustonen V, Gonzalez-Perez A, Pearson J, Sander C, Raphael BJ, Marks DS, Ouellette BFF, Valencia A, Bader GD, Boustros PC, Stuart JM, Linding R, Lopez-Bigas N, Stein LD, Mutation Consequences and Pathway Analysis Working Group of the International Cancer Genome Consortium. Pathway and network analysis of cancer genomes. Nat Methods. 2015 Jul;12(7):615-621.”,”type”:”publication”,”url”:”https://www.nature.com/articles/nmeth.3440″,”cancer_type_terms_string”:”Non – site Specific”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–Prostate Cancer Foundation Prostate Dream Team: Targeting Adaptive Pathways in Metastatic Castration-Resistant Prostate Cancer”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/metastatic-treatment-resistant-prostate-cancer-dream-team/”,”publisher_year”:”Nature Methods, 2015″,”pub_med_id”:”26125594″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=26125594″},{“title”:”Chandrasekar T, Yang JC, Gao AC, Evans CP. Mechanisms of resistance in castration-resistant prostate cancer (CRPC). Transl Androl Urol. 2015 Jun;4(3):365-80.”,”type”:”publication”,”url”:”http://tau.amegroups.com/article/view/6474/7608″,”cancer_type_terms_string”:”Prostate”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–Prostate Cancer Foundation Prostate Dream Team: Targeting Adaptive Pathways in Metastatic Castration-Resistant Prostate Cancer”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/metastatic-treatment-resistant-prostate-cancer-dream-team/”,”publisher_year”:”Translational Andrology and Urology, 2015″,”pub_med_id”:”26814148″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=26814148″},{“title”:”Robinson D, Van Allen EM, Wu YM, Schultz N, Lonigro RJ,Mosquera JM, Montgomery B, Taplin ME, Pritchard CC, Attard G, Beltran H, Abida W, Bradley RK, Vinson J, Cao X, Vats P, Kunju LP, Hussain M, Feng FY, Tomlins SA, Cooney KA, Smith DC, Brennan C, Siddiqui J, Mehra R, Chen Y, Rathkopf DE, Morris MJ, Solomon SB, Durack JC, Reuter VE, Gopalan A, Gao J, Loda M, Lis RT, Bowden M, Balk SP, Gaviola G, Sougnez C, Gupta M, Yu EY, Mostaghel EA, Cheng HH, Mulcahy H, True LD, Plymate SR, Dvinge H, Ferraldeschi R, Flohr P, Miranda S, Zafeirous Z, Tunariu N, Mateo J, Perez-Lopez R, Demichelis F, Robinson BD, Schiffman M, Nanus DM, Tagawa ST, Sigaras A, Eng KW, Elemento O, Sboner A, Heath EI, Scher HI, Pienta KJ, Kantoff P, deBono JS, Rubin MA, Nelson PS, Garraway LA, Sawyers CL, Chinnaiyan AM. Integrative clinical genomics of advanced prostate cancer. Cell. 2015 May 21;161(5):1215-1228.”,”type”:”publication”,”url”:”https://www.cell.com/cell/fulltext/S0092-8674(15)00548-6?_returnURL=https%3A%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2FS0092867415005486%3Fshowall%3Dtrue”,”cancer_type_terms_string”:”Prostate”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C−Prostate Cancer Foundation Prostate Dream Team: Precision Therapy of Advanced Prostate Cancer”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/prostate-cancer-precision-therapy-dream-team/”,”publisher_year”:”Cell, 2015″,”pub_med_id”:”26000489″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=26000489″},{“title”:”Hsieh CL, Botta G, Gao S, Li T, VanAllen EM, Treacy DJ, Cai C, He HH, Sweeney CJ, Brown M, Balk SP, Nelson PS, Garraway LA, Kantoff PW. PLZF, a tumor suppressor genetically lost in metastatic castration-resistant prostate cancer, is a mediator of resistance to androgen deprivation therapy. Cancer Res. 2015 May 15;75(10):1944-8.”,”type”:”publication”,”url”:”https://cancerres.aacrjournals.org/content/75/10/1944″,”cancer_type_terms_string”:”Prostate”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C−Prostate Cancer Foundation Prostate Dream Team: Precision Therapy of Advanced Prostate Cancer”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/prostate-cancer-precision-therapy-dream-team/”,”publisher_year”:”Cancer Research, 2015″,”pub_med_id”:”25808865″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=25808865″},{“title”:”Azad AA, Volik SV, Wyatt AW, Haegert A, Le Bihan S, Bell RH, Anderson SA, McConeghy B, Shukin R, Bazov J, Youngren J, Paris P, Thomas G, Small EJ, Wang Y, Gleave ME, Collins CC, Chi KN. Androgen receptor gene aberrations in circulating cell-free DNA: biomarkers of therapeutic resistance and response in castration-resistant prostate cancer. Clin Cancer Res. 2015 May 15; 21(10);2315-24.”,”type”:”publication”,”url”:”https://clincancerres.aacrjournals.org/content/21/10/2315″,”cancer_type_terms_string”:”Prostate”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–Prostate Cancer Foundation Prostate Dream Team: Targeting Adaptive Pathways in Metastatic Castration-Resistant Prostate Cancer”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/metastatic-treatment-resistant-prostate-cancer-dream-team/”,”publisher_year”:”Clinical Cancer Research, 2015″,”pub_med_id”:”25712683″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=25712683″},{“title”:”Sheridan CM, Grogan TR, Nguyen HG, Galet C, Rettig MB, Hsieh AC, Ruggero D. YB-1 and MTA1 protein levels and not DNA or mRNA alterations predict for prostate cancer recurrence. Oncotarget. 2015 Apr 10;6(10):7470-80.”,”type”:”publication”,”url”:”http://www.oncotarget.com/index.php?journal=oncotarget&page=article&op=view&path[]=3477&path[]=6885″,”cancer_type_terms_string”:”Prostate”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–Prostate Cancer Foundation Prostate Dream Team: Targeting Adaptive Pathways in Metastatic Castration-Resistant Prostate Cancer”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/metastatic-treatment-resistant-prostate-cancer-dream-team/”,”publisher_year”:”Oncotarget, 2015″,”pub_med_id”:”25797255″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=25797255″},{“title”:”Thorvaldsdóttir H, Robinson JT, Turner D, Mesirov JP. A genomic data viewer for iPad. Genome Biol. 2015 Feb 26; 16:46.”,”type”:”publication”,”url”:”https://genomebiology.biomedcentral.com/articles/10.1186/s13059-015-0595-3″,”cancer_type_terms_string”:”Non – site Specific”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C−Prostate Cancer Foundation Prostate Dream Team: Precision Therapy of Advanced Prostate Cancer”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/prostate-cancer-precision-therapy-dream-team/”,”publisher_year”:”Genome Biology, 2015″,”pub_med_id”:”25723152″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=25723152″},{“title”:”Sotillo E, Barrett DM, Black KL, Bagashev A, Oldridge D, Wu G, Sussman R, Lanauze C, Ruella M, Gazzara MR, Martinez NM, Harrington CT, Chung EY, Perazzelli J, Hofmann TJ, Maude SL, Raman P, Barrera A, Gill S, Lacey SF, Melenhorst JJ, Allman D, Jacoby E, Fry T, Mackall C, Barash Y, Lynch KW, Maris JM, Grupp SA, Thomas-Tikhonenko A. Convergence of Acquired Mutations and Alternative Splicing of CD19 Enables Resistance to CART-19 Immunotherapy. Cancer Discov. 2015 Dec;5(12):1282-95.”,”type”:”publication”,”url”:”https://cancerdiscovery.aacrjournals.org/content/5/12/1282″,”cancer_type_terms_string”:”Leukemia (all types), Pediatric – Blood Related”,”treatment_type_terms_string”:”Immunotherapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–St. Baldrick’s Foundation Pediatric Cancer Dream Team: Immunogenomics to Create New Therapies for High-Risk Childhood Cancers”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/high-risk-pediatric-cancers-dream-team/”,”publisher_year”:”Cancer Discovery, 2015″,”pub_med_id”:”26516065″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=26516065″},{“title”:”Wakefield A, Pignata A, Ghazi A, Ashoori A, Hegde M, Landi D, Gray T, Scheurer ME, Chintagumpala M, Adesina A, Gottschalk S, Hicks J, Powell SZ, Ahmed N. Is CMV a target in pediatric glioblastoma? Expression of CMV proteins, pp65 and IE1-72 and CMV nucleic acids in a cohort of pediatric glioblastoma patients. J Neurooncol. 2015 Nov;125(2):307-15.”,”type”:”publication”,”url”:”https://link.springer.com/article/10.1007%2Fs11060-015-1905-z”,”cancer_type_terms_string”:”Pediatric – Solid Tumor”,”treatment_type_terms_string”:”Immunotherapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–St. Baldrick’s Foundation Pediatric Cancer Dream Team: Immunogenomics to Create New Therapies for High-Risk Childhood Cancers”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/high-risk-pediatric-cancers-dream-team/”,”publisher_year”:”Journal of Neurooncology, 2015″,”pub_med_id”:”26341370″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=26341370″},{“title”:”Byrd T, Carr KD, Norman JC, Huye L, Hegde M, Ahmed N. Polystyrene microspheres enable 10-color compensation for immunophenotyping of primary human leukocytes. Cytometry A. 2015 Nov;87(11):1038-46″,”type”:”publication”,”url”:”https://onlinelibrary.wiley.com/doi/full/10.1002/cyto.a.22717″,”cancer_type_terms_string”:”Non – site Specific”,”treatment_type_terms_string”:”Immunotherapy, Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–St. Baldrick’s Foundation Pediatric Cancer Dream Team: Immunogenomics to Create New Therapies for High-Risk Childhood Cancers”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/high-risk-pediatric-cancers-dream-team/”,”publisher_year”:”Cytometry, 2015″,”pub_med_id”:”26202733″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=26202733″},{“title”:”Hegde M, Grada Z, Pignata A, Wakefield A, Fousek K, Bielamowicz K, Chow K, Brawley V, Byrd T, Gottschalk S, Mukherjee M, Wels WS, Baker M, Dotti G, Orange J, Ahmed N. A bispecific chimeric antigen receptor molecule enhances T cell activation through dual immunological synapse formation and offsets antigen escape in glioblastoma. J Immunother Cancer. 2015; 3(Suppl 2): O3″,”type”:”publication”,”url”:”https://jitc.biomedcentral.com/articles/10.1186/2051-1426-3-S2-O3″,”cancer_type_terms_string”:”Pediatric – Solid Tumor”,”treatment_type_terms_string”:”Immunotherapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–St. Baldrick’s Foundation Pediatric Cancer Dream Team: Immunogenomics to Create New Therapies for High-Risk Childhood Cancers”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/high-risk-pediatric-cancers-dream-team/”,”publisher_year”:”Journal for Immunotherapy of Cancer, 2015″,”pub_med_id”:”4645273″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4645273/”},{“title”:”Roy A, Kumar V, Zorman B, Fang E, Haines KM, Doddapaneni H, Hampton OA, White S, Bavle AA, Patel NR, Eldin KW, John Hicks M, Rakheja D, Leavey PJ, Skapek SX, Amatruda JF, Nuchtern JG, Chintagumpala MM, Wheeler DA, Plon SE, Sumazin P, Parsons DW. Recurrent internal tandem duplications of BCOR in clear cell sarcoma of the kidney. Nat Commun. 2015 Nov 17;6:8891.”,”type”:”publication”,”url”:”https://www.nature.com/articles/ncomms9891″,”cancer_type_terms_string”:”Kidney”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–St. Baldrick’s Foundation Pediatric Cancer Dream Team: Immunogenomics to Create New Therapies for High-Risk Childhood Cancers”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/high-risk-pediatric-cancers-dream-team/”,”publisher_year”:”Nature Communications, 2015″,”pub_med_id”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=26573325″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=26573325″},{“title”:”Baiu DC, Artz NS, McElreath MR, Menapace BD, Hernando D, Reeder SB, Grüttner C, Otto M. High specificity targeting and detection of human neuroblastoma using multifunctional anti-GD2 iron-oxide nanoparticles. Nanomedicine (Lond). 2015 Oct;10(19):2973-2988.”,”type”:”publication”,”url”:”https://www.futuremedicine.com/doi/10.2217/nnm.15.138″,”cancer_type_terms_string”:”Pediatric – Solid Tumor”,”treatment_type_terms_string”:”Immunotherapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–St. Baldrick’s Foundation Pediatric Cancer Dream Team: Immunogenomics to Create New Therapies for High-Risk Childhood Cancers”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/high-risk-pediatric-cancers-dream-team/”,”publisher_year”:”Nanomedicine, 2015″,”pub_med_id”:”26420448″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=26420448″},{“title”:”Marino R, Baiu DC, Bhattacharya S, Titz B, Hebron E, Menapace BD, Singhal S, Eickhoff JC, Asimakopoulos F, Weichert JP, Otto M. Tumor-selective anti-cancer effects of the synthetic alkyl phosphocholine analog CLR1404 in neuroblastoma. Am J Cancer Res. 2015 Oct 15;5(11):3422-35.”,”type”:”publication”,”url”:”https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4697688/”,”cancer_type_terms_string”:”Pediatric – Solid Tumor”,”treatment_type_terms_string”:”Immunotherapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–St. Baldrick’s Foundation Pediatric Cancer Dream Team: Immunogenomics to Create New Therapies for High-Risk Childhood Cancers”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/high-risk-pediatric-cancers-dream-team/”,”publisher_year”:”American Journal of Cancer Research, 2015″,”pub_med_id”:”26807322″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=26807322″},{“title”:”Tasian SK, Gardner RA. CD19-Redirected Chimeric Antigen Receptor-Modified T Cells: a Promising Immunotherapy for Children and Adults with B-Cell Acute Lymphoblastic Leukemia (ALL). Ther Adv Hematol. 2015 Oct;6(5):228-41.”,”type”:”publication”,”url”:”https://journals.sagepub.com/doi/10.1177/2040620715588916″,”cancer_type_terms_string”:”Leukemia (all types)”,”treatment_type_terms_string”:”Immunotherapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–St. Baldrick’s Foundation Pediatric Cancer Dream Team: Immunogenomics to Create New Therapies for High-Risk Childhood Cancers”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/high-risk-pediatric-cancers-dream-team/”,”publisher_year”:”Therapeutic Advances in Hematology, 2015″,”pub_med_id”:”26425336″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=26425336%5Buid%5D”},{“title”:”Salanti A, Clausen TM, Agerbæk MØ, Al Nakouzi N, Dahlbäck M, Oo HZ, Lee S, Gustavsson T, Rich JR, Hedberg BJ, Mao Y, Barington L, Pereira MA, LoBello J, Endo M, Fazli L, Soden J, Wang CK, Sander AF, Dagil R, Thrane S, Holst PJ, Meng L, Favero F, Weiss GJ, Nielsen MA, Freeth J, Nielsen TO, Zaia J, Tran NL, Trent J, Babcook JS, Theander TG, Sorensen PH, Daugaard M. Targeting Human Cancer by a Glycosaminoglycan Binding Malaria Protein. Cancer Cell. 2015 Oct 12;28(4):500-514.”,”type”:”publication”,”url”:”https://www.cell.com/cancer-cell/fulltext/S1535-6108(15)00334-7″,”cancer_type_terms_string”:”Non – site Specific”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:””,”research_project”:”SU2C–St. Baldrick’s Foundation Pediatric Cancer Dream Team: Immunogenomics to Create New Therapies for High-Risk Childhood Cancers”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/high-risk-pediatric-cancers-dream-team/”,”publisher_year”:”Cancer Cell, 2015″,”pub_med_id”:”26461094″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=26461094″},{“title”:”Porter DL, Hwang WT, Frey NV, Lacey SF, Shaw PA, Loren AW, Bagg A, Marcucci KT, Shen A, Gonzalez V, Ambrose D, Grupp SA, Chew A, Zheng Z, Milone MC, Levine BL, Melenhorst JJ, June CH. Chimeric antigen receptor T cells persist and induce sustained remissions in relapsed refractory chronic lymphocytic leukemia. Sci Transl Med. 2015 Sep 2;7(303):303ra139.”,”type”:”publication”,”url”:”https://stm.sciencemag.org/content/7/303/303ra139″,”cancer_type_terms_string”:”Leukemia (all types), Pediatric – Solid Tumor”,”treatment_type_terms_string”:”Immunotherapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–St. Baldrick’s Foundation Pediatric Cancer Dream Team: Immunogenomics to Create New Therapies for High-Risk Childhood Cancers”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/high-risk-pediatric-cancers-dream-team/”,”publisher_year”:”Science Translational Medicine, 2015″,”pub_med_id”:”26333935″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=26333935″},{“title”:”Jensen JL, Rakhmilevich AL, Heninger E, Broman AT, Hope C, Phan F, Miyamoto S, Maroulakou I, Callander N, Hematti P, Chesi M, Bergsagel PL, Sondel PM, Asimakopoulos F. Tumoricidal Effects of macrophage-activating Immunotherapy in a Model of Refractory/Relapsed Multiple Myeloma. Cancer Immunol Res. 2015 Aug;3(8):881-90.”,”type”:”publication”,”url”:”https://cancerimmunolres.aacrjournals.org/content/3/8/881″,”cancer_type_terms_string”:”Multiple Myeloma”,”treatment_type_terms_string”:”Immunotherapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–St. Baldrick’s Foundation Pediatric Cancer Dream Team: Immunogenomics to Create New Therapies for High-Risk Childhood Cancers”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/high-risk-pediatric-cancers-dream-team/”,”publisher_year”:”Cancer Immunology Research, 2015″,”pub_med_id”:”25941352″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=25941352″},{“title”:”Shi Y, Felder MAR, Sondel PM, Rakhmilevich AL. Synergy of anti-CD40, CpG and MPL in activation of mouse macrophages. Mol Immunol. 2015 Aug;66(2):208-15.”,”type”:”publication”,”url”:”https://www.sciencedirect.com/science/article/pii/S0161589015001121?via%3Dihub”,”cancer_type_terms_string”:”Non – site Specific”,”treatment_type_terms_string”:”Immunotherapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–St. Baldrick’s Foundation Pediatric Cancer Dream Team: Immunogenomics to Create New Therapies for High-Risk Childhood Cancers”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/high-risk-pediatric-cancers-dream-team/”,”publisher_year”:”Molecular Immunology, 2015″,”pub_med_id”:”25829245″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=25829245″},{“title”:”Goldberg JL, Sondel PM. Enhancing Cancer Immunotherapy Via Activation of Innate Immunity. Semin Oncol. 2015 Aug;42(4):562-72.”,”type”:”publication”,”url”:”https://www.sciencedirect.com/science/article/abs/pii/S0093775415001104?via%3Dihub”,”cancer_type_terms_string”:”Non – site Specific”,”treatment_type_terms_string”:”Immunotherapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–St. Baldrick’s Foundation Pediatric Cancer Dream Team: Immunogenomics to Create New Therapies for High-Risk Childhood Cancers”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/high-risk-pediatric-cancers-dream-team/”,”publisher_year”:”Seminars in Oncology, 2015″,”pub_med_id”:”26320061″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=26320061″},{“title”:”Fousek K, Ahmed N. The Evolution of T-cell Therapies for Solid Malignancies. Clin Cancer Res. 2015 Aug 1;21(15):3384-92.”,”type”:”publication”,”url”:”https://clincancerres.aacrjournals.org/content/21/15/3384″,”cancer_type_terms_string”:”Non – site Specific”,”treatment_type_terms_string”:”Immunotherapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–St. Baldrick’s Foundation Pediatric Cancer Dream Team: Immunogenomics to Create New Therapies for High-Risk Childhood Cancers”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/high-risk-pediatric-cancers-dream-team/”,”publisher_year”:”Clinical Cancer Research, 2015″,”pub_med_id”:”26240290″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=26240290″},{“title”:”Qin H, Cho M, Haso W, Zhang L, Tasian SK, Oo HZ, Negri GL, Lin Y, Zou J, Mallon BS, Maude S, Teachey DT, Barrett DM, Orentas RJ, Daugaard M, Sorensen PH, Grupp SA, Fry TJ. Eradication of B-ALL using chimeric antigen receptor–expressing T cells targeting the TSLPR oncoprotein. Blood. 2015 Jul 30;126(5):629-39.”,”type”:”publication”,”url”:”http://www.bloodjournal.org/content/126/5/629?sso-checked=true”,”cancer_type_terms_string”:”Non – site Specific”,”treatment_type_terms_string”:”Immunotherapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–St. Baldrick’s Foundation Pediatric Cancer Dream Team: Immunogenomics to Create New Therapies for High-Risk Childhood Cancers”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/high-risk-pediatric-cancers-dream-team/”,”publisher_year”:”Blood, 2015″,”pub_med_id”:”26041741″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=26041741″},{“title”:”Wang W, Erbe AK, Hank JA, Morris ZS, Sondel PM. NK Cell-Mediated Antibody-Dependent Cellular Cytotoxicity in Cancer Immunotherapy. Front Immunol. 2015 Jul 27;6:368.”,”type”:”publication”,”url”:”https://www.frontiersin.org/articles/10.3389/fimmu.2015.00368/full”,”cancer_type_terms_string”:”Non – site Specific”,”treatment_type_terms_string”:”Immunotherapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–St. Baldrick’s Foundation Pediatric Cancer Dream Team: Immunogenomics to Create New Therapies for High-Risk Childhood Cancers”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/high-risk-pediatric-cancers-dream-team/”,”publisher_year”:”Frontiers in Immunology, 2015″,”pub_med_id”:”26284063″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=26284063″},{“title”:”Gupta A, Place M, Goldstein S, Sarkar D, Zhou S, Potamousis K, Kim J, Flanagand C, Li Y, Newton MA, Callander NS, Hematti P, Bresnick EH, Ma J, Asimakopoulos F, Schwartz DC. Molecule Analysis Reveals Widespread Structural Variation and Clonal Evolution in Multiple Myeloma. Proc Natl Acad Sci U S A. 2015 Jun 23;112(25):7689-94.”,”type”:”publication”,”url”:”https://www.pnas.org/content/112/25/7689″,”cancer_type_terms_string”:”Multiple Myeloma”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–St. Baldrick’s Foundation Pediatric Cancer Dream Team: Immunogenomics to Create New Therapies for High-Risk Childhood Cancers”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/high-risk-pediatric-cancers-dream-team/”,”publisher_year”:”PNAS, 2015″,”pub_med_id”:”26056298″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=26056298″},{“title”:”Samaha H, El Naggar S, Ahmed N. Armed hunter killers: discerning the role of adoptive T-cell transfer for glioblastoma.Immunotherapy. 2015;7(5):481-5.”,”type”:”publication”,”url”:”https://www.futuremedicine.com/doi/10.2217/imt.15.22″,”cancer_type_terms_string”:”Brain/Nervous System, Pediatric – Solid Tumor”,”treatment_type_terms_string”:”Immunotherapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–St. Baldrick’s Foundation Pediatric Cancer Dream Team: Immunogenomics to Create New Therapies for High-Risk Childhood Cancers”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/high-risk-pediatric-cancers-dream-team/”,”publisher_year”:”Immunotherapy, 2015″,”pub_med_id”:”26065474″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=26065474″},{“title”:”Long A, Haso W.M., Shern J.F., Wanhainen K.M., Murgai M., Ingaramo M., Smith J.P., Walter A.J., Kohler M.E., Venkateshwara V.R., Kaplan R.N., Patterson G.H., Fry T.J., Orentas R.J., Mackall C.L. 4-1BB costimulation ameliorates T cell exhaustion induced by tonic signaling of chimeric antigen receptors. Nat Med. 2015 Jun;21(6):581-90.”,”type”:”publication”,”url”:”https://www.nature.com/articles/nm.3838″,”cancer_type_terms_string”:”Non – site Specific”,”treatment_type_terms_string”:”Immunotherapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–St. Baldrick’s Foundation Pediatric Cancer Dream Team: Immunogenomics to Create New Therapies for High-Risk Childhood Cancers”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/high-risk-pediatric-cancers-dream-team/”,”publisher_year”:”Nature Medicine, 2015″,”pub_med_id”:”25939063″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=25939063″},{“title”:”Maude SL, Teachey DT, Porter DL, Grupp SA. CD19-targeted chimeric antigen receptor T-cell therapy for acute lymphoblastic leukemia. Blood. 2015 Jun 25;125(26):4017-23.”,”type”:”publication”,”url”:”http://www.bloodjournal.org/content/125/26/4017?sso-checked=true”,”cancer_type_terms_string”:”Leukemia (all types), Pediatric – Blood Related”,”treatment_type_terms_string”:”Immunotherapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–St. Baldrick’s Foundation Pediatric Cancer Dream Team: Immunogenomics to Create New Therapies for High-Risk Childhood Cancers”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/high-risk-pediatric-cancers-dream-team/”,”publisher_year”:”Blood, 2015″,”pub_med_id”:”25999455″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=25999455″},{“title”:”Ahmed N, Brawley VS, Hegde M, Robertson C, Ghazi A, Gerken C, Liu E, Dakhova O, Ashoori A, Corder A, Gray T, Wu MF, Liu H, Hicks J, Rainusso N, Dotti G, Mei Z, Grilley B, Gee A, Rooney CM, Brenner MK, Heslop HE, Wels WS, Wang LL, Anderson P, Gottschalk S. HER2-specific Chimeric Antigen Receptor-modified T cells for the Immunotherapy of Osteosarcoma. J Clin Oncol. 2015 May 20;33(15):1688-96.”,”type”:”publication”,”url”:”https://ascopubs.org/doi/10.1200/JCO.2014.58.0225″,”cancer_type_terms_string”:”Sarcoma”,”treatment_type_terms_string”:”Immunotherapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–St. Baldrick’s Foundation Pediatric Cancer Dream Team: Immunogenomics to Create New Therapies for High-Risk Childhood Cancers”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/high-risk-pediatric-cancers-dream-team/”,”publisher_year”:”Journal of Clinical Oncology, 2015″,”pub_med_id”:”25800760″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=25800760″},{“title”:”Kunkele A, Johnson AJ, Rolczynski LS, Chang CA, Hoglund V, Kelly-Spratt KS, Jensen, MC. Functional Tuning of CARs Reveals Signaling Threshold Above Which CD8+ CTL Antitumor Potency is Attenuated Due to Cell Fas-FasL Dependent AICD. Cancer Immunol Res. 2015 Apr;3(4):368-79.”,”type”:”publication”,”url”:”https://cancerimmunolres.aacrjournals.org/content/3/4/368″,”cancer_type_terms_string”:”Non – site Specific”,”treatment_type_terms_string”:”Immunotherapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–St. Baldrick’s Foundation Pediatric Cancer Dream Team: Immunogenomics to Create New Therapies for High-Risk Childhood Cancers”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/high-risk-pediatric-cancers-dream-team/”,”publisher_year”:”Cancer Immunology Research, 2015″,”pub_med_id”:”25576337″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=25576337″},{“title”:”McDowell KA, Hank JA, DeSantes KB, Capitini CM, Otto M, Sondel PM. NK Cell-based Immunotherapies in Pediatric Oncology . J Pediatric Hematology and Oncology, 2015 Mar; 37(2):79-93″,”type”:”publication”,”url”:”https://insights.ovid.com/article/00043426-201503000-00001″,”cancer_type_terms_string”:”Pediatric – Blood Related, Pediatric – Solid Tumor”,”treatment_type_terms_string”:”Immunotherapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–St. Baldrick’s Foundation Pediatric Cancer Dream Team: Immunogenomics to Create New Therapies for High-Risk Childhood Cancers”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/high-risk-pediatric-cancers-dream-team/”,”publisher_year”:”Journal of Pediatric Hematology and Oncology, 2015″,”pub_med_id”:”25590232″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=25590232″},{“title”:”Lee DW, Kochenderfer JN, Stetler-Stevenson M, Cui YK, Delbrook C, Feldman SA, Fry RJ, Orentas R, Sabatino M, Shah NN, Steinberg SM, Stroncek D, Yuan C, Zhang L, Rosenberg SA, Wayne AS, Mackall CL. T Cells Expressing CD19 Chimeric Antigen Receptors for Acute Lymphoblastic Leukemia in Children and Young Adults: A Phase I Dose-escalation Trial. Lancet. 2015 Feb 7;385(9967):517-528.”,”type”:”publication”,”url”:”https://www.thelancet.com/journals/lancet/article/PIIS0140-6736(14)61403-3/fulltext”,”cancer_type_terms_string”:”Leukemia (all types), Pediatric – Blood Related”,”treatment_type_terms_string”:”Immunotherapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–St. Baldrick’s Foundation Pediatric Cancer Dream Team: Immunogenomics to Create New Therapies for High-Risk Childhood Cancers”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/high-risk-pediatric-cancers-dream-team/”,”publisher_year”:”Lancet, 2015″,”pub_med_id”:”25319501″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=25319501″},{“title”:”Hegde M, Moll AJ, Byrd TT, Louis CU, Ahmed N. Cellular immunotherapy for pediatric solid tumors. Cytotherapy. 2015 Jan 17(1):3-17. PMID: 25082406″,”type”:”publication”,”url”:”https://www.celltherapyjournal.org/article/S1465-3249(14)00637-9/fulltext”,”cancer_type_terms_string”:”Pediatric – Solid Tumor”,”treatment_type_terms_string”:”Immunotherapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–St. Baldrick’s Foundation Pediatric Cancer Dream Team: Immunogenomics to Create New Therapies for High-Risk Childhood Cancers”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/high-risk-pediatric-cancers-dream-team/”,”publisher_year”:”Cytotherapy, 2015″,”pub_med_id”:”25082406″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=25082406″},{“title”:”Francies HE, Garnett MJ. What role could organoids play in the personalization of cancer treatment? Pharmacogenomics. Pharmacogenomics. 2015;16(14):1523-6.”,”type”:”publication”,”url”:”https://www.futuremedicine.com/doi/10.2217/pgs.15.114″,”cancer_type_terms_string”:”Non – site Specific”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–Dutch Cancer Society Tumor Organoids Dream Team: A New Preclinical Model for Drug Sensitivity Analysis”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/tumor-organoids-preclinical-models-dream-team/”,”publisher_year”:”Pharmacogenomics, 2015″,”pub_med_id”:”26485224″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=26485224″},{“title”:”van de Wetering M, Francies HE, Francis JM, Bounova G, Iorio F, Pronk A, van Houdt W, van Gorp J, Taylor-Weiner A, Kester L, McLaren-Douglas A, Blokker J, Jaksani S, Bartfeld S, Volckman R, van Sluis P, Li VS, Seepo S, Sekhar Pedamallu C, Cibulskis K, Carter SL, McKenna A, Lawrence MS, Lichtenstein L, Stewart C, Koster J, Versteeg R, van Oudenaarden A, Saez-Rodriguez J, Vries RG, Getz G, Wessels L, Stratton MR, McDermott U, Meyerson M, Garnett MJ, Clevers H. Prospective derivation of a living organoid biobank of colorectal cancer patients. Cell. 2015 May 7;161(4):933-45.”,”type”:”publication”,”url”:”https://www.cell.com/cell/fulltext/S0092-8674(15)00373-6?_returnURL=https%3A%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2FS0092867415003736%3Fshowall%3Dtrue”,”cancer_type_terms_string”:”Colorectal”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–Dutch Cancer Society Tumor Organoids Dream Team: A New Preclinical Model for Drug Sensitivity Analysis”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/tumor-organoids-preclinical-models-dream-team/”,”publisher_year”:”Cell, 2015″,”pub_med_id”:”25957691″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=25957691″},{“title”:”Drost J, van Jaarsveld RH, Ponsioen B, Zimberlin C, van Boxtel R, Buijs A, Sachs N, Overmeer RM, Offerhaus GJ, Begthel H, Korving J, van de Wetering M, Schwank G, Logtenberg M, Cuppen E, Snippert HJ, Medema JP, Kops GJ, Clevers H. Sequential cancer mutations in cultured human intestinal stem cells. Nature. 2015 May 7;521(7550):43-7.”,”type”:”publication”,”url”:”https://www.nature.com/articles/nature14415″,”cancer_type_terms_string”:”Other”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–Dutch Cancer Society Tumor Organoids Dream Team: A New Preclinical Model for Drug Sensitivity Analysis”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/tumor-organoids-preclinical-models-dream-team/”,”publisher_year”:”Nature, 2015″,”pub_med_id”:”25924068″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=25924068″},{“title”:”Boj SF, Hwang CI, Baker LA, Chio II, Engle DD, Corbo V, Jager M, Ponz-Sarvise M, Tiriac H, Spector MS, Gracanin A, Oni T, Yu KH, van Boxtel R, Huch M3 Rivera KD, Wilson JP, Feigin ME, Öhlund D, Handly-Santana A, Ardito-Abraham CM, Ludwig M, Elyada E, Alagesan B, Biffi G, Yordanov GN, Delcuze B, Creighton B, Wright K, Park Y, Morsink FH, Molenaar IQ, Borel Rinkes IH, Cuppen E, Hao Y, Jin Y, Nijman IJ, Iacobuzio-Donahue C, Leach SD, Pappin DJ, Hammell M, Klimstra DS, Basturk O, Hruban RH, Offerhaus GJ9 Vries RG, Clevers H, Tuveson DA. Organoid Models of Human and Mouse Ductal Pancreatic Cancer. Cell. 2015 Jan 15;160(1-2):324-38.”,”type”:”publication”,”url”:””,”cancer_type_terms_string”:”Pancreatic”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–Dutch Cancer Society Tumor Organoids Dream Team: A New Preclinical Model for Drug Sensitivity Analysis”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/tumor-organoids-preclinical-models-dream-team/”,”publisher_year”:”Cell, 2015″,”pub_med_id”:”25557080″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=25557080″},{“title”:”Gubin MM, Schreiber RD. CANCER. The odds of immunotherapy success. Science. 2015 Oct 9;350(6257):158-9.”,”type”:”publication”,”url”:”https://science.sciencemag.org/content/350/6257/158″,”cancer_type_terms_string”:”Non – site Specific”,”treatment_type_terms_string”:”Immunotherapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–Lustgarten Foundation Pancreatic Cancer Dream Team: Transforming Pancreatic Cancer to Treatable Disease”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/transforming-pancreatic-cancer-dream-team/”,”publisher_year”:”Science, 2015″,”pub_med_id”:”26450194″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=26450194″},{“title”:”Medler TR, Cotechini T, Coussens LM. Immune response to cancer therapy: Mounting an effective antitumor response and mechanisms of resistance. Trends Cancer. 2015 Sep 1;1(1):66-75.”,”type”:”publication”,”url”:”https://www.cell.com/trends/cancer/fulltext/S2405-8033(15)00009-6?_returnURL=https%3A%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2FS2405803315000096%3Fshowall%3Dtrue”,”cancer_type_terms_string”:”Non – site Specific”,”treatment_type_terms_string”:”Chemotherapy, Immunotherapy, Radiation Therapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–Lustgarten Foundation Pancreatic Cancer Dream Team: Transforming Pancreatic Cancer to Treatable Disease”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/transforming-pancreatic-cancer-dream-team/”,”publisher_year”:”Trend in Cancer, 2015″,”pub_med_id”:”26457331″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=26457331″},{“title”:”Gubin MM, Artyomov, MN, Mardis, ER, Schreiber RD. Tumor neoantigens: building a framework for personalized cancer immunotherapy. J Clin Invest. 2015 Sep;125(9):3413-21.”,”type”:”publication”,”url”:”https://www.jci.org/articles/view/80008″,”cancer_type_terms_string”:”Non – site Specific”,”treatment_type_terms_string”:”Immunotherapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–Lustgarten Foundation Pancreatic Cancer Dream Team: Transforming Pancreatic Cancer to Treatable Disease”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/transforming-pancreatic-cancer-dream-team/”,”publisher_year”:”Journal of Clinical Investigation, 2015″,”pub_med_id”:”26258412″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=26258412″},{“title”:”Cotechini T, Medler TR, Coussens LM. Myeloid cells as targets for therapy in solid tumors. Cancer J. 2015 Jul-Aug;21(4):343-50.”,”type”:”publication”,”url”:”https://insights.ovid.com/article/00130404-201507000-00017″,”cancer_type_terms_string”:”Non – site Specific”,”treatment_type_terms_string”:”Immunotherapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–Lustgarten Foundation Pancreatic Cancer Dream Team: Transforming Pancreatic Cancer to Treatable Disease”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/transforming-pancreatic-cancer-dream-team/”,”publisher_year”:”Cancer Journal, 2015″,”pub_med_id”:”26222088″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=26222088″},{“title”:”Shiao SL, Ruffell B, DeNardo DG, Faddegon BA, Park CC, Coussens LM. TH2-Polarized CD4+ T Cells and Macrophages Limit Efficacy of Radiotherapy. Cancer Immunol Res. 2015 May;3(5):518-25.”,”type”:”publication”,”url”:”https://cancerimmunolres.aacrjournals.org/content/3/5/518″,”cancer_type_terms_string”:”Breast”,”treatment_type_terms_string”:”Radiation Therapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–Lustgarten Foundation Pancreatic Cancer Dream Team: Transforming Pancreatic Cancer to Treatable Disease”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/transforming-pancreatic-cancer-dream-team/”,”publisher_year”:”Cancer Immunology Research, 2015″,”pub_med_id”:”25716473″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=25716473″},{“title”:”Winograd R, Byrne KT, Evans RA, Odorizzi PM, Meyer AR, Bajor DL, Clendenin C, Stanger BZ, Furth EE, Wherry EJ, Vonderheide RH. Induction of T-cell Immunity Overcomes Complete Resistance to PD-1 and CTLA-4 Blockade and Improves Survival in Pancreatic Carcinoma. Cancer Immunol Res. 2015 Apr;3(4):399-411.”,”type”:”publication”,”url”:”https://cancerimmunolres.aacrjournals.org/content/3/4/399″,”cancer_type_terms_string”:”Pancreatic”,”treatment_type_terms_string”:”Immunotherapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–Lustgarten Foundation Pancreatic Cancer Dream Team: Transforming Pancreatic Cancer to Treatable Disease”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/transforming-pancreatic-cancer-dream-team/”,”publisher_year”:”Cancer Immunology Research, 2015″,”pub_med_id”:”25678581″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=25678581″},{“title”:”Ruffell B, Coussens LM. (2015) Macrophages and therapeutic resistance in cancer. Cancer Cell. 2015 Apr 13;27(4):462-72.”,”type”:”publication”,”url”:”https://www.cell.com/cancer-cell/fulltext/S1535-6108(15)00065-3″,”cancer_type_terms_string”:”Non – site Specific”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–Lustgarten Foundation Pancreatic Cancer Dream Team: Transforming Pancreatic Cancer to Treatable Disease”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/transforming-pancreatic-cancer-dream-team/”,”publisher_year”:”Cancer Cell, 2015″,”pub_med_id”:”25858805″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=25858805″},{“title”:”Chu NJ, Armstrong TD, Jaffee EM. Nonviral oncogenic antigens and the inflammatory signals driving early cancer development as targets for cancer immunoprevention. Clin Cancer Res. 2015 Apr 1;21(7):1549-57.”,”type”:”publication”,”url”:”https://insights.ovid.com/crossref?an=00002371-201501000-00001″,”cancer_type_terms_string”:”Pancreatic”,”treatment_type_terms_string”:”Immunotherapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–Lustgarten Foundation Pancreatic Cancer Dream Team: Transforming Pancreatic Cancer to Treatable Disease”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/transforming-pancreatic-cancer-dream-team/”,”publisher_year”:”Clinical Cancer Research, 2015″,”pub_med_id”:”25415283″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=25415283″},{“title”:”Bertotti A, Papp E, Jones S, Adleff V, Anagnostou V, Lupo B, Sausen M, Phallen J, Hruban CA, Tokheim C, Niknafs N, Nesselbush M, Lytle K, Sassi F, Cottino F, Migliardi G, Zanella ER, Ribero D, Russolillo N, Mellano A, Muratore A, Paraluppi G, Salizzoni M, Marsoni S, Kragh M, Lantto J, Cassingena A, Li QK, Karchin R, Scharpf R, Sartore-Bianchi A, Siena S, Diaz LA Jr, Trusolino L, Velculescu VE. The genomic landscape of response to EGFR blockade in colorectal cancer. Nature. 2015 Oct 8;526(7572):263-7.”,”type”:”publication”,”url”:”https://www.nature.com/articles/nature14969″,”cancer_type_terms_string”:”Colorectal”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–Dutch Cancer Society Colorectal Cancer Early Detection Dream Team: Molecular Early Detection of Colorectal Cancer”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/colorectal-cancer-early-detection-dream-team/”,”publisher_year”:”Nature, 2015″,”pub_med_id”:”26416732″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=26416732″},{“title”:”Sausen M, Phallen J, Adleff V, Jones S, Leary RJ, Barrett MT, Anagnostou V, Parpart-Li S, Murphy D, Kay Li Q, Hruban CA, Scharpf R, White JR, O’Dwyer PJ, Allen PJ, Eshleman JR, Thompson CB, Klimstra DS, Linehan DC, Maitra A, Hruban RH, Diaz LA Jr, Von Hoff DD, Johansen JS, Drebin JA, Velculescu VE. Clinical implications of genomic alterations in the tumour and circulation of pancreatic cancer patients. Nat Commun. 2015 Jul 7;6:7686.”,”type”:”publication”,”url”:”https://www.nature.com/articles/ncomms8686″,”cancer_type_terms_string”:”Pancreatic”,”treatment_type_terms_string”:”Screening/ Early Detection”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–Dutch Cancer Society Colorectal Cancer Early Detection Dream Team: Molecular Early Detection of Colorectal Cancer”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/colorectal-cancer-early-detection-dream-team/”,”publisher_year”:”Nature Communication, 2015″,”pub_med_id”:”26154128″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=26154128″},{“title”:”Konstantinopoulos PA, Ceccaldi R, Shapiro GI, D’Andrea AD. Homologous Recombination Deficiency: Exploiting the Fundamental Vulnerability of Ovarian Cancer. Cancer Discovery 2015 Nov. 5(11):11357-54.”,”type”:”publication”,”url”:”https://cancerdiscovery.aacrjournals.org/content/5/11/1137″,”cancer_type_terms_string”:”Ovarian”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–Ovarian Cancer Research Alliance–National Ovarian Cancer Coalition Ovarian Cancer Dream Team: DNA Repair Therapies for Ovarian Cancer”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/dna-repair-thearpies-for-ovarian-cancer-dream-team/”,”publisher_year”:”Cancer Discovery, 2015″,”pub_med_id”:”26463832″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=26463832″},{“title”:”Brazin KN, Mallis RJ, Das DK, Feng Y, Hwang W, Wang JH, Wagner G, Lang MJ, Reinherz EL. Structural features of the αβTCR mechanotransduction apparatus that promote pMHC discrimination. Front Immunol. 2015 Sep 3;6:441.”,”type”:”publication”,”url”:”https://www.frontiersin.org/articles/10.3389/fimmu.2015.00441/full”,”cancer_type_terms_string”:”Non – site Specific”,”treatment_type_terms_string”:”Immunotherapy, Other”,”grant_type_terms_string”:”Research Team”,”research_project”:”SU2C–Farrah Fawcett Foundation Human Papillomavirus (HPV) Research Team: Therapeutic CD8 Vaccines Against Conserved E7 HPV Epitopes Identified by MS”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/research-teams/hpv-research-team/”,”publisher_year”:”Frontiers in Immunology, 2015″,”pub_med_id”:”26388869″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=26388869″},{“title”:”Reinherz EL and Wang JH. Coidentification of bidentate pMHC interaction with TCR and its co-receptor. Trends Immunol. 2015 May;36(5):300-6.”,”type”:”publication”,”url”:”https://www.cell.com/trends/immunology/fulltext/S1471-4906(15)00051-4?_returnURL=https%3A%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2FS1471490615000514%3Fshowall%3Dtrue”,”cancer_type_terms_string”:”Non – site Specific”,”treatment_type_terms_string”:”Immunotherapy”,”grant_type_terms_string”:”Research Team”,”research_project”:”SU2C–Farrah Fawcett Foundation Human Papillomavirus (HPV) Research Team: Therapeutic CD8 Vaccines Against Conserved E7 HPV Epitopes Identified by MS”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/research-teams/hpv-research-team/”,”publisher_year”:”Trend in Immunology, 2015″,”pub_med_id”:”25818864″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=25818864″},{“title”:”Reinherz EL. αβ TCR-mediated recognition: relevance to tumor-antigen discovery and cancer immunotherapy. Cancer Immunol Res. 2015 Apr;3(4):305-12.”,”type”:”publication”,”url”:”https://cancerimmunolres.aacrjournals.org/content/3/4/305″,”cancer_type_terms_string”:”Non – site Specific”,”treatment_type_terms_string”:”Immunotherapy, Other”,”grant_type_terms_string”:”Research Team”,”research_project”:”SU2C–Farrah Fawcett Foundation Human Papillomavirus (HPV) Research Team: Therapeutic CD8 Vaccines Against Conserved E7 HPV Epitopes Identified by MS”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/research-teams/hpv-research-team/”,”publisher_year”:”Cancer Immunology Research, 2015″,”pub_med_id”:”25847967″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=25847967″},{“title”:”Das DK, Feng Y, Mallis RJ, Li X, Keskin DB, Hussey RE, Brady SK, Wang JH, Wagner G, Reinherz EL, Lang MJ. Force-dependent transition in the T cell receptor β subunit allosterically regulates peptide discrimination and pMHC bond lifetime. Proc Natl Acad Sci U S A. 2015 Feb 3;112(5):1517-22.”,”type”:”publication”,”url”:”https://www.pnas.org/content/112/5/1517″,”cancer_type_terms_string”:”Non – site Specific”,”treatment_type_terms_string”:”Immunotherapy, Other”,”grant_type_terms_string”:”Research Team”,”research_project”:”SU2C–Farrah Fawcett Foundation Human Papillomavirus (HPV) Research Team: Therapeutic CD8 Vaccines Against Conserved E7 HPV Epitopes Identified by MS”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/research-teams/hpv-research-team/”,”publisher_year”:”PNAS, 2015″,”pub_med_id”:”25605925″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=25605925″},{“title”:”Strick R, Strissela P, Baylin S, Chiappinelli K. Unraveling the molecular pathways of DNA-methylation inhibitors: human endogenous retroviruses induce the innate immune response in tumors. Oncoimmunology. 2015 Dec 29;5(5):e1122160.”,”type”:”publication”,”url”:”https://www.tandfonline.com/doi/full/10.1080/2162402X.2015.1122160″,”cancer_type_terms_string”:”Non – site Specific”,”treatment_type_terms_string”:”Epigenetic Therapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”Van Andel Institute–SU2C Cancer Epigenetics Dream Team: The Epigenetics Dream Team II”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/epigenetics-dream-team-ii/”,”publisher_year”:”Oncoimmunology, 2015″,”pub_med_id”:”27467919″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=27467919″},{“title”:”Andersen CL, Nielsen HM, Kristensen LS, Søgaard A, Vikeså J, Jønson L, Nielsen FC, Hasselbalch H, Bjerrum OW, Punj V, Grønbæk K. Whole-exome sequencing and genome-wide methylation analyses identify novel disease associated mutations and methylation patterns in idiopathic hypereosinophilic syndrome. Oncotarget. 2015 Dec 1;6(38):40588-97.”,”type”:”publication”,”url”:”http://www.oncotarget.com/index.php?journal=oncotarget&page=article&op=view&path[]=5845&path[]=16377″,”cancer_type_terms_string”:”Non – site Specific”,”treatment_type_terms_string”:”Epigenetic Therapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”Van Andel Institute–SU2C Cancer Epigenetics Dream Team: The Epigenetics Dream Team II”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/epigenetics-dream-team-ii/”,”publisher_year”:”Oncotarget, 2015″,”pub_med_id”:”26497854″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=26497854″},{“title”:”Yamazaki J, Taby R, Jelinek J, Raynal NJ, Cesaroni M, Pierce SA, Kornblau SM, Bueso-Ramos CE, Ravandi F, Kantarjian HM, Issa JP. Hypomethylation of TET2 Target Genes Identifies a Curable Subset of Acute Myeloid Leukemia. J Natl Cancer Inst. 2015 Nov 13;108(2).”,”type”:”publication”,”url”:”https://academic.oup.com/jnci/article/108/2/djv323/2457810″,”cancer_type_terms_string”:”Leukemia (all types)”,”treatment_type_terms_string”:”Epigenetic Therapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”Van Andel Institute–SU2C Cancer Epigenetics Dream Team: The Epigenetics Dream Team II”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/epigenetics-dream-team-ii/”,”publisher_year”:”Journal of the National Cancer Institute, 2015″,”pub_med_id”:”26568194″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=26568194″},{“title”:”Helbo AS, Treppendahl M, Aslan D, Dimopoulos K, Nandrup-Bus C, Holm MS, Andersen MK, Liang G, Kristensen LS, Grønbæk K. Hypermethylation of the VTRNA1-3 Promoter is Associated with Poor Outcome in Lower Risk Myelodysplastic Syndrome Patients. Genes (Basel). 2015 Oct 14;6(4):977-90.”,”type”:”publication”,”url”:”https://www.mdpi.com/2073-4425/6/4/977″,”cancer_type_terms_string”:”Lymphoma”,”treatment_type_terms_string”:”Epigenetic Therapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”Van Andel Institute–SU2C Cancer Epigenetics Dream Team: The Epigenetics Dream Team II”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/epigenetics-dream-team-ii/”,”publisher_year”:”Genes, 2015″,”pub_med_id”:”26473932″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=26473932″},{“title”:”Elsa Bernard, Laurent Jacob, Julien Mairal, and Jean-Philippe Vert . Efficient sparse methods for RNA isoform identification and quantification from RNA-Seq data with network flows Bioinformatics. 2014 Sep 1;30(17):2447-55″,”type”:”publication”,”url”:”https://academic.oup.com/bioinformatics/article/30/17/2447/2748181″,”cancer_type_terms_string”:”Non – site Specific”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C Breast Cancer Dream Team: An Integrated Approach to Targeting Breast Cancer Molecular Subtypes and Their Resistance Phenotypes”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/breast-cancer-resistant-phenotypes-dream-team/”,”publisher_year”:”Bioinformatics, 2014″,”pub_med_id”:”24813214″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=24813214″},{“title”:”O’Brien NA, McDonald K, Tong L, von Euw E, Kalous O, Conklin D, Hurvitz SA, di Tomaso E, Schnell C, Linnartz R, Finn RS, Hirawat S, Slamon DJ. Targeting PI3K/mTOR overcomes resistance to HER2-targeted therapy independent of feedback activation of AKT. Clin Cancer Res. 2014 Jul 1;20(13):3507-20.”,”type”:”publication”,”url”:”https://clincancerres.aacrjournals.org/content/20/13/3507″,”cancer_type_terms_string”:”Breast”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C Breast Cancer Dream Team: An Integrated Approach to Targeting Breast Cancer Molecular Subtypes and Their Resistance Phenotypes”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/breast-cancer-resistant-phenotypes-dream-team/”,”publisher_year”:”Clinical Cancer Research, 2014″,”pub_med_id”:”24879796″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=24879796″},{“title”:”Aceto N, Bardia A, Miyamoto DT, Donaldson MC, Wittner BS, Spencer JA, Yu M, Pely A, Engstrom A, Zhu H, Brannigan BW, Kapur R, Stott SL, Shioda T, Ramaswamy S, Ting DT, Lin C, Toner M, Haber DA, Maheswaran S. Circulating tumor cell clusters are oligoclonal precursors of breast cancer metastasis. Cell. 2014 Aug 28;158(5):1110-1122.”,”type”:”publication”,”url”:”https://www.cell.com/cell/fulltext/S0092-8674(14)00927-1?_returnURL=https%3A%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2FS0092867414009271%3Fshowall%3Dtrue”,”cancer_type_terms_string”:”Breast”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C Circulating Tumor Cell Dream Team: Bioengineering and Clinical Applications of Circulating Tumor Cell Chip”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/circulating-tumor-cells-dream-team/”,”publisher_year”:”Cell, 2014″,”pub_med_id”:”25171411″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=25171411″},{“title”:”Pathiraja TN, Nayak SR, Xi Y, Jiang S, Garee JP, Edwards DP, Lee AV, Chen J, Shea MJ, Santen RJ, Gannon F, Kangaspeska S, Jelinek J, Issa JP, Richer JK, Elias A, McIlroy M, Young LS, Davidson NE, Schiff R, Li W, Oesterreich S. Epigenetic Reprogramming of HOXC10 in Endocrine-Resistant Breast Cancer. Sci Transl Med. 2014 Mar 26;6(229):229ra41.”,”type”:”publication”,”url”:”https://stm.sciencemag.org/content/6/229/229ra41″,”cancer_type_terms_string”:”Breast”,”treatment_type_terms_string”:”Epigenetic Therapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C Epigenetics Dream Team: Bringing Epigenetic Therapy to the Forefront of Cancer Management”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/epigenetics-therapy-2009-dream-team/”,”publisher_year”:”Science Translational Medicine, 2014″,”pub_med_id”:”24670685″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=24670685″},{“title”:”Li H, Chiappinelli KB, Guzzetta AA, Easwaran H, Yen RW, Vatapalli R, Topper MJ, Luo J, Connolly RM, Azad NS, Stearns V, Pardoll DM, Davidson N, Jones PA, Slamon DJ, Baylin SB, Zahnow CA, Ahuja N. Immune regulation by low doses of the DNA methyltransferase inhibitor 5-azacitidine in common human epithelial cancers. Oncotarget. 2014 Feb 15;5(3):587-98.”,”type”:”publication”,”url”:”http://www.oncotarget.com/index.php?journal=oncotarget&page=article&op=view&path[]=1782&path[]=2096″,”cancer_type_terms_string”:”Breast, Colorectal, Ovarian”,”treatment_type_terms_string”:”Epigenetic Therapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C Epigenetics Dream Team: Bringing Epigenetic Therapy to the Forefront of Cancer Management”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/epigenetics-therapy-2009-dream-team/”,”publisher_year”:”Oncotarget, 2014″,”pub_med_id”:”24583822″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=24583822″},{“title”:”Jones PA. At the tipping point for epigenetic therapies in cancer. J Clin Invest. 2014 Jan;124(1):14-6.”,”type”:”publication”,”url”:”https://www.jci.org/articles/view/74145″,”cancer_type_terms_string”:”Non – site Specific”,”treatment_type_terms_string”:”Epigenetic Therapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C Epigenetics Dream Team: Bringing Epigenetic Therapy to the Forefront of Cancer Management”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/epigenetics-therapy-2009-dream-team/”,”publisher_year”:”Journal of Clinical Investigation, 2014″,”pub_med_id”:”24382384″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=24382384″},{“title”:”Kim, M-S, Zhong, Y, Yachida, S, Rajeshkumar, NV, Abel, ML, Marimuthu, A, Mudgal, K, Hruban, RH, Poling, JS, Tyner, JW, Maitra, A, Iacobuzio-Donahue, CA, Pandey, A. Heterogeneity of Pancreatic Cancer Metastases in a Single Patient Revealed by Quantitative Proteomics. Mol Cell Proteomics. 2014 Nov;13(11):2803-11.”,”type”:”publication”,”url”:”https://www.mcponline.org/content/13/11/2803″,”cancer_type_terms_string”:”Pancreatic”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C Pancreatic Dream Team: Cutting Off the Fuel Supply: A New Approach in the Treatment of Pancreatic Cancer”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/cutting-fuel-supply-to-pancreatic-cancer-dream-team/”,”publisher_year”:”Molecular & Cellular Proteomics, 2014″,”pub_med_id”:”24895378″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=24895378″},{“title”:”Sherman M.H., Yu R.T., Atkins A.R., Ding N., Collisson E.A., Connor F., Van Dyke T., Kozlov S., Martin P., Engle D.D., Tiriac H., Tseng T.W., Dawson D.W., Donahue T.R., Masamune A., Shimosegawa T., Apte M.V., Wilson J.S., Ng B., Lau S.L., Gunton J.E., Wahl G.M., Hunter T., Drebin J.A., O’Dwyer P.J., Liddle C., Tuveson D.A., Downes M., Evans R.M. Vitamin D Receptor-Mediated Stromal Reprogramming Suppresses Pancreatitis and Enhances Pancreatic Cancer Therapy. Cell. 2014 Sep 25;159(1):80-93.”,”type”:”publication”,”url”:”https://www.cell.com/cell/fulltext/S0092-8674(14)01033-2?_returnURL=https%3A%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2FS0092867414010332%3Fshowall%3Dtrue”,”cancer_type_terms_string”:”Pancreatic”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C Pancreatic Dream Team: Cutting Off the Fuel Supply: A New Approach in the Treatment of Pancreatic Cancer”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/cutting-fuel-supply-to-pancreatic-cancer-dream-team/”,”publisher_year”:”Cell, 2014″,”pub_med_id”:”25259922″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=25259922″},{“title”:”Yang A, Rajeshkumar NV, Wang X, Yabuuchi S, Alexander BM, Chu GC, Von Hoff DD, Maitra A, Kimmelman AC. Autophagy is critical for pancreatic tumor growth and progression in tumors with p53 alterations. Cancer Discov. 2014 Aug;4(8):905-13.”,”type”:”publication”,”url”:”https://cancerdiscovery.aacrjournals.org/content/4/8/905″,”cancer_type_terms_string”:”Pancreatic”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C Pancreatic Dream Team: Cutting Off the Fuel Supply: A New Approach in the Treatment of Pancreatic Cancer”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/cutting-fuel-supply-to-pancreatic-cancer-dream-team/”,”publisher_year”:”Cancer Discovery, 2014″,”pub_med_id”:”24875860″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=24875860″},{“title”:”Daniel A. Haber and Victor E. Velculescu. Blood-Based Analyses of Cancer: Circulating Tumor Cells and Circulating Tumor DNA. Cancer Discov. 2014 Jun;4(6):650-61.”,”type”:”publication”,”url”:”https://cancerdiscovery.aacrjournals.org/content/4/6/650″,”cancer_type_terms_string”:”Non – site Specific”,”treatment_type_terms_string”:”Screening/ Early Detection”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C Pancreatic Dream Team: Cutting Off the Fuel Supply: A New Approach in the Treatment of Pancreatic Cancer”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/cutting-fuel-supply-to-pancreatic-cancer-dream-team/”,”publisher_year”:”Cancer Discovery, 2014″,”pub_med_id”:”24801577″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=24801577″},{“title”:”Fan J, Ye J, Kamphorst JJ, Shlomi T, Thompson CB, Rabinowitz JD. Quantitative flux analysis reveals folate-dependent NADPH production. Nature. 2014 Jun 12;510(7504):298-302.”,”type”:”publication”,”url”:”https://www.nature.com/articles/nature13236″,”cancer_type_terms_string”:”Non – site Specific”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C Pancreatic Dream Team: Cutting Off the Fuel Supply: A New Approach in the Treatment of Pancreatic Cancer”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/cutting-fuel-supply-to-pancreatic-cancer-dream-team/”,”publisher_year”:”Nature, 2014″,”pub_med_id”:”24805240″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=24805240″},{“title”:”C. Bettegowda, M. Sausen, R. J. Leary, I. Kinde, Y. Wang, N. Agrawal, B. R. Bartlett, H. Wang, B. Luber, R. M. Alani, E. S. Antonarakis, N. S. Azad, A. Bardelli, H. Brem, J. L. Cameron, C. C. Lee, L. A. Fecher, G. L. Gallia, P. Gibbs, D. Le, R. L. Giuntoli, M. Goggins, M. D. Hogarty, M. Holdhoff, S.-M. Hong, Y. Jiao, H. H. Juhl, J. J. Kim, G. Siravegna, D. A. Laheru, C. Lauricella, M. Lim, E. J. Lipson, S. K. N. Marie, G. J. Netto, K. S. Oliner, A. Olivi, L. Olsson, G. J. Riggins, A. Sartore-Bianchi, K. Schmidt, l.-M. Shih, S. M. Oba-Shinjo, S. Siena, D. Theodorescu, J. Tie, T. T. Harkins, S. Veronese, T.-L. Wang, J. D. Weingart, C. L. Wolfgang, L. D. Wood, D. Xing, R. H. Hruban, J. Wu, P. J. Allen, C. M. Schmidt, M. A. Choti, V. E. Velculescu, K. W. Kinzler, B. Vogelstein, N. Papadopoulos, L. A. Diaz Jr., Detection of circulating tumor DNA in early- and late-stage human malignancies. Sci Transl Med. 2014 Feb 19;6(224):224ra24″,”type”:”publication”,”url”:”https://stm.sciencemag.org/content/6/224/224ra24″,”cancer_type_terms_string”:”Non – site Specific”,”treatment_type_terms_string”:”Screening/ Early Detection”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C Pancreatic Dream Team: Cutting Off the Fuel Supply: A New Approach in the Treatment of Pancreatic Cancer”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/cutting-fuel-supply-to-pancreatic-cancer-dream-team/”,”publisher_year”:”Science Translational Medicine, 2014″,”pub_med_id”:”24553385″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=24553385″},{“title”:”Mayer IA, Abramson VG, Isakoff SJ, Forero A, Balko JM, Kuba MG, Sanders ME, Yap JT, Van den Abbeele AD, Li Y, Cantley LC, Winer E, Arteaga CL. Stand up to cancer phase Ib study of pan-phosphoinositide-3-kinase inhibitor buparlisib with letrozole in estrogen receptor-positive/human epidermal growth factor receptor 2-negative metastatic breast cancer.J Clin Oncol. 2014 Apr 20;32(12):1202-9.”,”type”:”publication”,”url”:”https://ascopubs.org/doi/10.1200/JCO.2013.54.0518″,”cancer_type_terms_string”:”Breast”,”treatment_type_terms_string”:”Chemotherapy, Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C PI3K Dream Team: Targeting the PI3K Pathway in Women’s Cancers”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/womens-cancers-pi3k-dream-team/”,”publisher_year”:”Journal of Clinical Oncology, 2014″,”pub_med_id”:”24663045″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=24663045″},{“title”:”Cheng H, Liu P, Zhang F, Xu E, Symonds L, Ohlson CE, Bronson RT, Maira SM, Di Tomaso E, Li J, Myers AP, Cantley LC, Mills GB, Zhao JJ. A Genetic Mouse Model of Invasive Endometrial Cancer Driven by Concurrent Loss of Pten and Lkb1 Is Highly Responsive to mTOR Inhibition. Cancer Res. 2014 Jan 1;74(1):15-23.”,”type”:”publication”,”url”:”https://cancerres.aacrjournals.org/content/74/1/15″,”cancer_type_terms_string”:”Endometiral/Uterin”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C PI3K Dream Team: Targeting the PI3K Pathway in Women’s Cancers”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/womens-cancers-pi3k-dream-team/”,”publisher_year”:”Cancer Research, 2014″,”pub_med_id”:”24322983″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=24322983″},{“title”:”Tembe WD, Pond SJ, Legendre C, Chuang HY, Liang WS, Kim NE, Montel V, Wong S, McDaniel TK, Craig DW, Carpten JD. Open-access synthetic spike-in mRNA-seq data for cancer gene fusions.BMC Genomics. 2014 Sep 30;15:824.”,”type”:”publication”,”url”:”https://bmcgenomics.biomedcentral.com/articles/10.1186/1471-2164-15-824″,”cancer_type_terms_string”:”Non – site Specific”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–Melanoma Research Alliance Melanoma Dream Team: Personalized Medicine for Patients with BRAF Wild-Type (BRAFwt) Cancer”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/melanoma-braf-wildtype-dream-team/”,”publisher_year”:”BMC Genomics, 2014″,”pub_med_id”:”25266161″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=25266161″},{“title”:”Nissan MH, Pratilas CA, Jones AM, Ramirez R, Won H, Liu C, Tiwari S, Kong L, Hanrahan AJ, Yao Z, Merghoub T, Ribas A, Chapman PB, Yaeger R, Taylor BS, Schultz N, Berger MF, Rosen N, Solit DB. Loss of NF1 in cutaneous melanoma is associated with RAS activation and MEK dependence. Cancer Res. 2014 Apr 15;74(8):2340-50.”,”type”:”publication”,”url”:”https://cancerres.aacrjournals.org/content/74/8/2340″,”cancer_type_terms_string”:”Melanoma”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–Melanoma Research Alliance Melanoma Dream Team: Personalized Medicine for Patients with BRAF Wild-Type (BRAFwt) Cancer”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/melanoma-braf-wildtype-dream-team/”,”publisher_year”:”Cancer Research, 2014″,”pub_med_id”:”24576830″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=24576830″},{“title”:”Peng Q, Schork, N. Utility of network integrity methods in therapeutic target identification. Front Genet. 2014 Feb 3;5:12.”,”type”:”publication”,”url”:”https://www.frontiersin.org/articles/10.3389/fgene.2014.00012/full”,”cancer_type_terms_string”:”Non – site Specific”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–Melanoma Research Alliance Melanoma Dream Team: Personalized Medicine for Patients with BRAF Wild-Type (BRAFwt) Cancer”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/melanoma-braf-wildtype-dream-team/”,”publisher_year”:”Frontiers in Genetics, 2014″,”pub_med_id”:”24550933″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=24550933″},{“title”:”Snyder A, Makarov V, Merghoub T, Yuan J, Zaretsky JM, Desrichard A, Walsh LA, Postow MA, Wong P, Ho TS, Hollmann TJ, Bruggeman C, Kannan K, Li Y, Elipenahli C, Liu C, Harbison CT, Wang L, Ribas A, Wolchok JD, Chan TA. Genetic Basis Underlying Clinical Response to CTLA-4 Blockade in Melanoma. N Engl J Med. 2014 Dec 4;371(23):2189-2199.”,”type”:”publication”,”url”:”https://www.nejm.org/doi/10.1056/NEJMoa1406498″,”cancer_type_terms_string”:”Melanoma”,”treatment_type_terms_string”:”Immunotherapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–Cancer Research Institute Cancer Immunology Dream Team: Immunologic Checkpoint Blockade and Adoptive Cell Transfer in Cancer Therapy”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/immunologic-checkpoint-blockade-dream-team/”,”publisher_year”:”New England Journal of Medicine, 2014″,”pub_med_id”:”25409260″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=25409260″},{“title”:”Tumeh PC, Harview CL, Yearley JH, Shintaku IP, Taylor EJ, Robert L, Chmielowski B, Spasic M, Henry G, Ciobanu V, West AN, Carmona M, Kivork C, Seja E, Cherry G, Gutierrez AJ, Grogan TR, Mateus C, Tomasic G, Glaspy JA, Emerson RO, Robins H, Pierce RH, Elashoff DA, Robert C, Ribas A. PD-1 blockade induces responses by inhibiting adaptive immune resistance.Nature. 2014 Nov 27;515(7528):568-71.”,”type”:”publication”,”url”:”https://www.nature.com/articles/nature13954″,”cancer_type_terms_string”:”Melanoma”,”treatment_type_terms_string”:”Immunotherapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–Cancer Research Institute Cancer Immunology Dream Team: Immunologic Checkpoint Blockade and Adoptive Cell Transfer in Cancer Therapy”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/immunologic-checkpoint-blockade-dream-team/”,”publisher_year”:”Nature, 2014″,”pub_med_id”:”25428505″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=25428505″},{“title”:”Prasad S. Adusumilli, Leonid Cherkassky, Jonathan Villena-Vargas, Christos Colovos, Elliot Servais, Jason Plotkin, David R. Jones, Michel Sadelain. Regional Delivery of Mesothelin-targeted CAR T cell Therapy Generates Potent and Long-lasting CD4-dependent Tumor Immunity. Sci Transl Med. 2014 Nov 5;6(261):261ra151.”,”type”:”publication”,”url”:”https://stm.sciencemag.org/content/6/261/261ra151″,”cancer_type_terms_string”:”Non – site Specific”,”treatment_type_terms_string”:”Immunotherapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–Cancer Research Institute Cancer Immunology Dream Team: Immunologic Checkpoint Blockade and Adoptive Cell Transfer in Cancer Therapy”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/immunologic-checkpoint-blockade-dream-team/”,”publisher_year”:”Science Translational Medicine, 2014″,”pub_med_id”:”25378643″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=25378643″},{“title”:”Taube JM, Klein A, Brahmer JR, Xu H, Pan X, Kim JH, Chen L, Pardoll DM, Topalian SL, Anders RA. Association of PD-1, PD-1 ligands, and other features of the tumor immune microenvironment with response to anti-PD-1 therapy. Clin Cancer Res. 2014 Oct 1;20(19):5064-74.”,”type”:”publication”,”url”:”https://clincancerres.aacrjournals.org/content/20/19/5064″,”cancer_type_terms_string”:”Colorectal, Kidney, Lung, Melanoma, Prostate”,”treatment_type_terms_string”:”Immunotherapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–Cancer Research Institute Cancer Immunology Dream Team: Immunologic Checkpoint Blockade and Adoptive Cell Transfer in Cancer Therapy”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/immunologic-checkpoint-blockade-dream-team/”,”publisher_year”:”Clinical Cancer Research, 2014″,”pub_med_id”:”24714771″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=24714771″},{“title”:”Pollack SM, Jones RL, Farrar EA, Lai IP, Lee SM, Cao J, Pillarisetty VG, Hoch BL, Gullett A, Bleakley M, Conrad EU, Eary JF, Shibuya KC, Warren EH, Carstens JN, Heimfeld S, Riddell SR, Yee C. Tetramer guided, cell sorter assisted production of clinical grade autologous NY-ESO-1 specific CD8(+) T cells. J Immunother Cancer. 2014 Oct 14;2(1):36.”,”type”:”publication”,”url”:”https://jitc.biomedcentral.com/articles/10.1186/s40425-014-0036-y”,”cancer_type_terms_string”:”Sarcoma”,”treatment_type_terms_string”:”Immunotherapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–Cancer Research Institute Cancer Immunology Dream Team: Immunologic Checkpoint Blockade and Adoptive Cell Transfer in Cancer Therapy”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/immunologic-checkpoint-blockade-dream-team/”,”publisher_year”:”Journal for Immunotherapy of Cancer, 2014″,”pub_med_id”:”25317334″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=25317334″},{“title”:”Fu J, Malm IJ, Kadayakkara DK, Levitsky H, Pardoll D, Kim YJ. Preclinical evidence that PD1 blockade cooperates with cancer vaccine TEGVAX to elicit regression of established tumors. Cancer Res. 2014 Aug 1;74(15):4042-52.”,”type”:”publication”,”url”:”https://cancerres.aacrjournals.org/content/74/15/4042″,”cancer_type_terms_string”:”Non – site Specific”,”treatment_type_terms_string”:”Immunotherapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–Cancer Research Institute Cancer Immunology Dream Team: Immunologic Checkpoint Blockade and Adoptive Cell Transfer in Cancer Therapy”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/immunologic-checkpoint-blockade-dream-team/”,”publisher_year”:”Cancer Research, 2014″,”pub_med_id”:”24812273″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=24812273″},{“title”:”Robert L1, Tsoi J, Wang X, Emerson R, Homet B, Chodon T, Mok S, Huang RR, Cochran AJ, Comin-Anduix B, Koya RC, Graeber TG, Robins H, Ribas A. CTLA4 blockade broadens the peripheral T cell receptor repertoire. Clin Cancer Res. 2014 May 1;20(9):2424-32.”,”type”:”publication”,”url”:”https://clincancerres.aacrjournals.org/content/20/9/2424″,”cancer_type_terms_string”:”Non – site Specific”,”treatment_type_terms_string”:”Immunotherapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–Cancer Research Institute Cancer Immunology Dream Team: Immunologic Checkpoint Blockade and Adoptive Cell Transfer in Cancer Therapy”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/immunologic-checkpoint-blockade-dream-team/”,”publisher_year”:”Clinical Cancer Research, 2014″,”pub_med_id”:”24583799″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=24583799″},{“title”:”van Buuren, M., Calis, J., Schumacher, T.N. High sensitivity of a cancer exome-based method to identify neo-antigens with CD8+ T cell immunogenic potential. Oncoimmunology. 2014 May 14;3:e28836.”,”type”:”publication”,”url”:”https://www.tandfonline.com/doi/full/10.4161/onci.28836″,”cancer_type_terms_string”:”Non – site Specific”,”treatment_type_terms_string”:”Immunotherapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–Cancer Research Institute Cancer Immunology Dream Team: Immunologic Checkpoint Blockade and Adoptive Cell Transfer in Cancer Therapy”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/immunologic-checkpoint-blockade-dream-team/”,”publisher_year”:”Oncoimmunology, 2014″,”pub_med_id”:”25083320″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=25083320″},{“title”:”Schietinger A and Greenberg PD. Tolerance and exhaustion: defining mechanisms of T cell dysfunction. Trends Immunol. 2014 Feb;35(2):51-60.”,”type”:”publication”,”url”:”https://www.cell.com/trends/immunology/fulltext/S1471-4906(13)00154-3?_returnURL=https%3A%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2FS1471490613001543%3Fshowall%3Dtrue”,”cancer_type_terms_string”:”Non – site Specific”,”treatment_type_terms_string”:”Immunotherapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–Cancer Research Institute Cancer Immunology Dream Team: Immunologic Checkpoint Blockade and Adoptive Cell Transfer in Cancer Therapy”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/immunologic-checkpoint-blockade-dream-team/”,”publisher_year”:”Trends in Immunology, 2014″,”pub_med_id”:”24210163″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=24210163″},{“title”:”Kachala SS, Bograd AJ, Villena-Vargas J, Suzuki K, Servais EL, Kadota K, Chou J, Sima CS, Vertes E, Rusch VW, Travis WD, Sadelain M, Adusumilli P. Mesothelin Overexpression Is a Marker of Tumor Aggressiveness and Is Associated with Reduced Recurrence-free and Overall Survival in Early-Stage Lung Adenocarcinoma. Clin Cancer Res. 2014 Feb 15;20(4):1020-8.”,”type”:”publication”,”url”:”https://clincancerres.aacrjournals.org/content/20/4/1020″,”cancer_type_terms_string”:”Lung”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–Cancer Research Institute Cancer Immunology Dream Team: Immunologic Checkpoint Blockade and Adoptive Cell Transfer in Cancer Therapy”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/immunologic-checkpoint-blockade-dream-team/”,”publisher_year”:”Clinical Cancer Research, 2014″,”pub_med_id”:”24334761″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=24334761″},{“title”:”Farrow JM, Yang JC, Evans CP. Autophagy as a modulator and target in prostate cancer. Nat Rev Urol. 2014 Sep;11(9):508-16.”,”type”:”publication”,”url”:”https://www.nature.com/articles/nrurol.2014.196″,”cancer_type_terms_string”:”Prostate”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–Prostate Cancer Foundation Prostate Dream Team: Targeting Adaptive Pathways in Metastatic Castration-Resistant Prostate Cancer”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/metastatic-treatment-resistant-prostate-cancer-dream-team/”,”publisher_year”:”Nature Reviews Urology, 2014″,”pub_med_id”:”25134829″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=25134829″},{“title”:”Nguyen HG, Yang JC, Kung HJ, Shi XB, Tilki D, Lara PN Jr, DeVere White RW, Gao AC, Evans CP. Targeting autophagy overcomes Enzalutamide resistance in castration-resistant prostate cancer cells and improves therapeutic response in a xenograft model. Oncogene. 2014 Sep 4;33(36):4521-30.”,”type”:”publication”,”url”:”https://www.nature.com/articles/onc201425″,”cancer_type_terms_string”:”Prostate”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–Prostate Cancer Foundation Prostate Dream Team: Targeting Adaptive Pathways in Metastatic Castration-Resistant Prostate Cancer”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/metastatic-treatment-resistant-prostate-cancer-dream-team/”,”publisher_year”:”Oncogene, 2014″,”pub_med_id”:”24662833″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=24662833″},{“title”:”Guo W, Liu R, Bhardwaj G, Yang JC, Changou C, Ma AH, Mazloom A, Chintapalli S, Xiao K, Xiao W, Kumaresan P, Sanchez E, Yeh CT, Evans CP, Patterson R, Lam KS, Kung HJ.Targeting Btk/Etk of prostate cancer cells by a novel dual inhibitor. Cell Death Dis. 2014 Sep 4;5:e1409.”,”type”:”publication”,”url”:”https://www.nature.com/articles/cddis2014343″,”cancer_type_terms_string”:”Prostate”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–Prostate Cancer Foundation Prostate Dream Team: Targeting Adaptive Pathways in Metastatic Castration-Resistant Prostate Cancer”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/metastatic-treatment-resistant-prostate-cancer-dream-team/”,”publisher_year”:”Cell Death & Disease, 2014″,”pub_med_id”:”25188519″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=25188519″},{“title”:”Sos ML, Levin RS, Gordan JD, Oses-Prieto JA, Webber JT, Salt M, Hann B, Burlingame AL, McCormick F, Bandyopadhyay S, Shokat KM. Oncogene Mimicry as a Mechanism of Primary Resistance to BRAF Inhibitors. Cell Rep. 2014 Aug 21;8(4):1037-48.”,”type”:”publication”,”url”:”https://www.cell.com/cell-reports/fulltext/S2211-1247(14)00577-4?_returnURL=https%3A%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2FS2211124714005774%3Fshowall%3Dtrue”,”cancer_type_terms_string”:”Non – site Specific”,”treatment_type_terms_string”:”Chemotherapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–Prostate Cancer Foundation Prostate Dream Team: Targeting Adaptive Pathways in Metastatic Castration-Resistant Prostate Cancer”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/metastatic-treatment-resistant-prostate-cancer-dream-team/”,”publisher_year”:”Cell Reports, 2014″,”pub_med_id”:”25127139″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=25127139″},{“title”:”Xu-Bao Shi, Ai-Hong Ma, Lingru Xue, Meimei Li, Hao G. Nguyen, Joy C. Yang, Clifford G. Tepper, Regina Gandour-Edwards, Christopher P. Evans, Hsing-Jien Kung, and Ralph W. deVere White. Chem-seq permits identification of genomic targets of drugs against androgen receptor regulation selected by functional phenotypic screens. Proc Natl Acad Sci U S A. 2014 Jun 24;111(25):9235-40.”,”type”:”publication”,”url”:”https://www.pnas.org/content/111/25/9235″,”cancer_type_terms_string”:”Prostate”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–Prostate Cancer Foundation Prostate Dream Team: Targeting Adaptive Pathways in Metastatic Castration-Resistant Prostate Cancer”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/metastatic-treatment-resistant-prostate-cancer-dream-team/”,”publisher_year”:”PNAS, 2014″,”pub_med_id”:”24928520″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=24928520″},{“title”:”Drake JM, Lee JK, Witte ON. Clinical targeting of mutated and wild-type protein tyrosine kinases in cancer. Mol Cell Biol. 2014 May;34(10):1722-32.”,”type”:”publication”,”url”:”https://mcb.asm.org/content/34/10/1722″,”cancer_type_terms_string”:”Non – site Specific”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–Prostate Cancer Foundation Prostate Dream Team: Targeting Adaptive Pathways in Metastatic Castration-Resistant Prostate Cancer”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/metastatic-treatment-resistant-prostate-cancer-dream-team/”,”publisher_year”:”Molecular and Cellular Biology, 2014″,”pub_med_id”:”24567371″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=24567371″},{“title”:”Van Hook K1, Huang T, Alumkal JJ. Orteronel for the treatment of prostate cancer. Future Oncol. 2014 Apr;10(5):803-11.”,”type”:”publication”,”url”:”https://www.futuremedicine.com/doi/10.2217/fon.14.35″,”cancer_type_terms_string”:”Prostate”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–Prostate Cancer Foundation Prostate Dream Team: Targeting Adaptive Pathways in Metastatic Castration-Resistant Prostate Cancer”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/metastatic-treatment-resistant-prostate-cancer-dream-team/”,”publisher_year”:”Future Oncology, 2014″,”pub_med_id”:”24799061″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=24799061″},{“title”:”Van Allen E, Foye A, Wagle N, Kim W, Carter SL, McKenna A, Simko JP, Garraway LA, Febbo P. Successful whole-exome sequencing from a prostate cancer bone metastasis biopsy. Prostate Cancer Prostatic Dis. 2014 Mar;17(1):23-7.”,”type”:”publication”,”url”:”https://www.nature.com/articles/pcan201337″,”cancer_type_terms_string”:”Prostate”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C−Prostate Cancer Foundation Prostate Dream Team: Precision Therapy of Advanced Prostate Cancer”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/prostate-cancer-precision-therapy-dream-team/”,”publisher_year”:”Prostate Cancer and Prostatic Diseases, 2014″,”pub_med_id”:”24366412″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=24366412″},{“title”:”Landi DB, Hegde M, Ahmed N. Human cytomegalovirus antigens in malignant gliomas as targets for adoptive cellular therapy. Front Oncol. 2014 Nov 26;4:338.”,”type”:”publication”,”url”:”https://www.frontiersin.org/articles/10.3389/fonc.2014.00338/full”,”cancer_type_terms_string”:”Brain/Nervous System, Pediatric – Solid Tumor”,”treatment_type_terms_string”:”Immunotherapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–St. Baldrick’s Foundation Pediatric Cancer Dream Team: Immunogenomics to Create New Therapies for High-Risk Childhood Cancers”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/high-risk-pediatric-cancers-dream-team/”,”publisher_year”:”Frontiers in Oncology, 2014″,”pub_med_id”:”25505736″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=25505736″},{“title”:”Maude SL, Frey N, Shaw PA, Aplenc R, Barrett DM, Bunin NJ, Chew A, Gonzalez VE, Zheng Z, Lacey SF, Mahnke YD, Melenhorst JJ, Rheingold SR, Shen A, Teachey DT, Levine BL, June CH, Porter DL, Grupp SA. Chimeric antigen receptor T cells for sustained remissions in leukemia. N Engl J Med. 2014 Oct 16;371(16):1507-17.”,”type”:”publication”,”url”:”https://www.nejm.org/doi/10.1056/NEJMoa1407222″,”cancer_type_terms_string”:”Leukemia (all types), Pediatric – Blood Related”,”treatment_type_terms_string”:”Immunotherapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–St. Baldrick’s Foundation Pediatric Cancer Dream Team: Immunogenomics to Create New Therapies for High-Risk Childhood Cancers”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/high-risk-pediatric-cancers-dream-team/”,”publisher_year”:”New England Journal of Medicine, 2014″,”pub_med_id”:”25317870″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=25317870″},{“title”:”Krebs S, Chow KK, Yi Z, Rodriguez-Cruz T, Hegde M, Gerken C, Ahmed N, Gottschalk S. T cells redirected to interleukin-13Rα2 with interleukin-13 mutein-chimeric antigen receptors have anti-glioma activity but also recognize interleukin-13Rα1. Cytotherapy. 2014 Aug;16(8):1121-31.”,”type”:”publication”,”url”:”https://www.celltherapyjournal.org/article/S1465-3249(14)00506-4/fulltext”,”cancer_type_terms_string”:”Brain/Nervous System, Pediatric – Solid Tumor”,”treatment_type_terms_string”:”Immunotherapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–St. Baldrick’s Foundation Pediatric Cancer Dream Team: Immunogenomics to Create New Therapies for High-Risk Childhood Cancers”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/high-risk-pediatric-cancers-dream-team/”,”publisher_year”:”Cytotherapy, 2014″,”pub_med_id”:”24841514″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=24841514″},{“title”:”Mukherjee M, Byrd T, Brawley VS, Bielamowicz K, Li XN, Merchant F, Maitra S, Sumazin P, Fuller G, Kew Y, Sun D, Powell SZ, Ahmed N, Zhang N, Pati D. Overexpression and constitutive nuclear localization of cohesin protease Separase protein correlates with high incidence of relapse and reduced overall survival in glioblastoma multiforme. J Neurooncol. 2014 Aug;119(1):27-35.”,”type”:”publication”,”url”:”https://link.springer.com/article/10.1007%2Fs11060-014-1458-6″,”cancer_type_terms_string”:”Brain/Nervous System, Pediatric – Solid Tumor”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–St. Baldrick’s Foundation Pediatric Cancer Dream Team: Immunogenomics to Create New Therapies for High-Risk Childhood Cancers”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/high-risk-pediatric-cancers-dream-team/”,”publisher_year”:”Journal of Neurooncology, 2014″,”pub_med_id”:”24792645″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=24792645″},{“title”:”Lee DW, Gardner R, Porter DL, Louis CU, Ahmed N, Jensen M, Grupp SA, Mackall CL. Current concepts in the diagnosis and management of cytokine release syndrome. Blood. 2014 Jul 10;124(2):188-95.”,”type”:”publication”,”url”:”http://www.bloodjournal.org/content/124/2/188?sso-checked=true”,”cancer_type_terms_string”:”Non – site Specific”,”treatment_type_terms_string”:”Immunotherapy, Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–St. Baldrick’s Foundation Pediatric Cancer Dream Team: Immunogenomics to Create New Therapies for High-Risk Childhood Cancers”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/high-risk-pediatric-cancers-dream-team/”,”publisher_year”:”Blood, 2014″,”pub_med_id”:”24876563″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=24876563″},{“title”:”Orentas RJ, Nordlund J, He J, Singdiri S, Mackall C, Fry TJ, Khan J, Bioinformatic description of immunotherapy targets for pediatric T-cell leukemia and the impact of normal gene sets used for comparison. Front Oncol. 2014 Jun 10;4:134.”,”type”:”publication”,”url”:”https://www.frontiersin.org/articles/10.3389/fonc.2014.00134/full”,”cancer_type_terms_string”:”Pediatric – Blood Related”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–St. Baldrick’s Foundation Pediatric Cancer Dream Team: Immunogenomics to Create New Therapies for High-Risk Childhood Cancers”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/high-risk-pediatric-cancers-dream-team/”,”publisher_year”:”Frontiers in Oncology, 2014″,”pub_med_id”:”24959420″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=24959420″},{“title”:”Hegde M, Bielamowicz KJ, Ahmed N. Novel approaches and mechanisms of immunotherapy for glioblastoma. Discov Med. 2014 Mar;17(93):145-54.”,”type”:”publication”,”url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=24641957″,”cancer_type_terms_string”:”Brain/Nervous System, Pediatric – Solid Tumor”,”treatment_type_terms_string”:”Immunotherapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–St. Baldrick’s Foundation Pediatric Cancer Dream Team: Immunogenomics to Create New Therapies for High-Risk Childhood Cancers”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/high-risk-pediatric-cancers-dream-team/”,”publisher_year”:”Discovery Medicine, 2014″,”pub_med_id”:”24641957″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=24641957″},{“title”:”Karthaus WR, Iaquinta PJ, Drost J, Gracanin A, van Boxtel R, Wongvipat J, Dowling CM, Gao D, Begthel H, Sachs N, Vries RGJ, Cuppen E, Chen Y, Sawyers CL, Clevers HC. Identification of multipotent luminal progenitor cells in human prostate organoid cultures. Cell 2014 Sep 25; 159(1):163-75″,”type”:”publication”,”url”:”https://www.cell.com/cell/fulltext/S0092-8674(14)01048-4?_returnURL=https%3A%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2FS0092867414010484%3Fshowall%3Dtrue”,”cancer_type_terms_string”:”Prostate”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–Dutch Cancer Society Tumor Organoids Dream Team: A New Preclinical Model for Drug Sensitivity Analysis”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/tumor-organoids-preclinical-models-dream-team/”,”publisher_year”:”Cell, 2014″,”pub_med_id”:”25201529″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=25201529″},{“title”:”Affara NI, Ruffell B, Medler TR, Gunderson AJ, Johansson M, Bornstein S, Bergsland E, Steinhoff M, Li Y, Gong Q, Ma Y, Wiesen JF, Wong MH, Kulesz-Martin M, Irving B, Coussens LM. B cells regulate macrophage phenotype and response to chemotherapy in squamous carcinomas. Cancer Cell. 2014 Jun 16;25(6):809-821.”,”type”:”publication”,”url”:”https://www.cell.com/cancer-cell/fulltext/S1535-6108(14)00188-3″,”cancer_type_terms_string”:”Other”,”treatment_type_terms_string”:”Chemotherapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–Lustgarten Foundation Pancreatic Cancer Dream Team: Transforming Pancreatic Cancer to Treatable Disease”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/transforming-pancreatic-cancer-dream-team/”,”publisher_year”:”Cancer Cell, 2014″,”pub_med_id”:”24909985″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=24909985″},{“title”:”Zhang GL, Riemer AB, Keskin DB, Chitkushev L, Reinherz EL, Brusic V. HPVdb: a data mining system for knowledge discovery in human papillomavirus with applications in T cell immunology and vaccinology. Database (Oxford). 2014 Apr 4;2014:bau031.”,”type”:”publication”,”url”:”https://academic.oup.com/database/article/doi/10.1093/database/bau031/2634113″,”cancer_type_terms_string”:”Non – site Specific”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Research Team”,”research_project”:”SU2C–Farrah Fawcett Foundation Human Papillomavirus (HPV) Research Team: Therapeutic CD8 Vaccines Against Conserved E7 HPV Epitopes Identified by MS”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/research-teams/hpv-research-team/”,”publisher_year”:”Database, 2014″,”pub_med_id”:”24705205″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=24705205″},{“title”:”Shen Y, Rehman FL, Feng Y, Boshuizen J, Bajrami I, Elliott R, Wang B, Lord CJ, Post LE, Ashworth A. BMN 673, a novel and highly potent PARP1/2 inhibitor for the treatment of human cancers with DNA repair deficiency.Clin Cancer Res. 2013 Sep 15;19(18):5003-15.”,”type”:”publication”,”url”:”https://clincancerres.aacrjournals.org/content/19/18/5003″,”cancer_type_terms_string”:”Breast”,”treatment_type_terms_string”:”Chemotherapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C Breast Cancer Dream Team: An Integrated Approach to Targeting Breast Cancer Molecular Subtypes and Their Resistance Phenotypes”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/breast-cancer-resistant-phenotypes-dream-team/”,”publisher_year”:”Clinical Cancer Research, 2013″,”pub_med_id”:”23881923″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=23881923″},{“title”:”Rimawi MF, Mayer IA, Forero A, Nanda R, Goetz MP, Rodriguez AA, Pavlick AC, Wang T, Hilsenbeck SG, Gutierrez C, Schiff R, Osborne CK, Chang JC; on behalf of the Translational Breast Cancer Research Consortium (TBCRC). Multicenter phase II study of neoadjuvant lapatinib and trastuzumab with hormonal therapy and without chemotherapy in patients with human epidermal growth factor receptor 2-overexpressing breast cancer: TBCRC 006. J Clin Oncol. 2013 May 10;31(14):1726-31.”,”type”:”publication”,”url”:”https://ascopubs.org/doi/10.1200/JCO.2012.44.8027″,”cancer_type_terms_string”:”Breast”,”treatment_type_terms_string”:”Chemotherapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C Breast Cancer Dream Team: An Integrated Approach to Targeting Breast Cancer Molecular Subtypes and Their Resistance Phenotypes”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/breast-cancer-resistant-phenotypes-dream-team/”,”publisher_year”:”Journal of Clinical Oncology, 2013″,”pub_med_id”:”23569315″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=23569315″},{“title”:”Pettitt SJ, Rehman FL, Bajrami I, Brough R, Wallberg F, Kozarewa I Fenwick K, Assiotis I, Chen L, Campbell J, Lord CJ, Ashworth A. A genetic screen using the PiggyBac transposon in haploid cells identifies Parp1 as a mediator of olaparib toxicity. PLoS One. 2013 Apr 25;8(4):e61520.”,”type”:”publication”,”url”:”https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0061520″,”cancer_type_terms_string”:”Non – site Specific”,”treatment_type_terms_string”:”Chemotherapy, Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C Breast Cancer Dream Team: An Integrated Approach to Targeting Breast Cancer Molecular Subtypes and Their Resistance Phenotypes”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/breast-cancer-resistant-phenotypes-dream-team/”,”publisher_year”:”PLOS One, 2013″,”pub_med_id”:”23634208″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=23634208″},{“title”:”Schwartz T, Stark A, Pang J, Awuah B, Kleer CG, Quayson S, Kingman S, Aitpillah F, Abantanga F, Jiagge E, Oppong JK, Osei-Bonsu E, Martin I, Yan X, Toy K, Adjei E, Wicha M, Newman LA. Expression of aldehyde dehydrogenase 1 as a marker of mammary stem cells in benign and malignant breast lesions of Ghanaian women. Cancer. 2013 Feb 1;119(3):488-94.”,”type”:”publication”,”url”:”https://onlinelibrary.wiley.com/doi/full/10.1002/cncr.27737″,”cancer_type_terms_string”:”Breast”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C Breast Cancer Dream Team: An Integrated Approach to Targeting Breast Cancer Molecular Subtypes and Their Resistance Phenotypes”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/breast-cancer-resistant-phenotypes-dream-team/”,”publisher_year”:”Cancer, 2013″,”pub_med_id”:”22930220″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=22930220″},{“title”:”David Haussler: Goldman M, Craft B, Swatloski T, Ellrott K, Cline M, Diekhans M, Ma S, Wilks C, Stuart J, Haussler D, Zhu J. The UCSC Cancer Genomics Browser: update 2013. Nucleic Acids Res. 2013 Jan;41(Database issue):D949-54.”,”type”:”publication”,”url”:”https://academic.oup.com/nar/article/41/D1/D949/1051210″,”cancer_type_terms_string”:”Non – site Specific”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C Breast Cancer Dream Team: An Integrated Approach to Targeting Breast Cancer Molecular Subtypes and Their Resistance Phenotypes”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/breast-cancer-resistant-phenotypes-dream-team/”,”publisher_year”:”Nucleic Acids Research, 2013″,”pub_med_id”:”23109555″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=23109555″},{“title”:”Ozkumur E, Shah AM, Ciciliano JC, Emmink BL, Miyamoto DT, Brachtel E, Yu M, Chen PI, Morgan B, Trautwein J, Kimura A, Sengupta S, Stott SL, Karabacak NM, Barber TA, Walsh JR, Smith K, Spuhler PS, Sullivan JP, Lee RJ, Ting DT, Luo X, Shaw AT, Bardia A, Sequist LV, Louis DN, Maheswaran S, Kapur R, Haber DA, Toner M.Inertial focusing for tumor antigen-dependent and -independent sorting of rare circulating tumor cells. Sci Transl Med. 2013 Apr 3;5(179):179ra47.”,”type”:”publication”,”url”:”https://stm.sciencemag.org/content/5/179/179ra47″,”cancer_type_terms_string”:”Breast, Lung, Melanoma, Pancreatic, Prostate”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C Circulating Tumor Cell Dream Team: Bioengineering and Clinical Applications of Circulating Tumor Cell Chip”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/circulating-tumor-cells-dream-team/”,”publisher_year”:”Science Translational Medicine, 2013″,”pub_med_id”:”23552373″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=23552373″},{“title”:”Yu M, Bardia A, Wittner BS, Stott SL, Smas ME, Ting DT, Isakoff SJ, Ciciliano JC, Wells MN, Shah AM, Concannon KF, Donaldson MC, Sequist LV, Brachtel E, Sgroi D, Baselga J, Ramaswamy S, Toner M, Haber DA, Maheswaran S. Circulating breast tumor cells exhibit dynamic changes in epithelial and mesenchymal composition. Science. 2013 Feb 1;339(6119):580-4.”,”type”:”publication”,”url”:”https://science.sciencemag.org/content/339/6119/580″,”cancer_type_terms_string”:”Breast”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C Circulating Tumor Cell Dream Team: Bioengineering and Clinical Applications of Circulating Tumor Cell Chip”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/circulating-tumor-cells-dream-team/”,”publisher_year”:”Science, 2013″,”pub_med_id”:”23372014″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=23372014″},{“title”:”Wrangle J, Wang W, Koch A, Easwaran H, Mohammad HP, Vendetti F, VanCriekinge W, De Meyer T,Du Z, Parsana P, Rodgers K, Yen R-W, Zahnow CA, Taube JM, Brahmer JR, Tykodi SS, Easton K, Carvajal RD, Jones PA, Laird PW, Weisenberger DJ, Tsai S, Juergens RA, Topalian SL, Rudin CM, Brock MV, Pardoll DM, Baylin SB. Alterations of immune response of Non-Small Cell Lung Cancer with Azacytidine. Oncotarget. 2013 Nov;4(11):2067-79.”,”type”:”publication”,”url”:”http://www.oncotarget.com/index.php?journal=oncotarget&page=article&op=view&path[]=1542&path[]=1664″,”cancer_type_terms_string”:”Lung”,”treatment_type_terms_string”:”Epigenetic Therapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C Epigenetics Dream Team: Bringing Epigenetic Therapy to the Forefront of Cancer Management”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/epigenetics-therapy-2009-dream-team/”,”publisher_year”:”Oncotarget, 2013″,”pub_med_id”:”24162015″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=24162015″},{“title”:”Issa JP. The myelodysplastic syndrome as a prototypical epigenetic disease. Blood 2013 May 9;121(19):3811-7.”,”type”:”publication”,”url”:”http://www.bloodjournal.org/content/121/19/3811?sso-checked=true”,”cancer_type_terms_string”:”Leukemia (all types)”,”treatment_type_terms_string”:”Epigenetic Therapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C Epigenetics Dream Team: Bringing Epigenetic Therapy to the Forefront of Cancer Management”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/epigenetics-therapy-2009-dream-team/”,”publisher_year”:”Blood, 2013″,”pub_med_id”:”23660859″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=23660859″},{“title”:”Pandiyan K, You JS, Yang X, Dai C, Zhou XJ, Baylin SB, Jones PA, Liang G. Functional DNA demethylation is accompanied by chromatin accessibility. Nucleic Acids Res. 2013 Apr;41(7):3973-85.”,”type”:”publication”,”url”:”https://academic.oup.com/nar/article/41/7/3973/1069246″,”cancer_type_terms_string”:”Colorectal”,”treatment_type_terms_string”:”Epigenetic Therapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C Epigenetics Dream Team: Bringing Epigenetic Therapy to the Forefront of Cancer Management”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/epigenetics-therapy-2009-dream-team/”,”publisher_year”:”Nucleic Acids Research, 2013″,”pub_med_id”:”23408854″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=23408854″},{“title”:”Yamazaki J, Issa JP. Epigenetic aspects of MDS and its molecular targeted therapy. Int J Hematol. 2013 Feb;97(2):175-82.”,”type”:”publication”,”url”:”https://link.springer.com/article/10.1007%2Fs12185-012-1197-4″,”cancer_type_terms_string”:”Leukemia (all types)”,”treatment_type_terms_string”:”Epigenetic Therapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C Epigenetics Dream Team: Bringing Epigenetic Therapy to the Forefront of Cancer Management”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/epigenetics-therapy-2009-dream-team/”,”publisher_year”:”Internation Journal of Hematology, 2013″,”pub_med_id”:”23054654″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=23054654″},{“title”:”Yamazaki J, Estecio MR, Lu Y, Long H, Malouf GG, Graber D, Huo Y, Ramagli L, Liang S, Kornblau SM, Jelinek J, Issa JP. The epigenome of AML stem and progenitor cells. Epigenetics. 2013 Jan;8(1):92-104.”,”type”:”publication”,”url”:”https://www.tandfonline.com/doi/full/10.4161/epi.23243″,”cancer_type_terms_string”:”Leukemia (all types)”,”treatment_type_terms_string”:”Epigenetic Therapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C Epigenetics Dream Team: Bringing Epigenetic Therapy to the Forefront of Cancer Management”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/epigenetics-therapy-2009-dream-team/”,”publisher_year”:”Epigenetics, 2013″,”pub_med_id”:”23249680″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=23249680″},{“title”:”Fan, J., Kamphorst, J. J., Mathew, R., Chung, M. K., White, E., Shlomi, T., Rabinowitz, J. D. (2013) Glutamine-driven oxidative phosphorylation is a major ATP source in transformed mammalian cells in both normoxia and hypoxia. Mol Syst Biol. 2013 Dec 3;9:712.”,”type”:”publication”,”url”:”https://www.embopress.org/doi/full/10.1038/msb.2013.65″,”cancer_type_terms_string”:”Non – site Specific”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C Pancreatic Dream Team: Cutting Off the Fuel Supply: A New Approach in the Treatment of Pancreatic Cancer”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/cutting-fuel-supply-to-pancreatic-cancer-dream-team/”,”publisher_year”:”Molecular Systems Biology, 2013″,”pub_med_id”:”24301801″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=24301801″},{“title”:”Von Hoff, D.D., Ervin, T., Arena, F.P., Chiorean, E.G., Infante, J., Moore, M., Seay, T., Tjulandin, S.A., Ma, W.W., Saleh, M.N., Harris, M., Reni, M., Dowden, S., Laheru, D., Bahary, N., Ramanathan, R.K., Tabernero, J., Hidalgo, M., Goldstein, D., Van Cutsem, E., Wei, X., Iglesias, J., Renschler, M.F. Increased survival in pancreatic cancer with nab-paclitaxel plus gemcitabine. N Engl J Med. 2013 Oct 31;369(18):1691-703.”,”type”:”publication”,”url”:”https://www.nejm.org/doi/10.1056/NEJMoa1304369″,”cancer_type_terms_string”:”Pancreatic”,”treatment_type_terms_string”:”Chemotherapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C Pancreatic Dream Team: Cutting Off the Fuel Supply: A New Approach in the Treatment of Pancreatic Cancer”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/cutting-fuel-supply-to-pancreatic-cancer-dream-team/”,”publisher_year”:”New England Journal of Medicine, 2013″,”pub_med_id”:”24131140″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=24131140″},{“title”:”Kamphorst JJ, Cross JR, Fan J, de Stanchina E, Mathew R, White EP, Thompson CB, Rabinowitz JD. Hypoxic and Ras-transformed cells support growth by scavenging unsaturated fatty acids from lysophospholipids. Proc Natl Acad Sci U S A. 2013 May 28;110(22):8882-7.”,”type”:”publication”,”url”:”https://www.pnas.org/content/110/22/8882″,”cancer_type_terms_string”:”Non – site Specific”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C Pancreatic Dream Team: Cutting Off the Fuel Supply: A New Approach in the Treatment of Pancreatic Cancer”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/cutting-fuel-supply-to-pancreatic-cancer-dream-team/”,”publisher_year”:”PNAS, 2013″,”pub_med_id”:”23671091″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=23671091″},{“title”:”Commisso C, Davidson SM, Soydaner-Azeloglu RG, Parker SJ, Kamphorst JJ, Hackett S, Grabocka E, Nofal M, Drebin JA, Thompson CB, Rabinowitz JD, Metallo CM, Vander Heiden MG, Bar-Sagi D. Macropinocytosis of protein is an amino acid supply route in Ras-transformed cells.Nature. 2013 May 30;497(7451):633-7.”,”type”:”publication”,”url”:”https://www.nature.com/articles/nature12138″,”cancer_type_terms_string”:”Pancreatic”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C Pancreatic Dream Team: Cutting Off the Fuel Supply: A New Approach in the Treatment of Pancreatic Cancer”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/cutting-fuel-supply-to-pancreatic-cancer-dream-team/”,”publisher_year”:”Nature, 2013″,”pub_med_id”:”23665962″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=23665962″},{“title”:”Wang Q, Weisberg E, Zhao JJ. The gene dosage of class Ia PI3K dictates the development of PTEN hamartoma tumor syndrome. Cell Cycle. 2013 Dec 1;12(23):3589-93.”,”type”:”publication”,”url”:”https://www.tandfonline.com/doi/abs/10.4161/cc.26812″,”cancer_type_terms_string”:””,”treatment_type_terms_string”:””,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C PI3K Dream Team: Targeting the PI3K Pathway in Women’s Cancers”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/womens-cancers-pi3k-dream-team/”,”publisher_year”:”Cell Cycle, 2013″,”pub_med_id”:”24131925″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=24131925″},{“title”:”Yan Y, Serra V, Prudkin L, Scaltriti M, Murli S, Rodríguez O, Guzman M,Sampath D, Nannini M, Xiao Y, Wagle MC, Wu JQ, Wongchenko M, Hampton G, Ramakrishnan V, Lackner MR, Saura C, Roda D, Cervantes A, Tabernero J, Patel P, Baselga J. Evaluation and Clinical Analyses of Downstream Targets of the Akt Inhibitor GDC-0068. Clin Cancer Res. 2013 Dec 15;19(24):6976-86.”,”type”:”publication”,”url”:”https://clincancerres.aacrjournals.org/content/19/24/6976″,”cancer_type_terms_string”:”Breast, Other”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C PI3K Dream Team: Targeting the PI3K Pathway in Women’s Cancers”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/womens-cancers-pi3k-dream-team/”,”publisher_year”:”Clinical Cancer Research, 2013″,”pub_med_id”:”24141624″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=24141624″},{“title”:”Klempner SJ, Myers AP, Cantley LC. What a Tangled Web We Weave: Emerging Resistance Mechanisms to Inhibition of the Phosphoinositide 3-Kinase Pathway. Cancer Discov. 2013 Dec;3(12):1345-54.”,”type”:”publication”,”url”:”https://cancerdiscovery.aacrjournals.org/content/3/12/1345″,”cancer_type_terms_string”:”Non – site Specific”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C PI3K Dream Team: Targeting the PI3K Pathway in Women’s Cancers”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/womens-cancers-pi3k-dream-team/”,”publisher_year”:”Cancer Discovery, 2013″,”pub_med_id”:”24265156″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=24265156″},{“title”:”Emerling BM, Hurov JB, Poulogiannis G, Tsukazawa KS, Choo-Wing R, Wulf GM, Bell EL, Shim HS, Lamia KA, Rameh LE, Bellinger G, Sasaki AT, Asara JM, Yuan X, Bullock A, Denicola GM, Song J, Brown V, Signoretti S, Cantley LC. Depletion of a Putatively Druggable Class of Phosphatidylinositol Kinases Inhibits Growth of p53-Null Tumors. Cell. 2013 Nov 7;155(4):844-57.”,”type”:”publication”,”url”:”https://www.cell.com/cell/fulltext/S0092-8674(13)01233-6?_returnURL=https%3A%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2FS0092867413012336%3Fshowall%3Dtrue”,”cancer_type_terms_string”:”Non – site Specific”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C PI3K Dream Team: Targeting the PI3K Pathway in Women’s Cancers”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/womens-cancers-pi3k-dream-team/”,”publisher_year”:”Cell, 2013″,”pub_med_id”:”24209622″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=24209622″},{“title”:”Djordjevic B, Barkoh BA, Luthr R, Broaddus RR. Relationship between PTEN, DNA mismatich repair, and tumor histotype in endometrial carcinoma: retained positive expression of PTEN preferentially identifies sporadic non-endometrioid carcinomas.Mod Pathol. 2013 Oct;26(10):1401-12.”,”type”:”publication”,”url”:”https://www.nature.com/articles/modpathol201367″,”cancer_type_terms_string”:”Endometiral/Uterin”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C PI3K Dream Team: Targeting the PI3K Pathway in Women’s Cancers”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/womens-cancers-pi3k-dream-team/”,”publisher_year”:”Modern Pathology, 2013″,”pub_med_id”:”23599155″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=23599155″},{“title”:”Hanker AB, Pfefferle AD, Balko JM, Kuba MG, Young CD, Sánchez V, Sutton CR, Cheng H, Perou CM, Zhao JJ, Cook RS, Arteaga CL. Mutant PIK3CA accelerates HER2-driven transgenic mammary tumors and induces resistance to combinations of anti-HER2 therapies. Proc Natl Acad Sci U S A. 2013 Aug 27;110(35):14372-7.”,”type”:”publication”,”url”:”https://www.pnas.org/content/110/35/14372″,”cancer_type_terms_string”:”Breast”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C PI3K Dream Team: Targeting the PI3K Pathway in Women’s Cancers”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/womens-cancers-pi3k-dream-team/”,”publisher_year”:”PNAS, 2013″,”pub_med_id”:”23940356″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=23940356″},{“title”:”Zhang X, Claerhout S, Pratt A, Dobrolecki LE, Petrovic A, Lai Q, Landis M, Wiechmann L, Schiff R, Wong H, Fuqua SW, Contreras A, Gutierrex C, Huang J, Pavlick AC, Froehlich AM, Wu M-F, Tsimelzon A, Hilsenbeck SG, Shaw CA, Rimaw MF, Perou CM, Mills GB, Chang JC, Lewis MT. A renewable tissue resource of phenotypically stable, ethnically diverse, patient derived human breast cancer xenografts. Cancer Res. 2013 Aug 1;73(15):4885-97.”,”type”:”publication”,”url”:”https://cancerres.aacrjournals.org/content/73/15/4885″,”cancer_type_terms_string”:”Breast”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C PI3K Dream Team: Targeting the PI3K Pathway in Women’s Cancers”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/womens-cancers-pi3k-dream-team/”,”publisher_year”:”Cancer Research, 2013″,”pub_med_id”:”23737486″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=23737486″},{“title”:”Domcke S, Sinha R, Levine DA, Sander C, Schultz N. Evaluating cell lines as tumour models by comparison of genomic profiles. Nat Commun. 2013;4:2126.”,”type”:”publication”,”url”:”https://www.nature.com/articles/ncomms3126″,”cancer_type_terms_string”:”Ovarian”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C PI3K Dream Team: Targeting the PI3K Pathway in Women’s Cancers”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/womens-cancers-pi3k-dream-team/”,”publisher_year”:”Nature Communications, 2013″,”pub_med_id”:”23839242″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=23839242″},{“title”:”Wang Q, Von T, Bronson R, Ruan M, Mu W, Huang A, Maira SM, Zhao JJ. Spatially distinct roles of class Ia PI3K isoforms in the development and maintenance of PTEN hamartoma tumor syndrome. Genes Dev. 2013 Jul 15;27(14):1568-80.”,”type”:”publication”,”url”:”http://genesdev.cshlp.org/content/27/14/1568″,”cancer_type_terms_string”:”Other”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C PI3K Dream Team: Targeting the PI3K Pathway in Women’s Cancers”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/womens-cancers-pi3k-dream-team/”,”publisher_year”:”Genes & Development, 2013″,”pub_med_id”:”23873941″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=23873941″},{“title”:”Elkabets M, Vora S, Juric D, Morse N, Mino-Kenudson M, Muranen T, Tao J, Campos AB, Rodon J, Ibrahim YH, Serra V, Rodrik-Outmezguine V, Hazra S, Singh S, Kim P, Quadt C, Liu M, Huang A, Rosen N, Engelman JA, Scaltriti M, Baselga J. mTORC1 inhibition is required for sensitivity to PI3K p110α inhibitors in PIK3CA-mutant breast cancer. Sci Transl Med. 2013 Jul 31;5(196):196ra99.”,”type”:”publication”,”url”:”https://stm.sciencemag.org/content/5/196/196ra99″,”cancer_type_terms_string”:”Breast”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C PI3K Dream Team: Targeting the PI3K Pathway in Women’s Cancers”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/womens-cancers-pi3k-dream-team/”,”publisher_year”:”Science Translational Medicine, 2013″,”pub_med_id”:”23903756″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=23903756″},{“title”:”Rexer BN, Arteaga CL. Optimal tageting of HER2-PI3K signaling in breast cancer: Mechanistic insights and clinical implications. Cancer Res. 2013 Jul 1;73(13):3817-20.”,”type”:”publication”,”url”:”https://cancerres.aacrjournals.org/content/73/13/3817″,”cancer_type_terms_string”:”Breast”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C PI3K Dream Team: Targeting the PI3K Pathway in Women’s Cancers”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/womens-cancers-pi3k-dream-team/”,”publisher_year”:”Cancer Research, 2013″,”pub_med_id”:”23794708″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=23794708″},{“title”:”Young CD, Pfefferle AD, Ownes P, Kuba MG, Rexer BN, Balko JM Sanchez V, Cheng H, Perou CM, Zhao JJ, Cook RS, Arteaga CL. Conditional loss of ErbB3 delays mammary gland hyerpplasia induced by mutant PIK3CA without affecting mammary tumor latency, gene expression or signaling. Cancer Res. 2013 Jul 1;73(13):4075-85.”,”type”:”publication”,”url”:”https://cancerres.aacrjournals.org/content/73/13/4075″,”cancer_type_terms_string”:”Breast”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C PI3K Dream Team: Targeting the PI3K Pathway in Women’s Cancers”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/womens-cancers-pi3k-dream-team/”,”publisher_year”:”Cancer Research, 2013″,”pub_med_id”:”23633485″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=23633485″},{“title”:”Gao J, Aksoy BA, Dogrusoz U, Dresdner G, Gross B, Sumer SO, Sun Y, Jacobsen A, Sinha R, Larsson E, Cerami E, Sander C, Schultz N. Intergrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci Signal. 2013 Apr 2;6(269):pl1.”,”type”:”publication”,”url”:”https://stke.sciencemag.org/content/6/269/pl1″,”cancer_type_terms_string”:”Non – site Specific”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C PI3K Dream Team: Targeting the PI3K Pathway in Women’s Cancers”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/womens-cancers-pi3k-dream-team/”,”publisher_year”:”Science Signaling, 2013″,”pub_med_id”:”23550210″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=23550210″},{“title”:”Gonzalez-Angulo AM, Liu S, Chen H, Chavez-MacGregor, M, Hortobagyi GN, Mills GB, Do K-A, Meric Bernstam F. Functional proteomics characterization of residual breast cancer after neoadjuvant systemic chemotherapy. Ann Oncol. 2013 Apr;24(4):909-16.”,”type”:”publication”,”url”:”https://academic.oup.com/annonc/article/24/4/909/257894″,”cancer_type_terms_string”:”Breast”,”treatment_type_terms_string”:”Chemotherapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C PI3K Dream Team: Targeting the PI3K Pathway in Women’s Cancers”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/womens-cancers-pi3k-dream-team/”,”publisher_year”:”Annals of Oncology, 2013″,”pub_med_id”:”23139263″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=23139263″},{“title”:”Rodon J, Dienstmann R, Serra V, Tabernero J. Development of PI3K inhibitors: lessons learned from early clinical trials. Nat Rev Clin Oncol. 2013 Mar; 10(3): 143-53.”,”type”:”publication”,”url”:”https://www.nature.com/articles/nrclinonc.2013.10″,”cancer_type_terms_string”:”Non – site Specific”,”treatment_type_terms_string”:”Chemotherapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C PI3K Dream Team: Targeting the PI3K Pathway in Women’s Cancers”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/womens-cancers-pi3k-dream-team/”,”publisher_year”:”Nature Reviews Clinical Oncology, 2013″,”pub_med_id”:”23400000″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=23400000″},{“title”:”Chakrabarty A, Bhola NE, R Sutton C, Ghosh R, Kuba MG, Davé B, Chang JC, Arteaga CL. Trastuzumab-resistant cells rely on a HER2-PI3K-FoxO-survivin axis and are sensitive to PI3K inhibitors. Cancer Res. 2013 Feb 1;73(3):1190-200.”,”type”:”publication”,”url”:”https://cancerres.aacrjournals.org/content/73/3/1190″,”cancer_type_terms_string”:”Breast”,”treatment_type_terms_string”:”Chemotherapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C PI3K Dream Team: Targeting the PI3K Pathway in Women’s Cancers”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/womens-cancers-pi3k-dream-team/”,”publisher_year”:”Cancer Research, 2013″,”pub_med_id”:”23204226″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=23204226″},{“title”:”Garg K, Levine DA, Olvera N, Dao F, Bisogna M, Secord AA, Berchuck A, Cerami E, Schultz N, Soslow RA. BRCA1 immunohistochemistry in a molecularly characterized cohort of ovarian high-grade serous carcinomas. Am J Surg Pathol. 2013 Jan;37(1):138-46.”,”type”:”publication”,”url”:”https://insights.ovid.com/article/00000478-201301000-00017″,”cancer_type_terms_string”:”Breast”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C PI3K Dream Team: Targeting the PI3K Pathway in Women’s Cancers”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/womens-cancers-pi3k-dream-team/”,”publisher_year”:”American Journal of Surgical Pathology, 2013″,”pub_med_id”:”23232854″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=23232854″},{“title”:”Gonzalez-Angulo AM, Chen H, Karuturi MS, Chavez-MacGregor M, Tsavachidis S, Meric-Bernstam F, Do K-a, Hortobagyi GN, Mills GB, Bondy ML, Blumenschein GR. Frequency of mesenchymal-epithelial transition factor gene (MET) and the catalytic subunit of phosphoinositide-3-kinase (PIK3CA) copy number elevation and correlation with outcome in patients with early stage breast cancer. Cancer. 2013 Jan 1;119(1):7-15.”,”type”:”publication”,”url”:”https://onlinelibrary.wiley.com/doi/full/10.1002/cncr.27608″,”cancer_type_terms_string”:”Breast”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C PI3K Dream Team: Targeting the PI3K Pathway in Women’s Cancers”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/womens-cancers-pi3k-dream-team/”,”publisher_year”:”Cancer, 2013″,”pub_med_id”:”22736407″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=22736407″},{“title”:”Holder AM, Gonzalez-Angulo AM, Chen H, Akcakanat A, Do K-A, Symmans WF, Pusztai L, Hortobagyi G, Mills GB, Meric-Bernstam F. High stearoyl-CoA desaturase I expression predicts shorter survival in breast cancer patients. Breast Cancer Res Treat. 2013 Jan;137(1):319-27.”,”type”:”publication”,”url”:”https://link.springer.com/article/10.1007%2Fs10549-012-2354-4″,”cancer_type_terms_string”:”Breast”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C PI3K Dream Team: Targeting the PI3K Pathway in Women’s Cancers”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/womens-cancers-pi3k-dream-team/”,”publisher_year”:”Breast Cancer Research, 2013″,”pub_med_id”:”23208590″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=23208590″},{“title”:”Westin SN, Mills GB, Myers AP. Repurposing the Pap smear: one step closer to gynecologic cancer screening. Sci Transl Med. 2013 Jan 9;5(167):167ps1.”,”type”:”publication”,”url”:”https://stm.sciencemag.org/content/5/167/167ps1″,”cancer_type_terms_string”:”Endometiral/Uterin, Ovarian”,”treatment_type_terms_string”:”Screening/ Early Detection”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C PI3K Dream Team: Targeting the PI3K Pathway in Women’s Cancers”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/womens-cancers-pi3k-dream-team/”,”publisher_year”:”Science Translational Medicine, 2013″,”pub_med_id”:”23303602″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=23303602″},{“title”:”Tang DN., Shen Y., Sun, J., Wen, S., Wolchok, JD., Yuan, J., Allison, JP, and Sharma, P. Increased Frequency of ICOS+ CD4 T Cells as a Pharmacodynamic Biomarker for Anti-CTLA-4 Therapy. Cancer Immunol Res. 2013 Oct;1(4):229-34.”,”type”:”publication”,”url”:”https://cancerimmunolres.aacrjournals.org/content/1/4/229″,”cancer_type_terms_string”:”Non – site Specific”,”treatment_type_terms_string”:”Immunotherapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–Cancer Research Institute Cancer Immunology Dream Team: Immunologic Checkpoint Blockade and Adoptive Cell Transfer in Cancer Therapy”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/immunologic-checkpoint-blockade-dream-team/”,”publisher_year”:”Cancer Immunology Research, 2013″,”pub_med_id”:”24777852″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=24777852″},{“title”:”Drake JM, Graham NA, Lee JK, Stoyanova T, Faltermeier CM, Sudha S, Titz B, Huang J, Pienta KJ, Graeber TG, Witte ON. Metastatic castration-resistant prostate cancer reveals intrapatient similarity and interpatient heterogeneity of therapeutic kinase targets. Proc Natl Acad Sci U S A. 2013 Dec 3;110(49):E4762-9.”,”type”:”publication”,”url”:”https://www.pnas.org/content/110/49/E4762″,”cancer_type_terms_string”:”Prostate”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–Prostate Cancer Foundation Prostate Dream Team: Targeting Adaptive Pathways in Metastatic Castration-Resistant Prostate Cancer”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/metastatic-treatment-resistant-prostate-cancer-dream-team/”,”publisher_year”:”PNAS, 2013″,”pub_med_id”:”24248375″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=24248375″},{“title”:”Paull EO, Carlin DE, Niepel M, Sorger PK, Haussler D, and Stuart JM. Discovering causal pathways linking genomic events to transcriptional states using Tied Diffusion Through Interacting Events (TieDIE). Bioinformatics. 2013 Nov 1;29(21):2757-64.”,”type”:”publication”,”url”:”https://academic.oup.com/bioinformatics/article/29/21/2757/195824″,”cancer_type_terms_string”:”Non – site Specific”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–Prostate Cancer Foundation Prostate Dream Team: Targeting Adaptive Pathways in Metastatic Castration-Resistant Prostate Cancer”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/metastatic-treatment-resistant-prostate-cancer-dream-team/”,”publisher_year”:”Bioinformatics, 2013″,”pub_med_id”:”23986566″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=23986566″},{“title”:”The Cancer Genome Atlas Research Network, Weinstein JN, Collisson EA, Mills GB, Shaw KRM, Ozenberger BA, Ellrott K, Shmulevich I, Sander C, Stuart JM. The Cancer Genome Atlas Pan-Cancer analysis project. Nat Genet. 2013 Oct;45(10):1113-20.”,”type”:”publication”,”url”:”https://www.nature.com/articles/ng.2764″,”cancer_type_terms_string”:”Non – site Specific”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–Prostate Cancer Foundation Prostate Dream Team: Targeting Adaptive Pathways in Metastatic Castration-Resistant Prostate Cancer”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/metastatic-treatment-resistant-prostate-cancer-dream-team/”,”publisher_year”:”Nature Genetics, 2013″,”pub_med_id”:”24071849″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=24071849″},{“title”:”Omberg L, Ellrott K, Yuan Y, Kandoth C, Wong C, The Cancer Genome Atlas Research Network, Friend SH, Stuart JM, Liang H, Margolin AA. Enabling Transparent and Collaborative Computational Analysis of 12 tumor types within The Cancer Genome Atlas. Nat Genet. 2013 Oct;45(10):1121-6.”,”type”:”publication”,”url”:”https://www.nature.com/articles/ng.2761″,”cancer_type_terms_string”:”Non – site Specific”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–Prostate Cancer Foundation Prostate Dream Team: Targeting Adaptive Pathways in Metastatic Castration-Resistant Prostate Cancer”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/metastatic-treatment-resistant-prostate-cancer-dream-team/”,”publisher_year”:”Nature Genetics, 2013″,”pub_med_id”:”24071850″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=24071850″},{“title”:”Zhu Y, Liu C, Nadiminty N, Lou W, Tummala R, Evans CP, Gao AC. Inhibition of ABCB1 Expression Overcomes Acquired Docetaxel Resistance in Prostate Cancer. Mol Cancer Ther. 2013 Sep;12(9):1829-36.”,”type”:”publication”,”url”:”https://mct.aacrjournals.org/content/12/9/1829″,”cancer_type_terms_string”:”Prostate”,”treatment_type_terms_string”:”Chemotherapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–Prostate Cancer Foundation Prostate Dream Team: Targeting Adaptive Pathways in Metastatic Castration-Resistant Prostate Cancer”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/metastatic-treatment-resistant-prostate-cancer-dream-team/”,”publisher_year”:”Molecular Cancer Therapeutics, 2013″,”pub_med_id”:”23861346″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=23861346″},{“title”:”Zong Y, Goldstein AS, Huang J. The molecular basis for ethnic variation and histological subtype differences in prostae cancer. Sci China Life Sci, 2013 Sep; 56(9):780-7.”,”type”:”publication”,”url”:”https://link.springer.com/article/10.1007%2Fs11427-013-4522-0″,”cancer_type_terms_string”:”Prostate”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–Prostate Cancer Foundation Prostate Dream Team: Targeting Adaptive Pathways in Metastatic Castration-Resistant Prostate Cancer”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/metastatic-treatment-resistant-prostate-cancer-dream-team/”,”publisher_year”:”Science China Life Sciences, 2013″,”pub_med_id”:”23852643″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=23852643″},{“title”:”Yang L, Lin C, Jin C, Yang JC, Tanasa B, Li W, Merkurjev D, Ohgi KA, Meng D, Zhang J, Evans CP, Rosenfeld MG. lncRNA-dependent mechanisms of androgen-receptor-regulated gene activation programs. Nature. 2013 Aug 29;500(7464):598-602.”,”type”:”publication”,”url”:”https://www.nature.com/articles/nature12451″,”cancer_type_terms_string”:”Prostate”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–Prostate Cancer Foundation Prostate Dream Team: Targeting Adaptive Pathways in Metastatic Castration-Resistant Prostate Cancer”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/metastatic-treatment-resistant-prostate-cancer-dream-team/”,”publisher_year”:”Nature, 2013″,”pub_med_id”:”23945587″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=23945587″},{“title”:”Guo W, Liu R, Bhardwaj G, Ma AH, Changou C, Yang JC, Li Y, Feng C, Luo Y, Mazloom A, Sanchez E, Wang Y, Huang W, Patterson R, Evans CP, Lam KS, Kung HJ. CTA095, a Novel Etk and Src Dual Inhibitor, Induces Apoptosis in Prostate Cancer Cells and Overcomes Resistance to Src Inhibitors. PLoS One. 2013 Aug 15;8(8):e70910.”,”type”:”publication”,”url”:”https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0070910″,”cancer_type_terms_string”:”Prostate”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–Prostate Cancer Foundation Prostate Dream Team: Targeting Adaptive Pathways in Metastatic Castration-Resistant Prostate Cancer”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/metastatic-treatment-resistant-prostate-cancer-dream-team/”,”publisher_year”:”PLoS One, 2013″,”pub_med_id”:”23967135″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=23967135″},{“title”:”Gonzalez-Perez A, Mustonen V, Reva B, Ritchie GR, Creixell P, Karchin R, Vazquez M, Fink JL, Kassahn KS, Pearson JV, Bader GD, Boutros PC, Muthuswamy L, Ouellette BF, Reimand J, Linding R, Shibata T, Valencia A, Butler A, Dronov S, Flicek P, Shannon NB, Carter H, Ding L, Sander C, Stuart JM, Stein LD, Lopez-Bigas N; International Cancer Genome Consortium Mutation Pathways and Consequences Subgroup of the Bioinformatics Analyses Working Group. Computational approaches to identify functional genetic variants in cancer genomes. Nat Methods. 2013 Aug;10(8):723-9.”,”type”:”publication”,”url”:”https://www.nature.com/articles/nmeth.2562″,”cancer_type_terms_string”:”Non – site Specific”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–Prostate Cancer Foundation Prostate Dream Team: Targeting Adaptive Pathways in Metastatic Castration-Resistant Prostate Cancer”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/metastatic-treatment-resistant-prostate-cancer-dream-team/”,”publisher_year”:”Nature Methods, 2013″,”pub_med_id”:”23900255″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=23900255″},{“title”:”Wu YM, Su F, Kalyana-Sundaram S, Khazanov N, Ateeq B, Cao X, Lonigro RJ, Vats P, Wang R, Lin SF, Cheng AJ, Kunju LP, Siddiqui J, Tomlins SA, Wyngaard P, Sadis S, Roychowdhury S, Hussain MH, Feng FY, Zalupski MM, Talpaz M, Pienta KJ, Rhodes DR, Robinson DR, Chinnaiyan AM. Identification of targetable FGFR gene fusions in diverse cancers. Cancer Discov. 2013 Jun;3(6):636-47.”,”type”:”publication”,”url”:”https://cancerdiscovery.aacrjournals.org/content/3/6/636″,”cancer_type_terms_string”:”Bile Duct, Breast, Prostate”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C−Prostate Cancer Foundation Prostate Dream Team: Precision Therapy of Advanced Prostate Cancer”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/prostate-cancer-precision-therapy-dream-team/”,”publisher_year”:”Cancer Discovery, 2013″,”pub_med_id”:”23558953″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=23558953″},{“title”:”Goldstein, TC, Paull, E O, Ellis, MJ, & Stuart, JM. Molecular Pathways: Extracting Medical Knowledge from High-Throughput Genomic Data. Clin Cancer Res. 2013 Jun 15;19(12):3114-20.”,”type”:”publication”,”url”:”https://clincancerres.aacrjournals.org/content/19/12/3114″,”cancer_type_terms_string”:”Non – site Specific”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–Prostate Cancer Foundation Prostate Dream Team: Targeting Adaptive Pathways in Metastatic Castration-Resistant Prostate Cancer”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/metastatic-treatment-resistant-prostate-cancer-dream-team/”,”publisher_year”:”Clinical Cancer Research, 2013″,”pub_med_id”:”23430023″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=23430023″},{“title”:”Huang J, Wang JK, Sun Y. Molecular pathology of prostate cancer revealed by next-generation sequencing: opportunities for genome-based personalized therapy. Curr Opin Urol. 2013 May 23(3):189.93.”,”type”:”publication”,”url”:”https://insights.ovid.com/crossref?an=00042307-201305000-00002″,”cancer_type_terms_string”:”Prostate”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–Prostate Cancer Foundation Prostate Dream Team: Targeting Adaptive Pathways in Metastatic Castration-Resistant Prostate Cancer”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/metastatic-treatment-resistant-prostate-cancer-dream-team/”,”publisher_year”:”Current Opition in Urology, 2013″,”pub_med_id”:”23385974″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=23385974″},{“title”:”Schulze CJ, Bray WM, Woerhmann MH, Stuart J, Lokey RS, Linington RG. “Function-first” lead discovery: mode of action profiling of natural product libraries using image-based screening. Chem Biol. 2013 Feb 21;20(2):285-95.”,”type”:”publication”,”url”:”https://www.sciencedirect.com/science/article/pii/S1074552112004887?via%3Dihub”,”cancer_type_terms_string”:”Non – site Specific”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–Prostate Cancer Foundation Prostate Dream Team: Targeting Adaptive Pathways in Metastatic Castration-Resistant Prostate Cancer”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/metastatic-treatment-resistant-prostate-cancer-dream-team/”,”publisher_year”:”Chemistry & Biology, 2013″,”pub_med_id”:”23438757″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=23438757″},{“title”:”Bielamowicz K, Khawja S, Ahmed N. Adoptive cell therapies for glioblastoma. Front Oncol. 2013 Nov 11;3:275.”,”type”:”publication”,”url”:”https://www.frontiersin.org/articles/10.3389/fonc.2013.00275/full”,”cancer_type_terms_string”:”Brain/Nervous System, Pediatric – Solid Tumor”,”treatment_type_terms_string”:”Immunotherapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–St. Baldrick’s Foundation Pediatric Cancer Dream Team: Immunogenomics to Create New Therapies for High-Risk Childhood Cancers”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/high-risk-pediatric-cancers-dream-team/”,”publisher_year”:”Frontiers in Oncology, 2013″,”pub_med_id”:”24273748″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=24273748″},{“title”:”Reed MD, Tellez CS, Grimes MJ, Picchi MA, Tessema M, Cheng YS, March TH, Kuehl PJ, Belinsky SA. Aerosolised 5-azacytidine suppresses tumour growth and reprogrammes the epigenome in an orthotopic lung cancer model. Br J Cancer. 2013 Oct 1;109(7):1775-81.”,”type”:”publication”,”url”:”https://www.nature.com/articles/bjc2013575″,”cancer_type_terms_string”:”Lung”,”treatment_type_terms_string”:”Epigenetic Therapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C Epigenetics Dream Team: Bringing Epigenetic Therapy to the Forefront of Cancer Management”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/epigenetics-therapy-2009-dream-team/”,”publisher_year”:”British Journal of Cancer, 2013″,”pub_med_id”:”24045660″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=24045660″},{“title”:”Duru N, Fan M, Candas D, Menaa C, Liu H-C, Nantajit D, et al. HER2-associated radiation resistance of breast cancer stem cells isolated from HER2-negative breast cancer cells. Clin Cancer Res. 2012 Dec 15;18(24):6634-47.”,”type”:”publication”,”url”:”https://clincancerres.aacrjournals.org/content/18/24/6634″,”cancer_type_terms_string”:”Breast”,”treatment_type_terms_string”:”Radiation Therapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C Breast Cancer Dream Team: An Integrated Approach to Targeting Breast Cancer Molecular Subtypes and Their Resistance Phenotypes”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/breast-cancer-resistant-phenotypes-dream-team/”,”publisher_year”:”Clinical Cancer Research, 2012″,”pub_med_id”:”23091114″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=23091114″},{“title”:”Fan P, McDaniel RE, Kim HR, Clagett D, Haddad B, Jordan VC. Modulating therapeutic effects of the c-Src inhibitor via oestrogen receptor and human epidermal growth factor receptor 2 in breast cancer cell lines. European Journal of Cancer. Eur J Cancer. 2012 Dec;48(18):3488-98.”,”type”:”publication”,”url”:”https://www.ejcancer.com/article/S0959-8049(12)00371-1/fulltext”,”cancer_type_terms_string”:”Breast”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C Breast Cancer Dream Team: An Integrated Approach to Targeting Breast Cancer Molecular Subtypes and Their Resistance Phenotypes”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/breast-cancer-resistant-phenotypes-dream-team/”,”publisher_year”:”European Journal of Cancer, 2012″,”pub_med_id”:”22658320″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=22658320″},{“title”:”Mendes-Pereira AM, Lord CJ, Ashworth A.NLK is a novel therapeutic target for PTEN deficient tumour cells. PLoS One. 2012;7(10):e47249″,”type”:”publication”,”url”:”https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0047249″,”cancer_type_terms_string”:”Non – site Specific”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C Breast Cancer Dream Team: An Integrated Approach to Targeting Breast Cancer Molecular Subtypes and Their Resistance Phenotypes”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/breast-cancer-resistant-phenotypes-dream-team/”,”publisher_year”:”PLoS One, 2012″,”pub_med_id”:”23144700″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=23144700″},{“title”:”Perou C et al. and The Cancer Genome Atlas. Comprehensive molecular portraits of human breast tumors. Nature. 2012 Oct 4;490(7418):61-70.”,”type”:”publication”,”url”:”https://www.nature.com/articles/nature11412″,”cancer_type_terms_string”:”Breast”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C Breast Cancer Dream Team: An Integrated Approach to Targeting Breast Cancer Molecular Subtypes and Their Resistance Phenotypes”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/breast-cancer-resistant-phenotypes-dream-team/”,”publisher_year”:”Nature, 2012″,”pub_med_id”:”23000897″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=23000897″},{“title”:”Petrillo LA, Wolf DM, Kapoun AM, Wang NJ, Barczak A, Xiao Y, Korkaya H, Baehner F, Lewicki J, Wicha M, Park JW, Spellman PT, Gray JW, Van’t Veer L, Esserman LJ. Xenografts faithfully recapitulate breast cancer-specific gene expression patterns of parent primary breast tumors.Breast Cancer Res Treat. 2012 Oct;135(3):913-22.”,”type”:”publication”,”url”:”https://link.springer.com/article/10.1007%2Fs10549-012-2226-y”,”cancer_type_terms_string”:”Breast”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C Breast Cancer Dream Team: An Integrated Approach to Targeting Breast Cancer Molecular Subtypes and Their Resistance Phenotypes”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/breast-cancer-resistant-phenotypes-dream-team/”,”publisher_year”:”Breast Cancer Research and Treatment, 2012″,”pub_med_id”:”22941572″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=22941572%5Buid%5D”},{“title”:”Hammerman PS et al. and The Cancer Genome Atlas. “Comprehensive genomic characterization of squamous cell lung cancers.” Nature. 2012 Sep 27;489(7417):519-25.”,”type”:”publication”,”url”:”https://www.nature.com/articles/nature11404″,”cancer_type_terms_string”:”Liver”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C Breast Cancer Dream Team: An Integrated Approach to Targeting Breast Cancer Molecular Subtypes and Their Resistance Phenotypes”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/breast-cancer-resistant-phenotypes-dream-team/”,”publisher_year”:”Nature, 2012″,”pub_med_id”:”22960745″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=22960745″},{“title”:”Daemen, A., Wolf, D.M., Korkola, J.K., Griffith, O.L., Frankum, J.R., Brough, R., Jakkula, L.R., Wang, N.J., Natrajan, R., Reis- Filho, J.S., Lord, C.J., Ashworth, A., Spellman, P.T., Gray, J.W., and van ’t Veer, L.J. (2012) Cross-platform pathway-based analysis identifies markers of response to the PARP inhibitor olaparib. Breast Cancer Res Treat. 2012 Sep;135(2):505-17″,”type”:”publication”,”url”:”https://link.springer.com/article/10.1007%2Fs10549-012-2188-0″,”cancer_type_terms_string”:”Breast”,”treatment_type_terms_string”:”Chemotherapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C Breast Cancer Dream Team: An Integrated Approach to Targeting Breast Cancer Molecular Subtypes and Their Resistance Phenotypes”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/breast-cancer-resistant-phenotypes-dream-team/”,”publisher_year”:”Breast Cancer Research and Treatment, 2012″,”pub_med_id”:”22875744″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=22875744″},{“title”:”Ng S, Collisson EA, Sokolov A, Goldstein T, Gonzalez-Perez A, Lopez-Bigas N, Benz C, Haussler D, Stuart JM. PARADIGM-SHIFT predicts the function of mutations in multiple cancers using pathway impact analysis. Bioinformatics. 2012 Sep 15;28(18):i640-i646.”,”type”:”publication”,”url”:”https://academic.oup.com/bioinformatics/article/28/18/i640/248710″,”cancer_type_terms_string”:”Non – site Specific”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C Breast Cancer Dream Team: An Integrated Approach to Targeting Breast Cancer Molecular Subtypes and Their Resistance Phenotypes”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/breast-cancer-resistant-phenotypes-dream-team/”,”publisher_year”:”Bioinformatics, 2012″,”pub_med_id”:”22962493″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=22962493″},{“title”:”Kalyana-Sundaram S, Shankar S, Deroo S, Iyer MK, Palanisamy N, Chinnaiyan AM, Kumar-Sinha C. Gene fusions associated with recurrent amplicons represent a class of passenger aberrations in breast cancer. Neoplasia. 2012 Aug;14(8):702-8.”,”type”:”publication”,”url”:”https://linkinghub.elsevier.com/retrieve/pii/S1476558612800042″,”cancer_type_terms_string”:”Breast”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C Breast Cancer Dream Team: An Integrated Approach to Targeting Breast Cancer Molecular Subtypes and Their Resistance Phenotypes”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/breast-cancer-resistant-phenotypes-dream-team/”,”publisher_year”:”Neoplasia, 2012″,”pub_med_id”:”22952423″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=22952423″},{“title”:”Korkaya H, Kim G-I, Davis A, Malik F, Henry NL, Ithimakin S, Quraishi AA, Tawakkol N, D’Angelo R, Paulson AK, Chung S, Luther T, Paholak HJ, Liu S, Hassan KA, Zen Q, Clouthier SG, Wicha MS. Activation of an IL6 inflammatory loop mediates trastuzumab resistance in HER2+ breast cancer by expanding the cancer stem cell population. Mol Cell. 2012 Aug 24;47(4):570-84.”,”type”:”publication”,”url”:”https://www.cell.com/molecular-cell/fulltext/S1097-2765(12)00509-6?_returnURL=https%3A%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2FS1097276512005096%3Fshowall%3Dtrue”,”cancer_type_terms_string”:”Breast”,”treatment_type_terms_string”:”Chemotherapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C Breast Cancer Dream Team: An Integrated Approach to Targeting Breast Cancer Molecular Subtypes and Their Resistance Phenotypes”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/breast-cancer-resistant-phenotypes-dream-team/”,”publisher_year”:”Molecular Cell, 2012″,”pub_med_id”:”22819326″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=22819326″},{“title”:”Malik F, Korkaya H, Clouthier SG, Wicha MS. Lin28 and HER2: Two stem cell regulators conspire to drive aggressive breast cancer. Cell Cycle 2012 Aug;11(15):2780–2781.”,”type”:”publication”,”url”:”https://www.tandfonline.com/doi/abs/10.4161/cc.21395″,”cancer_type_terms_string”:”Breast”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C Breast Cancer Dream Team: An Integrated Approach to Targeting Breast Cancer Molecular Subtypes and Their Resistance Phenotypes”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/breast-cancer-resistant-phenotypes-dream-team/”,”publisher_year”:”Cell Cycle, 2012″,”pub_med_id”:”22833047″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=22833047″},{“title”:”Chen AC, Migliaccio I, Rimawi M, Lopez-Tarruella S, Creighton CJ, Massarweh S, Huang C, Wang YC, Batra SK, Gutierrez MC, Osborne CK, Schiff R: Upregulation of mucin4 in ER-positive/HER2-overexpressing breast cancer xenografts with acquired resistance to endocrine and HER2-targeted therapies.Breast Cancer Res Treat. 2012 Jul;134(2):583-93.”,”type”:”publication”,”url”:”https://link.springer.com/article/10.1007%2Fs10549-012-2082-9″,”cancer_type_terms_string”:”Breast”,”treatment_type_terms_string”:”Chemotherapy, Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C Breast Cancer Dream Team: An Integrated Approach to Targeting Breast Cancer Molecular Subtypes and Their Resistance Phenotypes”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/breast-cancer-resistant-phenotypes-dream-team/”,”publisher_year”:”Breast Cancer Research and Treatment, 2012″,”pub_med_id”:”22644656″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=22644656″},{“title”:”Solimini, N.L., Xu, Q., Mermel, C.H., Liang, A.C., Schlabach, M.R., Luo, J., Burrows, A.E., Anselmo, A.N., Bredemeyer, A.L., Li, M.Z., Beroukhim, R., Meyerson, M., Elledge, S.J. Recurrent hemizygous deletions in cancers may optimize proliferative potential. Science, 2012 July 6;337(6090):104-9.”,”type”:”publication”,”url”:”https://science.sciencemag.org/content/337/6090/104″,”cancer_type_terms_string”:”Non – site Specific”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C Breast Cancer Dream Team: An Integrated Approach to Targeting Breast Cancer Molecular Subtypes and Their Resistance Phenotypes”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/breast-cancer-resistant-phenotypes-dream-team/”,”publisher_year”:”Science, 2012″,”pub_med_id”:”22628553″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=22628553″},{“title”:”Kucherlapati R and The Cancer Genome Atlas. Comprehensive Molecular Characterization of Human Colon and Rectal tumors. Nature. 2012 Jul 18;487(7407):330-7.”,”type”:”publication”,”url”:”https://www.nature.com/articles/nature11252″,”cancer_type_terms_string”:”Colorectal”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C Breast Cancer Dream Team: An Integrated Approach to Targeting Breast Cancer Molecular Subtypes and Their Resistance Phenotypes”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/breast-cancer-resistant-phenotypes-dream-team/”,”publisher_year”:”Nature, 2012″,”pub_med_id”:”22810696″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=22810696″},{“title”:”Littlepage, L.E., A. S. Adler, H. Kouros-Mehr, G. Huang, J. Chou, S. R. Krig, O. L. Griffith, J. E. Korkola, K. Qu, D. A. Lawson, Q. Xue, M. D. Sternlicht, G. J. P. Dijkgraaf, P. Yaswen, Hope. S. Rugo, C. A. Sweeney, C. C. Collins, J. W. Gray, H. Y. Chang & Z. Werb. The transcription factor ZNF217 is a prognostic biomarker and therapeutic target during breast cancer progression. Cancer Discov. 2012 Jul;2(7):638-51.”,”type”:”publication”,”url”:”https://cancerdiscovery.aacrjournals.org/content/2/7/638″,”cancer_type_terms_string”:”Breast”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C Breast Cancer Dream Team: An Integrated Approach to Targeting Breast Cancer Molecular Subtypes and Their Resistance Phenotypes”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/breast-cancer-resistant-phenotypes-dream-team/”,”publisher_year”:”Cancer Discovery, 2012″,”pub_med_id”:”22728437″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=22728437″},{“title”:”Xu J, Wan M, He Q, Bassett RL, Jr., Fu X, Chen AC, Shi F, Creighton CJ, Schiff R, Huo L, Liu D: SGK3 is associated with estrogen receptor expression in breast cancer. Breast Cancer Res Treat. 2012 Jul;134(2):531-41.”,”type”:”publication”,”url”:”https://link.springer.com/article/10.1007%2Fs10549-012-2081-x”,”cancer_type_terms_string”:”Breast”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C Breast Cancer Dream Team: An Integrated Approach to Targeting Breast Cancer Molecular Subtypes and Their Resistance Phenotypes”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/breast-cancer-resistant-phenotypes-dream-team/”,”publisher_year”:”Breast Cancer Research and Treatment, 2012″,”pub_med_id”:”22576469″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=22576469″},{“title”:”Ellis MJ, Ding L, Shen D, Luo J, Suman VJ, Wallis JW, Van Tine BA, Hoog J, Goiffon RJ, Goldstein TC, Ng S, Lin L, Crowder R, Snider J, Ballman K, Weber J, Chen K, Koboldt DC, Kandoth C, Schierding WS, McMichael JF, Miller CA, Lu C, Harris CC, McLellan MD, Wendl MC, DeSchryver K, Allred DC, Esserman L, Unzeitig G, Margenthaler J, Babiera GV, Marcom PK, Guenther JM, Leitch M, Hunt K, Olson J, Tao Y, Maher CA, Fulton LL, Fulton RS, Harrison M, Oberkfell B, Du F, Demeter R, Vickery TL, Elhammali A, Piwnica-Worms H, McDonald S, Watson M, Dooling DJ, Ota D, Chang LW, Bose R, Ley TJ, Piwnica-Worms D, Stuart JM, Wilson RK, Mardis ER. Whole-genome analysis informs breast cancer response to aromatase inhibition. Nature. 2012 Jun 10;486(7403):353-60.”,”type”:”publication”,”url”:”https://www.nature.com/articles/nature11143″,”cancer_type_terms_string”:”Breast”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C Breast Cancer Dream Team: An Integrated Approach to Targeting Breast Cancer Molecular Subtypes and Their Resistance Phenotypes”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/breast-cancer-resistant-phenotypes-dream-team/”,”publisher_year”:”Nature, 2012″,”pub_med_id”:”22722193″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=22722193″},{“title”:”Liu S, Patel SH, Ginestier C, Ibarra I, Martin-Trevino R, Bai S, McDermott SP, Shang L, Ke J, Ou SJ, Heath A, Zhang KJ, Korkaya H, Clouthier SG, Charafe-Jauffret E, Birnbaum D, Hannon GJ, Wicha MS. MicroRNA93 regulates proliferation and differentiation of normal and malignant breast stem cells. PLoS Genet. 2012;8(6):e1002751″,”type”:”publication”,”url”:”https://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.1002751″,”cancer_type_terms_string”:”Breast”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C Breast Cancer Dream Team: An Integrated Approach to Targeting Breast Cancer Molecular Subtypes and Their Resistance Phenotypes”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/breast-cancer-resistant-phenotypes-dream-team/”,”publisher_year”:”PLoS Genetics, 2012″,”pub_med_id”:”22685420″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=22685420″},{“title”:”Laurent Jacob, Pierre Neuvial, and Sandrine Dudoit. More power via graph-structured tests for differential expression of gene networksSource: Ann. Appl. Stat. Volume 6, Number 2 (2012), 561-600.”,”type”:”publication”,”url”:”https://projecteuclid.org/euclid.aoas/1339419608″,”cancer_type_terms_string”:”Non – site Specific”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C Breast Cancer Dream Team: An Integrated Approach to Targeting Breast Cancer Molecular Subtypes and Their Resistance Phenotypes”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/breast-cancer-resistant-phenotypes-dream-team/”,”publisher_year”:”The Annals of Applied Statistics, 2012″,”pub_med_id”:”Project Euclid #1339419608″,”pub_med_url”:”https://projecteuclid.org/euclid.aoas/1339419608#info”},{“title”:”Akhavan, A., Griffith, O.L., Soroceanu, L., Leonoudakis, D., Luciani-Torres, M.G., Daemen, A., Gray, J.W., Muschler, J.L. (2012) Loss of cell-surface laminin anchoring promotes tumor growth and is associated with poor clinical outcomes. Cancer Res. 2012 May 15;72(10):2578-88.”,”type”:”publication”,”url”:”https://cancerres.aacrjournals.org/content/72/10/2578″,”cancer_type_terms_string”:”Brain/Nervous System, Breast”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C Breast Cancer Dream Team: An Integrated Approach to Targeting Breast Cancer Molecular Subtypes and Their Resistance Phenotypes”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/breast-cancer-resistant-phenotypes-dream-team/”,”publisher_year”:”Cancer Research, 2012″,”pub_med_id”:”22589276″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=22589276″},{“title”:”Giuliano M, Trivedi MV, Schiff R: Die and let live: harnessing BikDD to combat breast cancer stem cells. Breast Cancer Res. 2012 May 23;14(3):310.”,”type”:”publication”,”url”:”https://breast-cancer-research.biomedcentral.com/articles/10.1186/bcr3125″,”cancer_type_terms_string”:”Breast”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C Breast Cancer Dream Team: An Integrated Approach to Targeting Breast Cancer Molecular Subtypes and Their Resistance Phenotypes”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/breast-cancer-resistant-phenotypes-dream-team/”,”publisher_year”:”Breast Cancer Research, 2012″,”pub_med_id”:”22621279″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=22621279″},{“title”:”Natrajan R, Mackay A, Lambros MB, Weigelt B, Wilkerson PM, Manie E,Grigoriadis A, A’hern R, van der Groep P, Kozarewa I, Popova T, Mariani O,Turajlic S, Furney SJ, Marais R, Rodruigues DN, Flora AC, Wai P, Pawar V, McDade S, Carroll J, Stoppa-Lyonnet D, Green AR, Ellis IO, Swanton C, van Diest P, Delattre O, Lord CJ, Foulkes WD, Vincent-Salomon A, Ashworth A, Henri Stern M, Reis-Filho JS. A whole-genome massively parallel sequencing analysis of BRCA1 mutant oestrogen receptor-negative and -positive breast cancers. J Pathol. 2012 May;227(1):29-41.”,”type”:”publication”,”url”:”https://onlinelibrary.wiley.com/doi/abs/10.1002/path.4003″,”cancer_type_terms_string”:”Breast”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C Breast Cancer Dream Team: An Integrated Approach to Targeting Breast Cancer Molecular Subtypes and Their Resistance Phenotypes”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/breast-cancer-resistant-phenotypes-dream-team/”,”publisher_year”:”Journal of Pathology, 2012″,”pub_med_id”:”22362584″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=22362584″},{“title”:”Wicha MS. PSA lo and behold: Prostate cancer stem cells. Cell Stem Cell. 2012 May 4;10(5):482–3.”,”type”:”publication”,”url”:”https://linkinghub.elsevier.com/retrieve/pii/S1934590912001804″,”cancer_type_terms_string”:”Prostate”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C Breast Cancer Dream Team: An Integrated Approach to Targeting Breast Cancer Molecular Subtypes and Their Resistance Phenotypes”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/breast-cancer-resistant-phenotypes-dream-team/”,”publisher_year”:”Cell Stem Cell, 2012″,”pub_med_id”:”22560068″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=22560068″},{“title”:”Elizabeth S. Nakasone, Hanne A. Askautrud, Tim Kees, Jae-Hyun Park, Vicki Plaks, Andrew J. Ewald, Miriam Fein, Morten G. Rasch, Ying-Xim Tan, Jing Qiu, Juwon Park, Pranay Sinha, Mina J. Bissell, Eirik Frengen, Zena Werb, and Mikala Egeblad (2012). Imaging tumor-stroma interactions during chemotherapy reveals contributions of the microenvironment to resistance. Cancer Cell. 2012 Apr 17; 21(4): 488–503.”,”type”:”publication”,”url”:”https://www.cell.com/cancer-cell/fulltext/S1535-6108(12)00079-7″,”cancer_type_terms_string”:”Non – site Specific”,”treatment_type_terms_string”:”Chemotherapy, Screening/ Early Detection”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C Breast Cancer Dream Team: An Integrated Approach to Targeting Breast Cancer Molecular Subtypes and Their Resistance Phenotypes”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/breast-cancer-resistant-phenotypes-dream-team/”,”publisher_year”:”Cancer Cell, 2012″,”pub_med_id”:” 22516258″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=22516258″},{“title”:”Drake, P.M., Schilling, B., Niles, R.K., Prakobphol, A., Li, B., Jung, K., Cho, W., Braten, M., Inerowicz, H.D., Williams, K., Albertolle, M., Held, J.M., Iacovides, D., Sorensen, D.J., Griffith, O.L., Johansen, E., Zawadzka, A.M., Cusack, M.P., Allen, S., Gormley, M., Hall, S.C., Witkowska, H.E., Gray, J.W., Regnier, F.E., Gibson, B.W., Fisher, S.J. (2012) Lectin chromatography/mass spectrometry discovery workflow identified putative biomarkers of aggressive breast cancers. J Proteome Res. 2012 Apr 6;11(4):2508-20″,”type”:”publication”,”url”:”https://pubs.acs.org/doi/10.1021/pr201206w”,”cancer_type_terms_string”:”Breast”,”treatment_type_terms_string”:”Chemotherapy, Screening/ Early Detection”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C Breast Cancer Dream Team: An Integrated Approach to Targeting Breast Cancer Molecular Subtypes and Their Resistance Phenotypes”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/breast-cancer-resistant-phenotypes-dream-team/”,”publisher_year”:”Journal of Proteome Research, 2012″,”pub_med_id”:”22309216″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=22309216″},{“title”:”Brough R, Bajrami I, Vatcheva R, Natrajan R, Reis-Filho JS, Lord CJ, Ashworth A. APRIN is a cell cycle specific BRCA2- interacting protein required for genome integrity and a predictor of outcome after chemotherapy in breast cancer.EMBO J. 2012 Mar 7;31(5):1160-76.”,”type”:”publication”,”url”:”https://www.embopress.org/cgi/doi/10.1038/emboj.2011.490″,”cancer_type_terms_string”:”Breast”,”treatment_type_terms_string”:”Chemotherapy, Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C Breast Cancer Dream Team: An Integrated Approach to Targeting Breast Cancer Molecular Subtypes and Their Resistance Phenotypes”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/breast-cancer-resistant-phenotypes-dream-team/”,”publisher_year”:”EMBO Journal, 2012″,”pub_med_id”:”22293751″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=22293751″},{“title”:”Heiser, L.M., Sadanandam, A., Kuo, W.L., Benz, S.C., Goldstein, T.C., Ng, S., Gibb, W.J., Wang, N.J., Ziyad, S., Tong, F., Bayani, N., Hu, Z., Billig, J.I., Dueregger, A., Lewis, S., Jakkula, L., Korkola, J.E., Durinck, S., Pepin, F., Guan, Y., Purdom, E., Neuvial, P., Bengtsson, H., Wood, K.W., Smith, P.G., Vassilev, L.T., Hennessy, B.T., Greshock, J., Bachman, K.E., Hardwicke, M.A., Park, J.W., Marton, L.J., Wolf, D.M., Collisson, E.A., Neve, R.M., Mills, G.B., Speed, T.P., Feiler, H.S., Wooster, R.F., Haussler, D., Stuart, J.M., Gray, J.W., Spellman, P.T. (2012) Subtype and pathway specific responses to anticancer compounds in breast cancer.Send to Proc Natl Acad Sci U S A. 2012 Feb 21;109(8):2724-9.”,”type”:”publication”,”url”:”https://www.pnas.org/content/109/8/2724″,”cancer_type_terms_string”:”Breast”,”treatment_type_terms_string”:”Chemotherapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C Breast Cancer Dream Team: An Integrated Approach to Targeting Breast Cancer Molecular Subtypes and Their Resistance Phenotypes”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/breast-cancer-resistant-phenotypes-dream-team/”,”publisher_year”:”PNAS, 2012″,”pub_med_id”:”22003129″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=22003129″},{“title”:”Muranen T, Selfors, L., Worster, D., Iwanicki, MP., Song, L., Morales, F., Gao, S., Mills, GB and Brugge, JS. Inhibition of PI3K/mTOR Leads to Adaptive Resistance in Matrix-Attached Cancer Cells.Cancer Cell 2012 Feb 14;21(2):227-39.”,”type”:”publication”,”url”:”https://linkinghub.elsevier.com/retrieve/pii/S1535610812000037″,”cancer_type_terms_string”:”Ovarian”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C Breast Cancer Dream Team: An Integrated Approach to Targeting Breast Cancer Molecular Subtypes and Their Resistance Phenotypes”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/breast-cancer-resistant-phenotypes-dream-team/”,”publisher_year”:”Cancer Cell, 2012″,”pub_med_id”:”22340595″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=22340595%5Buid%5D”},{“title”:”Mendes-Pereira AM, Sims D, Dexter T, Fenwick K, Assiotis I, Kozarewa I, Mitsopoulos C, Hakas J, Zvelebil M, Lord CJ, Ashworth A. Genome-wide functional screen identifies a compendium of genes affecting sensitivity to tamoxifen. Proc Natl Acad Sci U S A. 2012 Feb 21;109(8):2730-5″,”type”:”publication”,”url”:”https://www.pnas.org/content/109/8/2730″,”cancer_type_terms_string”:”Non – site Specific”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C Breast Cancer Dream Team: An Integrated Approach to Targeting Breast Cancer Molecular Subtypes and Their Resistance Phenotypes”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/breast-cancer-resistant-phenotypes-dream-team/”,”publisher_year”:”PNAS, 2012″,”pub_med_id”:”21482774″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=21482774″},{“title”:”Sweeney, EE McDaniel RE, Maximov PY, Fan P Jordan, VC. Models and Mechanisms of Acquired Antihormone Resistance in Breast Cancer: Significant Clinical Progress Despite Limitations. Horm Mol Biol Clin Investig. 2012 Feb;9(2):143-163.”,”type”:”publication”,”url”:”https://www.degruyter.com/view/j/hmbci.2012.9.issue-2/hmbci-2011-0004/hmbci-2011-0004.xml”,”cancer_type_terms_string”:”Breast”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C Breast Cancer Dream Team: An Integrated Approach to Targeting Breast Cancer Molecular Subtypes and Their Resistance Phenotypes”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/breast-cancer-resistant-phenotypes-dream-team/”,”publisher_year”:”Hormone Molecular Biology and Clinical Investigation, 2012″,”pub_med_id”:”23308083″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=23308083″},{“title”:”Kryczek I, Liu S, Roh M, Vatan L, Szeliga W, Wei S, Banerjee M, Mao Y, Kotarski J, Wicha MS, Liu R, Zou W. Expression of aldehyde dehydrogenase and CD133 defines ovarian cancer stem cells. Int J Cancer. 2012 Jan 1;130(1):29-39.”,”type”:”publication”,”url”:”https://onlinelibrary.wiley.com/doi/full/10.1002/ijc.25967″,”cancer_type_terms_string”:”Ovarian”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C Breast Cancer Dream Team: An Integrated Approach to Targeting Breast Cancer Molecular Subtypes and Their Resistance Phenotypes”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/breast-cancer-resistant-phenotypes-dream-team/”,”publisher_year”:”Internation Journal of Cancer, 2012″,”pub_med_id”:”21480217″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=21480217″},{“title”:”Lord CJ, Ashworth A. The DNA damage response and cancer therapy. Nature. 2012 Jan 18;481(7381):287-94.”,”type”:”publication”,”url”:”https://www.nature.com/articles/nature10760″,”cancer_type_terms_string”:”Non – site Specific”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C Breast Cancer Dream Team: An Integrated Approach to Targeting Breast Cancer Molecular Subtypes and Their Resistance Phenotypes”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/breast-cancer-resistant-phenotypes-dream-team/”,”publisher_year”:”Nature, 2012″,”pub_med_id”:”22258607″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=22258607″},{“title”:”Wu J, Liu S, Liu G, Dombkowski A, Abrams J, Martin-Trevino R, Wicha MS, Ethier SP, Yang Z-Q. Identification and functional analysis of 9p24 amplified genes in human breast cancer. Oncogene. 2012 Jan 19;31(3):333-41.”,”type”:”publication”,”url”:”https://www.nature.com/articles/onc2011227″,”cancer_type_terms_string”:”Breast”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C Breast Cancer Dream Team: An Integrated Approach to Targeting Breast Cancer Molecular Subtypes and Their Resistance Phenotypes”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/breast-cancer-resistant-phenotypes-dream-team/”,”publisher_year”:”Oncogene, 2012″,”pub_med_id”:”21666724″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=21666724″},{“title”:”Miyamoto DT, Lee RJ, Stott SL, Ting DT, Wittner BS, Ulman M, Smas ME, Lord JB, Brannigan BW, Trautwein J, Bander NH, Wu CL, Sequist LV, Smith MR, Ramaswamy S, Toner M, Maheswaran S, Haber DA. Androgen receptor signaling in circulating tumor cells as a marker of hormonally responsive prostate cancer. Cancer Discov. 2012 Nov;2(11):995-1003.”,”type”:”publication”,”url”:”https://cancerdiscovery.aacrjournals.org/content/2/11/995″,”cancer_type_terms_string”:”Prostate”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C Circulating Tumor Cell Dream Team: Bioengineering and Clinical Applications of Circulating Tumor Cell Chip”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/circulating-tumor-cells-dream-team/”,”publisher_year”:”Cancer Discovery, 2012″,”pub_med_id”:”23093251″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=23093251″},{“title”:”Yu M, Ting DT, Stott SL, Wittner BS, Ozsolak F, Paul S, Ciciliano JC, Smas ME, Winokur D, Gilman AJ, Ulman MJ, Xega K, Contino G, Alagesan B, Brannigan BW, Milos PM, Ryan DP, Sequist LV, Bardeesy N, Ramaswamy S, Toner M, Maheswaran S, Haber DA. RNA sequencing of pancreatic circulating tumour cells implicates WNT signalling in metastasis. Nature. 2012 Jul 26;487(7408):510-3.”,”type”:”publication”,”url”:”https://www.nature.com/articles/nature11217″,”cancer_type_terms_string”:”Pancreatic”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C Circulating Tumor Cell Dream Team: Bioengineering and Clinical Applications of Circulating Tumor Cell Chip”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/circulating-tumor-cells-dream-team/”,”publisher_year”:”Nature, 2012″,”pub_med_id”:”22763454″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=22763454″},{“title”:”Shah AM, Yu M, Nakamura Z, Ciciliano J, Ulman M, Kotz K, Stott SL, Maheswaran S, Haber DA, Toner M. Biopolymer system for cell recovery from microfluidic cell capture devices. Anal Chem. 2012 Apr 17;84(8):3682-8.”,”type”:”publication”,”url”:”https://pubs.acs.org/doi/10.1021/ac300190j”,”cancer_type_terms_string”:”Non – site Specific”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C Circulating Tumor Cell Dream Team: Bioengineering and Clinical Applications of Circulating Tumor Cell Chip”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/circulating-tumor-cells-dream-team/”,”publisher_year”:”Analytical Chemistry, 2012″,”pub_med_id”:”22414137″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=22414137″},{“title”:”Jelinek J, Liang S, Lu Y, He R, Ramagli LS, Shpall EJ, Estecio MR, Issa JP. Conserved DNA methylation patterns in healthy blood cells and extensive changes in leukemia measured by a new quantitative technique. Epigenetics. 2012 Dec 1;7(12):1368-78.”,”type”:”publication”,”url”:”https://www.tandfonline.com/doi/full/10.4161/epi.22552″,”cancer_type_terms_string”:”Leukemia (all types)”,”treatment_type_terms_string”:”Epigenetic Therapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C Epigenetics Dream Team: Bringing Epigenetic Therapy to the Forefront of Cancer Management”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/epigenetics-therapy-2009-dream-team/”,”publisher_year”:”Epigenetics, 2012″,”pub_med_id”:”23075513″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=23075513″},{“title”:”Issa JP. DNA Methylation as a Clinical Marker in Oncology. J Clin Oncol. 2012 Jul 10;30(20):2566-8.”,”type”:”publication”,”url”:”https://ascopubs.org/doi/10.1200/JCO.2012.42.1016″,”cancer_type_terms_string”:”Non – site Specific”,”treatment_type_terms_string”:”Epigenetic Therapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C Epigenetics Dream Team: Bringing Epigenetic Therapy to the Forefront of Cancer Management”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/epigenetics-therapy-2009-dream-team/”,”publisher_year”:”Journal of Clinical Oncology, 2012″,”pub_med_id”:”22564986″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=22564986″},{“title”:”De Carvalho DD, Sharma S, You JS, Su SF, Taberlay PC, Kelly TK, Yang X, Liang G, Jones PA. DNA methylation screening identifies driver epigenetic events of cancer cell survival. Cancer Cell. 2012 May 15;21(5):655-67.”,”type”:”publication”,”url”:”https://www.cell.com/cancer-cell/fulltext/S1535-6108(12)00138-9″,”cancer_type_terms_string”:”Non – site Specific”,”treatment_type_terms_string”:”Epigenetic Therapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C Epigenetics Dream Team: Bringing Epigenetic Therapy to the Forefront of Cancer Management”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/epigenetics-therapy-2009-dream-team/”,”publisher_year”:”Cancer Research, 2012″,”pub_med_id”:”22624715″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=22624715″},{“title”:”Easwaran H, Johnstone SE, Van Neste L, Ohm J, Mosbruger T, Wang Q, Aryee MJ, Joyce P, Ahuja N, Weisenberger D, Collisson E, Zhu J, Yegnasubramanian S, Matsui W, Baylin SB. A DNA hypermethylation module for the stem/progenitor cell signature of cancer. Genome Res. 2012 May;22(5):837-49.”,”type”:”publication”,”url”:”https://genome.cshlp.org/content/22/5/837″,”cancer_type_terms_string”:”Non – site Specific”,”treatment_type_terms_string”:”Epigenetic Therapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C Epigenetics Dream Team: Bringing Epigenetic Therapy to the Forefront of Cancer Management”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/epigenetics-therapy-2009-dream-team/”,”publisher_year”:”Genome Research, 2012″,”pub_med_id”:”22391556″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=22391556″},{“title”:”Tsai H-C, Li H, Van Neste L, Cai Y, Robert C, Rassool FV, Shin JJ, Harbom KM, Beaty R, Pappou E, Harris J, Yen RWC, Ahuja N, Brock MV, Stearns V, Feller-Kopman D, Yarmus LB, Lin YC, Welm AL, Issa JP, Minn I, Matsui W, Jang YY, Sharkis, SJ, Baylin SB, Zahnow CA. Transient Low Doses of DNA Demethylating Agents Exert Durable Anti-tumor Effects on Hematological and Epithelial Tumor Cells. Cancer Cell. 2012 Mar 20;21(3):430-46.”,”type”:”publication”,”url”:”https://www.cell.com/cancer-cell/fulltext/S1535-6108(12)00041-4″,”cancer_type_terms_string”:”Breast, Colorectal, Leukemia (all types), Lung”,”treatment_type_terms_string”:”Epigenetic Therapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C Epigenetics Dream Team: Bringing Epigenetic Therapy to the Forefront of Cancer Management”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/epigenetics-therapy-2009-dream-team/”,”publisher_year”:”Cancer Cell, 2012″,”pub_med_id”:”22439938″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=22439938″},{“title”:”Yang X, Noushmehr H, Han H, Andreu-Vieyra C, Liang G, Jones PA. Gene reactivation by 5-aza-2′-deoxycytidine-induced demethylation requires SRCAP-mediated H2A.Z insertion to establish nucleosome depleted regions. PLoS Genet. 2012;8(3):e1002604.”,”type”:”publication”,”url”:”https://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.1002604″,”cancer_type_terms_string”:”Leukemia (all types)”,”treatment_type_terms_string”:”Epigenetic Therapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C Epigenetics Dream Team: Bringing Epigenetic Therapy to the Forefront of Cancer Management”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/epigenetics-therapy-2009-dream-team/”,”publisher_year”:”PLoS Genetics, 2012″,”pub_med_id”:”22479200″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=22479200″},{“title”:”Thompson JD, Shibahara G, Rajan S, Pel J, Marziali A. Winnowing DNA for rare sequences: highly specific sequence and methylation based enrichment. PLoS One. 2012;7(2):e31597.”,”type”:”publication”,”url”:”https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0031597″,”cancer_type_terms_string”:”Non – site Specific”,”treatment_type_terms_string”:”Epigenetic Therapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C Epigenetics Dream Team: Bringing Epigenetic Therapy to the Forefront of Cancer Management”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/epigenetics-therapy-2009-dream-team/”,”publisher_year”:”PLoS One, 2012″,”pub_med_id”:”22355378″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=22355378″},{“title”:”Yamazaki J, Taby R, Vasanthakumar A, Macrae T, Ostler KR, Shen L, Kantarjian HM, Estecio MR, Jelinek J, Godley LA, Issa JP. Effects of TET2 mutations on DNA methylation in chronic myelomonocytic leukemia. Epigenetics. 2012 Feb;7(2):201-7.”,”type”:”publication”,”url”:”https://www.tandfonline.com/doi/full/10.4161/epi.7.2.19015″,”cancer_type_terms_string”:”Leukemia (all types)”,”treatment_type_terms_string”:”Epigenetic Therapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C Epigenetics Dream Team: Bringing Epigenetic Therapy to the Forefront of Cancer Management”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/epigenetics-therapy-2009-dream-team/”,”publisher_year”:”Epigenetics, 2012″,”pub_med_id”:”22395470″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=22395470″},{“title”:”Holley, T, Lenkiewics, E, Evers, L. Tembe, A, Ruiz, C, Gsponer, JR, Rentsch, CA, Bubendorf, L, Stapleton, M, Amorese, D, Legende, C, Cunliffe, HE, McCullough, AE, Packaj, B, Craig, D, Carpten, J, Von Hoff, D, Iacobuzio- Donahue, C, Barrett, MT. Deep clonal profiling of formalin fixed paraffin embedded clinical samples. PLoS One. 2012;7(11):e50586.”,”type”:”publication”,”url”:”https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0050586″,”cancer_type_terms_string”:”Bladder, Brain/Nervous System, Breast, Ovarian, Pancreatic”,”treatment_type_terms_string”:”Screening/ Early Detection”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C Pancreatic Dream Team: Cutting Off the Fuel Supply: A New Approach in the Treatment of Pancreatic Cancer”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/cutting-fuel-supply-to-pancreatic-cancer-dream-team/”,”publisher_year”:”PLoS One, 2012″,”pub_med_id”:”23226320″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=23226320″},{“title”:”Leary, RJ, Sausen, M, Kinde, I, Papadopoulos, N, Carpten, JD, Craig, D, O’Shaughnessy, J, Kinzler, KW, Parmigiani, G, Vogelstein, B, Diaz, LA, Velculescu. Detection of chromosomal alternations in circulation of cancer patients with whole-genome sequencing. Sci Transl Med. 2012 Nov 28;4(162):162ra154.”,”type”:”publication”,”url”:”https://stm.sciencemag.org/content/4/162/162ra154″,”cancer_type_terms_string”:”Breast, Colorectal”,”treatment_type_terms_string”:”Screening/ Early Detection”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C Pancreatic Dream Team: Cutting Off the Fuel Supply: A New Approach in the Treatment of Pancreatic Cancer”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/cutting-fuel-supply-to-pancreatic-cancer-dream-team/”,”publisher_year”:”Science Translational Medicine, 2012″,”pub_med_id”:”23197571″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=23197571″},{“title”:”Liang WS, Craig DW, Carpten J, Borad MJ, Demeure MJ, Weiss GJ, Izatt T, Sinari S, Christoforides A, Aldrich J, Kurdoglu A, Barrett M, Phillips L, Benson H, Tembe W, Braggio E, Kiefer JA, Legendre C, Posner R, Hostetter GH, Baker A, Egan JB, Han H, Lake D, Stites EC, Ramanathan RK, Fonseca R, Stewart AK, Von Hoff D. Genome-wide characterization of pancreatic adenocarcinoma patients using next generation sequencing. PLoS One. 2012;7(10):e43192.”,”type”:”publication”,”url”:”https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0043192″,”cancer_type_terms_string”:”Pancreatic”,”treatment_type_terms_string”:”Screening/ Early Detection”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C Pancreatic Dream Team: Cutting Off the Fuel Supply: A New Approach in the Treatment of Pancreatic Cancer”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/cutting-fuel-supply-to-pancreatic-cancer-dream-team/”,”publisher_year”:”PLoS One, 2012″,”pub_med_id”:”23071490″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=23071490″},{“title”:”Ploessl K, Wang L, Lieberman BP, Qu W, Kung HF. Comparative evaluation of 18F-labeled glutamic acid and glutamine as tumor metabolic imaging agents.J Nucl Med. 2012 Oct;53(10):1616-24.”,”type”:”publication”,”url”:”http://jnm.snmjournals.org/content/53/10/1616″,”cancer_type_terms_string”:”Brain/Nervous System”,”treatment_type_terms_string”:”Screening/ Early Detection”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C Pancreatic Dream Team: Cutting Off the Fuel Supply: A New Approach in the Treatment of Pancreatic Cancer”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/cutting-fuel-supply-to-pancreatic-cancer-dream-team/”,”publisher_year”:”Journal of Nuclear Medicine, 2012″,”pub_med_id”:”22935578″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=22935578″},{“title”:”Masamichi Mizuma, Zeshaan A. Rasheed, Shinichi Yabuuchi, Noriyuki Omura, Nathaniel R. Campbell, Roeland F. de Wilde, Elizabeth De Oliveira, Qing Zhang, Oscar Puig, William Matsui, Manuel Hidalgo, Anirban Maitra, N.V. Rajeshkumar. The gamma secretase inhibitor MRK-003 attenuates pancreatic cancer growth in preclinical models. Mol Cancer Ther. 2012 Sep;11(9):1999-2009.”,”type”:”publication”,”url”:”https://mct.aacrjournals.org/content/11/9/1999″,”cancer_type_terms_string”:”Pancreatic”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C Pancreatic Dream Team: Cutting Off the Fuel Supply: A New Approach in the Treatment of Pancreatic Cancer”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/cutting-fuel-supply-to-pancreatic-cancer-dream-team/”,”publisher_year”:”Molecular Cancer Therapeutics, 2012″,”pub_med_id”:”22752426″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=22752426″},{“title”:”Hidalgo M, Von Hoff DD. Translational therapeutic opportunities in ductal adenocarcinoma of the pancreas. Clin Cancer Res. 2012 Aug 15;18(16):4249-56.”,”type”:”publication”,”url”:”https://clincancerres.aacrjournals.org/content/18/16/4249″,”cancer_type_terms_string”:”Pancreatic”,”treatment_type_terms_string”:”Chemotherapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C Pancreatic Dream Team: Cutting Off the Fuel Supply: A New Approach in the Treatment of Pancreatic Cancer”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/cutting-fuel-supply-to-pancreatic-cancer-dream-team/”,”publisher_year”:”Clinical Cancer Research, 2012″,”pub_med_id”:”22896691″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=22896691″},{“title”:”Demeure MJ, Craig DW, Sinari S, Moses TM, Christoforides A, Dinh J, Izatt T, Aldrich J, Decker A, Baker A, Cherni I, Watanabe A, Koep L, Lake D, Hostetter G, Trent JM, Von Hoff DD, Carpten JD. Cancer of the ampulla of Vater: analysis of the whole genome sequence exposes a potential therapeutic vulnerability. Genome Med. 2012 Jul 4;4(7):56.”,”type”:”publication”,”url”:”https://genomemedicine.biomedcentral.com/articles/10.1186/gm357″,”cancer_type_terms_string”:”Pancreatic”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C Pancreatic Dream Team: Cutting Off the Fuel Supply: A New Approach in the Treatment of Pancreatic Cancer”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/cutting-fuel-supply-to-pancreatic-cancer-dream-team/”,”publisher_year”:”Genome Medicine, 2012″,”pub_med_id”:”22762308″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=22762308″},{“title”:”Roberts, NJ, Vogelstein, JT, Parmigiani, G, Kinzler, KW, Vogelstein, B, Velculescu, VE. The predictive capacity of personal genome sequencing.Sci Transl Med. 2012 May 9;4(133):133ra58.”,”type”:”publication”,”url”:”https://stm.sciencemag.org/content/4/133/133ra58″,”cancer_type_terms_string”:”Non – site Specific”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C Pancreatic Dream Team: Cutting Off the Fuel Supply: A New Approach in the Treatment of Pancreatic Cancer”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/cutting-fuel-supply-to-pancreatic-cancer-dream-team/”,”publisher_year”:”Science Translational Medicine, 2012″,”pub_med_id”:”22472521″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=22472521″},{“title”:”Ye, J., Mancuso, A., Tong, X., Ward, P. S., Fan, J., Rabinowitz, J. D., Thompson, C. B. (2012). Pyruvate kinase M2 promotes de novo serine synthesis to sustain mTORC1 activity and cell proliferation. Proc Natl Acad Sci U S A. 2012 May 1;109(18):6904-9.”,”type”:”publication”,”url”:”https://www.pnas.org/content/109/18/6904″,”cancer_type_terms_string”:”Non – site Specific”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C Pancreatic Dream Team: Cutting Off the Fuel Supply: A New Approach in the Treatment of Pancreatic Cancer”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/cutting-fuel-supply-to-pancreatic-cancer-dream-team/”,”publisher_year”:”PNAS, 2012″,”pub_med_id”:”22509023″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=22509023″},{“title”:”Jones S, Li M, Parsons DW, Zhang X, Wesseling J, Kristel P, Schmidt MK, Markowitz S, Yan H, Bigner D, Hruban RH, Eshleman JR, Iacobuzio-Donahue CA, Goggins M, Maitra A, Malek SN, Powell S, Vogelstein B, Kinzler KW, Velculescu VE, Papadopoulos N. Somatic mutations in the chromatin remodeling gene ARID1A occur in several tumor types. Hum Mutat. 2012 Jan;33(1):100-3.”,”type”:”publication”,”url”:”https://onlinelibrary.wiley.com/doi/full/10.1002/humu.21633″,”cancer_type_terms_string”:”Non – site Specific”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C Pancreatic Dream Team: Cutting Off the Fuel Supply: A New Approach in the Treatment of Pancreatic Cancer”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/cutting-fuel-supply-to-pancreatic-cancer-dream-team/”,”publisher_year”:”Human Mutation, 2012″,”pub_med_id”:”22009941″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=22009941″},{“title”:”Le A, Lane AN, Hamaker M, Bose S, Gouw A, Barbi J, Tsukamoto T, Rojas CJ, Slusher BS, Zhang H, Zimmerman LJ, Liebler DC, Slebos RJC, Lorkiewicz PK, Higashi RM, Fan TWM, Dang CV. (2012) Glucose-Independent Glutamine Metabolism via TCA Cycling for Proliferation and Survival in B Cells.Cell Metab. 2012 Jan 4;15(1):110-21.”,”type”:”publication”,”url”:”https://www.cell.com/cell-metabolism/fulltext/S1550-4131(11)00468-2?_returnURL=https%3A%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2FS1550413111004682%3Fshowall%3Dtrue”,”cancer_type_terms_string”:”Lymphoma”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C Pancreatic Dream Team: Cutting Off the Fuel Supply: A New Approach in the Treatment of Pancreatic Cancer”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/cutting-fuel-supply-to-pancreatic-cancer-dream-team/”,”publisher_year”:”Cell Metabolism, 2012″,”pub_med_id”:”22225880″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=22225880″},{“title”:”Qu W, Oya S, Lieberman BP, Ploessl K, Wang L, Wise DR, Divgi CR, Chodosh LP, Thompson CB, Kung HF. (2012 ) Preparation and Characterization of L-[5-11C]-Glutamine for Metabolic Imaging of Tumors. J Nucl Med. 2012 Jan;53(1):98-105.”,”type”:”publication”,”url”:”http://jnm.snmjournals.org/content/53/1/98″,”cancer_type_terms_string”:”Breast”,”treatment_type_terms_string”:”Screening/ Early Detection”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C Pancreatic Dream Team: Cutting Off the Fuel Supply: A New Approach in the Treatment of Pancreatic Cancer”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/cutting-fuel-supply-to-pancreatic-cancer-dream-team/”,”publisher_year”:”Journal of Nuclear Medicine, 2012″,”pub_med_id”:”22173839″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=22173839″},{“title”:”Sherman M, Downes M and Evans RM (2011) Nuclear receptors as modulators of the tumor microenvironment. Cancer Prev Res (Phila). 2012 Jan;5(1):3-10.”,”type”:”publication”,”url”:”https://cancerpreventionresearch.aacrjournals.org/content/5/1/3″,”cancer_type_terms_string”:”Non – site Specific”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C Pancreatic Dream Team: Cutting Off the Fuel Supply: A New Approach in the Treatment of Pancreatic Cancer”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/cutting-fuel-supply-to-pancreatic-cancer-dream-team/”,”publisher_year”:”Cancer Prevention Research, 2012″,”pub_med_id”:”22135047″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=22135047″},{“title”:”Soslow RA, Wethington S, Cesari M, Levine DA. Clinicopathological analysis of matched primary and recurrent endometrial carcinoma. Am J Surg Pathol. 2012 Dec;36(12):1771-81.”,”type”:”publication”,”url”:”https://insights.ovid.com/article/00000478-201212000-00004″,”cancer_type_terms_string”:”Endometiral/Uterin”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C PI3K Dream Team: Targeting the PI3K Pathway in Women’s Cancers”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/womens-cancers-pi3k-dream-team/”,”publisher_year”:”American Journal of Surgical Pathology, 2012″,”pub_med_id”:”23154767″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=23154767″},{“title”:”Abkevich V, Timms KM, Hennessy BT, Potter J, Carey MS, Meyer LA, McCune KS, Broaddus R, Lu KH, Chen J, Tran TV, Williams D, Iliev D, Jammulapati S, Fitzgerald L, FitzGerald LM, Krivak T, DeLoia JA, Gutin A, Mills GB, Lanchbury JS. Patterns of genomic loss of heterozygosity predict homologous recombination repair defects in ovarian cancer.Br J Cancer. 2012 Nov 6;107(10):1776-82.”,”type”:”publication”,”url”:”https://www.nature.com/articles/bjc2012451″,”cancer_type_terms_string”:”Ovarian”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C PI3K Dream Team: Targeting the PI3K Pathway in Women’s Cancers”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/womens-cancers-pi3k-dream-team/”,”publisher_year”:”British Journal of Cancer, 2012″,”pub_med_id”:”23047548″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=23047548″},{“title”:”Hill SM, Lu Y, Molina J, Heiser LM, Spellman PT, Speed TP, Gray JW, Mills GB, and Mukherjee S. Bayesian inference of signaling network topology in a cancer cell line. Bioinformatics. 2012 Nov 1;28(21):2804-10.”,”type”:”publication”,”url”:”https://academic.oup.com/bioinformatics/article/28/21/2804/235527″,”cancer_type_terms_string”:”Breast”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C PI3K Dream Team: Targeting the PI3K Pathway in Women’s Cancers”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/womens-cancers-pi3k-dream-team/”,”publisher_year”:”Bioinformatics, 2012″,”pub_med_id”:”22923301″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=22923301″},{“title”:”Ibrahim YH, Garcia-Garcia C, Serra V, He L, Torres-Lockhart K, Prat A, Anton P, Cozar P, Guzman M, Grueso J, Rodriguez O, Calvo MT, Aura C, Diez O, Rubio IT, Perez J, Rodon J, Cortes J, Ellisen LW, Scaltriti M, Baselga J. PI3K Inhibition impairs BRCA-1/2 expression and sensitizes BRCA-proficient triplenegative breast cancer to PARP Inhibition. Cancer Discov. 2012 Nov;2(11):1036-47.”,”type”:”publication”,”url”:”https://cancerdiscovery.aacrjournals.org/content/2/11/1036″,”cancer_type_terms_string”:”Breast”,”treatment_type_terms_string”:”Chemotherapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C PI3K Dream Team: Targeting the PI3K Pathway in Women’s Cancers”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/womens-cancers-pi3k-dream-team/”,”publisher_year”:”Cancer Discovery, 2012″,”pub_med_id”:”22915752″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=22915752″},{“title”:”Juvekar A, Burga LN, Hu H, Lunsford EP, Ibrahim YH, Balmana J, Rajendran A, Papa A, Spencer K, Lyssiotis CA, Nardella C, Pandolfi PP, Baselga J, Scully R, Asara JM, Cantley LC, Wulf GM. Combining a PI3K inhibitor with a PARP inhibitor provides an effective therapy for BRCA1-related breast cancer. Cancer Discov. 2012 Nov;2(11):1048-63.”,”type”:”publication”,”url”:”https://cancerdiscovery.aacrjournals.org/content/2/11/1048″,”cancer_type_terms_string”:”Breast”,”treatment_type_terms_string”:”Chemotherapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C PI3K Dream Team: Targeting the PI3K Pathway in Women’s Cancers”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/womens-cancers-pi3k-dream-team/”,”publisher_year”:”Cancer Discovery, 2012″,”pub_med_id”:”22915751″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=22915751″},{“title”:”Kim N, He N, Kim C, Zhang F, Lu Y, Yu Q, Stemke-Hale K, Greshock J, Wooster R, Yoon S, Mills GB. Systematic analysis of genotype-specific drug responses in cancer. Int J Cancer. 2012 Nov 15;131(10):2456-64.”,”type”:”publication”,”url”:”https://onlinelibrary.wiley.com/doi/full/10.1002/ijc.27529″,”cancer_type_terms_string”:”Non – site Specific”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C PI3K Dream Team: Targeting the PI3K Pathway in Women’s Cancers”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/womens-cancers-pi3k-dream-team/”,”publisher_year”:”International Journal of Cancer, 2012″,”pub_med_id”:”22422301″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=22422301″},{“title”:”Liang H, Cheng LWT, Li Jie, Ju Z, Yu S., Stemke-Hale K, Dogruluk T, Lu Y, Gu C, Liu C-G, Liu X, Scherer SE, Verhaak R, Zhang F, Lu KH, Broaddus RR, Scott KL, Hennessy BT, Mills GB. Whole exome sequencing combined with functional genomics reveals novel candidate driver cancer genes in endometrial cancer. Genome Res. 2012 Nov;22(11):2120-9.”,”type”:”publication”,”url”:”https://genome.cshlp.org/content/22/11/2120″,”cancer_type_terms_string”:”Endometiral/Uterin”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C PI3K Dream Team: Targeting the PI3K Pathway in Women’s Cancers”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/womens-cancers-pi3k-dream-team/”,”publisher_year”:”Genome Research, 2012″,”pub_med_id”:”23028188″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=23028188″},{“title”:”Balko JM, Mayer IA, Sanders ME, Miller TW, Kuba MG, Wagle N, Garraway LA, Arteaga CL. Discordant cellular response to presurgical letrozole in bilateral synchronous ER+ breast cancers with a KRAS mutation or FGFR1 gene amplification. Mol Cancer Ther. 2012 Oct;11(10):2301-5.”,”type”:”publication”,”url”:”https://mct.aacrjournals.org/content/11/10/2301″,”cancer_type_terms_string”:”Breast”,”treatment_type_terms_string”:”Chemotherapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C PI3K Dream Team: Targeting the PI3K Pathway in Women’s Cancers”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/womens-cancers-pi3k-dream-team/”,”publisher_year”:”Molecular Cancer Therapeutics, 2012″,”pub_med_id”:”22879364″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=22879364″},{“title”:”Meric-Bernstam F, Chen H, Akcakanat A, Do K-A, Lluch A, Hennessy BT, Hortobagyi GN, Mills GB, Gonzalez-Angulo AM. Aberrations in translational regulation are associated with poor prognosis in hormone receptor-positive breast cancer.Breast Cancer Res. 2012 Oct 26;14(5):R138.”,”type”:”publication”,”url”:”https://breast-cancer-research.biomedcentral.com/articles/10.1186/bcr3343″,”cancer_type_terms_string”:”Breast”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C PI3K Dream Team: Targeting the PI3K Pathway in Women’s Cancers”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/womens-cancers-pi3k-dream-team/”,”publisher_year”:”Breast Cancer Research, 2012″,”pub_med_id”:”23102376″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=23102376″},{“title”:”Miller TW, Fox EM, Arteaga CL.Abrogating endocrine resistance by targeting ERα and PI3K in breast cancer. Front Oncol. 2012 Oct 16;2:145.”,”type”:”publication”,”url”:”https://www.frontiersin.org/articles/10.3389/fonc.2012.00145/full”,”cancer_type_terms_string”:”Breast”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C PI3K Dream Team: Targeting the PI3K Pathway in Women’s Cancers”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/womens-cancers-pi3k-dream-team/”,”publisher_year”:”Frontiers in Oncology, 2012″,”pub_med_id”:”23087906″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=23087906″},{“title”:”Sangai T, Akcakanat A, Chen H, Tarco E, Wu Y, Do K-A, Miller TW, Arteaga CL, Mills GB, Gonzalez- Angulo AM, and Meric-Bernstam F. Biomarkers of response to AKT inhibitor MK-2206 in breast cancer. Clin Cancer Res. 2012 Oct 15;18(20):5816-28.”,”type”:”publication”,”url”:”https://clincancerres.aacrjournals.org/content/18/20/5816″,”cancer_type_terms_string”:”Breast”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C PI3K Dream Team: Targeting the PI3K Pathway in Women’s Cancers”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/womens-cancers-pi3k-dream-team/”,”publisher_year”:”Clinical Cancer Research, 2012″,”pub_med_id”:”22932669″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=22932669″},{“title”:”Balko JM, Cook RS, Vaught DB, Kuba MG, Miller TW, Bhola NE, Sanders ME, Granja-Ingram NM, Smith JJ, Meszoely IM, Salter J, Dowsett M, Stemke-Hale K, González-Angulo AM, Mills GB, Pinto JA, Gomez HL, Arteaga CL. Profiling of residual breast cancers after neoadjuvant chemotherapy identifies DUSP4 deficiency as a mechanism of drug resistance. Nat Med. 2012 Jul;18(7):1052-9.”,”type”:”publication”,”url”:”https://www.nature.com/articles/nm.2795″,”cancer_type_terms_string”:”Breast”,”treatment_type_terms_string”:”Chemotherapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C PI3K Dream Team: Targeting the PI3K Pathway in Women’s Cancers”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/womens-cancers-pi3k-dream-team/”,”publisher_year”:”Nature Medicine, 2012″,”pub_med_id”:”22683778″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=22683778″},{“title”:”Fu S, Hennessy BT, Ng CS, Ju Z, Coombes KR, Wolf JK, Sood AK, Levenback CF, Coleman RL, Kavanagh JJ, Gershenson DM, Markman M, Dice K, Howard A, Li J, Li Y, Stemke-Hale K, Dyer M, Atkinson E, Jackson E, Kundrea V, Kurzrock R, Bast RC Jr, Mills GB. Perifosine plus docetaxel in patients with platinum and taxane resistant or refractory high-grade epithelial ovarian cancer. Gynecol Oncol. 2012 Jul;126(1):47-53.”,”type”:”publication”,”url”:”https://www.gynecologiconcology-online.net/article/S0090-8258(12)00258-2/fulltext”,”cancer_type_terms_string”:”Ovarian”,”treatment_type_terms_string”:”Chemotherapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C PI3K Dream Team: Targeting the PI3K Pathway in Women’s Cancers”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/womens-cancers-pi3k-dream-team/”,”publisher_year”:”Gynecologic Oncology, 2012″,”pub_med_id”:”22487539″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=22487539″},{“title”:”Shrestha Y, Schafer EJ, Boehm JS, Thomas SR, He F, Du J, Wang S, Barretina J, Weir BA, Zhao JJ, Polyak K, Golub TR, Beroukhim R, Hahn WC. PAK1 is a breast cancer oncogene that coordinately activates MAPK and MET signaling. Oncogene. 2012 Jul 19;31(29):3397-408.”,”type”:”publication”,”url”:”https://www.nature.com/articles/onc2011515″,”cancer_type_terms_string”:”Breast”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C PI3K Dream Team: Targeting the PI3K Pathway in Women’s Cancers”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/womens-cancers-pi3k-dream-team/”,”publisher_year”:”Oncogene, 2012″,”pub_med_id”:”22105362″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=22105362″},{“title”:”Utermark T, Rao T, Cheng H, Wang Q, Lee S, Wang ZC, Iglehart JD, Roberts TM, Muller WJ, and Zhao JJ. The p110α and p110β isoforms of PI3K play divergent roles in mammary gland development and tumorigenesis. Genes Dev. 2012 Jul 15;26(14):1573-86.”,”type”:”publication”,”url”:”http://genesdev.cshlp.org/content/26/14/1573″,”cancer_type_terms_string”:”Breast”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C PI3K Dream Team: Targeting the PI3K Pathway in Women’s Cancers”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/womens-cancers-pi3k-dream-team/”,”publisher_year”:”Genes & Development, 2012″,”pub_med_id”:”22802530″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=22802530″},{“title”:”Cerami E, Gao J, Dogrusoz U, Gros BE, Sumer SO, Aksoy BA, Jacobsen A, Byrne CJ, Heuer ML, Larsson E, Antipin Y, Reva B, Goldberg AP, Sander C, Schultz N. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2012 May;2(5):401-4.”,”type”:”publication”,”url”:”https://cancerdiscovery.aacrjournals.org/content/2/5/401″,”cancer_type_terms_string”:”Non – site Specific”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C PI3K Dream Team: Targeting the PI3K Pathway in Women’s Cancers”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/womens-cancers-pi3k-dream-team/”,”publisher_year”:”Cancer Discovery, 2012″,”pub_med_id”:”22588877″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=22588877″},{“title”:”Djordjevic B, Hennessy BT, Li J, Barkoh B.A, Luthra R, Mills G.B, Broaddus RR. Clinical assessment of PTEN loss in endometrial carcinoma: immunohistochemistry out-performs gene sequencing. Mod Pathol. 2012 May;25(5):699-708.”,”type”:”publication”,”url”:”https://cancerdiscovery.aacrjournals.org/content/2/5/401″,”cancer_type_terms_string”:”Endometiral/Uterin”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C PI3K Dream Team: Targeting the PI3K Pathway in Women’s Cancers”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/womens-cancers-pi3k-dream-team/”,”publisher_year”:”Modern Pathology, 2012″,”pub_med_id”:”22301702″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=22588877″},{“title”:”Ni J, Liu Q, Xie S, Carlson C, Von T, Vogel K, Riddle S, Benes C, Eck M, Roberts T, Gray N, and Zhao J. Functional Characterization of an Isoform-Selective Inhibitor of PI3K-p110b as a Potential Anticancer Agent. Cancer Discov. 2012 May;2(5):425-33.”,”type”:”publication”,”url”:”https://cancerdiscovery.aacrjournals.org/content/2/5/425″,”cancer_type_terms_string”:”Non – site Specific”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C PI3K Dream Team: Targeting the PI3K Pathway in Women’s Cancers”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/womens-cancers-pi3k-dream-team/”,”publisher_year”:”Cancer Discovery, 2012″,”pub_med_id”:”22588880″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=22588880″},{“title”:”Vaught DB, Stanford JC, Young C, Hicks DJ, Wheeler F, Rinehart C, Sanchez V, Koland J, Muller WJ, Arteaga CL, Cook RS. HER3 is required for HER2-induced pre-neoplastic changes to the breast epithelium and tumor formation. Cancer Res. 2012 May 15;72(10):2672-82.”,”type”:”publication”,”url”:”https://cancerres.aacrjournals.org/content/72/10/2672″,”cancer_type_terms_string”:”Breast”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C PI3K Dream Team: Targeting the PI3K Pathway in Women’s Cancers”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/womens-cancers-pi3k-dream-team/”,”publisher_year”:”Cancer Research, 2012″,”pub_med_id”:”22461506″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=22461506″},{“title”:”Raghav KP, Wang W, Liu S, Chavez-MacGregor M, Meng X, Hortobagyi GN, Mills GB, Meric-Bernstam F, Blumenschein Jr. GR, Gonzalez-Angulo AM. cMET and phospho-cMET protein levels in breast cancers and survival outcomes. Clin Cancer Res. 2012 Apr 15;18(8):2269-77.”,”type”:”publication”,”url”:”https://clincancerres.aacrjournals.org/content/18/8/2269″,”cancer_type_terms_string”:”Breast”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C PI3K Dream Team: Targeting the PI3K Pathway in Women’s Cancers”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/womens-cancers-pi3k-dream-team/”,”publisher_year”:”Clinical Cancer Research, 2012″,”pub_med_id”:”22374333″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=22374333″},{“title”:”Liu Q, Kirubakaran S, Hur W, Niepel M, Westover K, Thoreen CC, Wang J, Ni J, Patricelli MP, Vogel K, Riddle S, Waller DL, Traynor R, Sanda T, Zhao Z, Kang SA, Zhao JJ, Look AT, Sorger PK, Sabatini DM, Gray NS. Kinome-wide Selectivity Profiling of ATP-competitive Mammalian Target of Rapamycin (mTOR) Inhibitors and Characterization of Their Binding Kinetics. J Biol Chem. 2012 Mar 23;287(13):9742-52.”,”type”:”publication”,”url”:”http://www.jbc.org/content/287/13/9742″,”cancer_type_terms_string”:”Non – site Specific”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C PI3K Dream Team: Targeting the PI3K Pathway in Women’s Cancers”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/womens-cancers-pi3k-dream-team/”,”publisher_year”:”Journal of Biological Chemistry, 2012″,”pub_med_id”:”22223645″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=22223645″},{“title”:”Meric-Bernstam F, Akcakanat A, Chen H, Do KA, Sangai T, Adkins F, Gonzalez-Angulo AM, Rahsid A, Crosby K, Dong M, Phan AT, Chang DZ, Wolff RA, Gupta S, Mills GB, Yao J. PIK3CA/PTEN mutations and AKT activation as markers of sensitivity to allosteric mTOR inhibitors. Clin Cancer Res. 2012 Mar 15;18(6):1777-89.”,”type”:”publication”,”url”:”https://clincancerres.aacrjournals.org/content/18/6/1777″,”cancer_type_terms_string”:”Non – site Specific”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C PI3K Dream Team: Targeting the PI3K Pathway in Women’s Cancers”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/womens-cancers-pi3k-dream-team/”,”publisher_year”:”Clinical Cancer Research, 2012″,”pub_med_id”:”22422409″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=22422409″},{“title”:”Wang LE, Ma H, Hale KS, Yin M, Meyer LA, Liu H, Li J, Lu KH, Hennessy BT, Li X, Spitz MR, Wei Q, Mills GB. J Cancer Res Clin Oncol. Roles of genetic variants in the PI3K and RAS/RAF pathways in susceptibility to endometrial cancer and clinical outcomes. J Cancer Res Clin Oncol. 2012 Mar;138(3):377-85.”,”type”:”publication”,”url”:”https://link.springer.com/article/10.1007%2Fs00432-011-1103-0″,”cancer_type_terms_string”:”Endometiral/Uterin”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C PI3K Dream Team: Targeting the PI3K Pathway in Women’s Cancers”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/womens-cancers-pi3k-dream-team/”,”publisher_year”:”Journal of Cancer Research and Clinical Oncology, 2012″,”pub_med_id”:”22146979″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=22146979″},{“title”:”Gonzalez-Angulo AM, Iwamoto TI, Liu S, Chen H, Do K-A, Hortogagyi GN, Mills GB, Meric-Bernstam F, Symmans WF, and Pusztai L. Gene expression, molecular class changes and pathway analysis after neoadjuvant systemic therapy for breast cancer. Clinical Cancer Research, 2012; Feb 15, 18(4):1109-19.”,”type”:”publication”,”url”:”https://clincancerres.aacrjournals.org/content/18/4/1109″,”cancer_type_terms_string”:”Breast”,”treatment_type_terms_string”:”Chemotherapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C PI3K Dream Team: Targeting the PI3K Pathway in Women’s Cancers”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/womens-cancers-pi3k-dream-team/”,”publisher_year”:”Clinical Cancer Research, 2012″,”pub_med_id”:”22235097″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=22235097″},{“title”:”Heiser LM, Sadanandam A, Kuo, W-L, Benz SC, Goldstein TC, Ng S, Gibb WJ, Want NJ, Ziyand S, Tong F, Bayani N, Hu Z, Billig JI, Dueregger A, Lewis S, Jakkula L, Korkola JE, Durinck S, Pepin F, Guan Y, Perdom E, Neuvial P, Bengsstom H, Wood KW, Smith PG, Vassilev L, Hennessy BT, Greshock JD, Bachman KE, Hardwicke MA, Park JW, Marton L, Wolf DW, Colisson EA. Neve RM, Mills GB. Speed TP, Feiler HS, Wooster RF, Haussler D, Stuart J, Gray JW, Spellman PT. Subtype and pathway specific responses to anticancer compounds in breast cancer. Proc Natl Acad Sci U S A. 2012 Feb 21;109(8):2724-9.”,”type”:”publication”,”url”:”https://www.pnas.org/content/109/8/2724″,”cancer_type_terms_string”:”Breast”,”treatment_type_terms_string”:”Chemotherapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C PI3K Dream Team: Targeting the PI3K Pathway in Women’s Cancers”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/womens-cancers-pi3k-dream-team/”,”publisher_year”:”PNAS, 2012″,”pub_med_id”:”22003129″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=22003129″},{“title”:”Balko JM, Miller TW, Morrison MM, Hutchinson K, Young C, Rinehart C. Sanchez V, Jee D, Polyak K, Prat A, Perou CM, Arteaga CL, Cook RS. The receptor tyrosine kinase ErbB3 maintains the balance between luminal and basal breast epithelium. Proc Natl Acad Sci USA. 2012; Jan3:109(1):221-6.”,”type”:”publication”,”url”:”https://www.pnas.org/content/109/1/221″,”cancer_type_terms_string”:”Breast”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C PI3K Dream Team: Targeting the PI3K Pathway in Women’s Cancers”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/womens-cancers-pi3k-dream-team/”,”publisher_year”:”PNAS, 2012″,”pub_med_id”:”22178756″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=22178756″},{“title”:”Bast RC Jr, Mills GB. Dissecting “PI3Kness:” the complexity of personalized therapy for ovarian cancer. Cancer Discov. 2012; Jan; 2(1):16-18.”,”type”:”publication”,”url”:”https://cancerdiscovery.aacrjournals.org/content/2/1/16″,”cancer_type_terms_string”:”Ovarian”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C PI3K Dream Team: Targeting the PI3K Pathway in Women’s Cancers”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/womens-cancers-pi3k-dream-team/”,”publisher_year”:”Cancer Discovery, 2012″,”pub_med_id”:”22585163″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=22585163″},{“title”:”Garg K, Broaddus RR, Soslow RA, Urbauer DL, Levine DA, Djordjevic B. Pathologic scoring or PTEN immunohistochemistry in endometrial carcinoma is highly reproducible.Int J Gynecol Pathol. 2012 Jan;31(1):48-56.”,”type”:”publication”,”url”:”https://insights.ovid.com/article/00004347-201201000-00007″,”cancer_type_terms_string”:”Endometiral/Uterin”,”treatment_type_terms_string”:”Screening/ Early Detection”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C PI3K Dream Team: Targeting the PI3K Pathway in Women’s Cancers”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/womens-cancers-pi3k-dream-team/”,”publisher_year”:”International Journal of Gynecological Pathology, 2012″,”pub_med_id”:”22123723″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=22123723″},{“title”:”Hanrahan AJ, Schultz N, Westfal ML, Sakr RA, Giri DD, Scarperi S, Janikariman M, Olivera N, Stevens EV, She Q, Aghajanian C, King TA, de Stanchina E, Springgs DR, Heguy A, Taylor BS, Sander C, Rosen N, Levine DA, Solit DB. Genomic complexity and AKT dependence in serous ovarian cancer. Cancer Discov. 2012 Jan;2(1):56-67.”,”type”:”publication”,”url”:”https://cancerdiscovery.aacrjournals.org/content/2/1/56″,”cancer_type_terms_string”:”Ovarian”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C PI3K Dream Team: Targeting the PI3K Pathway in Women’s Cancers”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/womens-cancers-pi3k-dream-team/”,”publisher_year”:”Cancer Discovery, 2012″,”pub_med_id”:”22328975″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=22328975″},{“title”:”Henry NL, Banerjee M, Wicha M, Van Poznak C, Smerage JB, Schott AF, Griggs JJ, Hayes DF. Pilot study of duloxetine for treatment of aromatase inhibitor-associated musculoskeletal symptoms. Cancer. 2011 Dec 15;117(24):5469-75.”,”type”:”publication”,”url”:”https://onlinelibrary.wiley.com/doi/full/10.1002/cncr.26230″,”cancer_type_terms_string”:”Non – site Specific”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C Breast Cancer Dream Team: An Integrated Approach to Targeting Breast Cancer Molecular Subtypes and Their Resistance Phenotypes”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/breast-cancer-resistant-phenotypes-dream-team/”,”publisher_year”:”Cancer, 2011″,”pub_med_id”:”21692065″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=21692065%5Buid%5D”},{“title”:”Obiorah I, Jordan VC. Progress in endocrine approaches to the treatment and prevention of breast cancer. Maturitas. 2011 Dec;70(4):315-21.”,”type”:”publication”,”url”:”https://linkinghub.elsevier.com/retrieve/pii/S0378512211003252″,”cancer_type_terms_string”:”Breast”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C Breast Cancer Dream Team: An Integrated Approach to Targeting Breast Cancer Molecular Subtypes and Their Resistance Phenotypes”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/breast-cancer-resistant-phenotypes-dream-team/”,”publisher_year”:”Maturitas, 2011″,”pub_med_id”:”21982237″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=21982237″},{“title”:”Ariazi EA, Cunliffe HE, Lewis-Wambi JS, Slifker MJ, Willis AL, Ramos P, Tapia C, Kim HR, Yerrum S, Sharma CG, Nicolas E, Balagurunathan Y, Ross EA, Jordan VC. Estrogen induces apoptosis in estrogen deprivation-resistant breast cancer through stress responses as identified by global gene expression across time.Proc Natl Acad Sci U S A. 2011 Nov 22;108(47):18879-86.”,”type”:”publication”,”url”:”https://www.pnas.org/content/108/47/18879″,”cancer_type_terms_string”:”Breast”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C Breast Cancer Dream Team: An Integrated Approach to Targeting Breast Cancer Molecular Subtypes and Their Resistance Phenotypes”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/breast-cancer-resistant-phenotypes-dream-team/”,”publisher_year”:”PNAS, 2011″,”pub_med_id”:”22011582″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=22011582″},{“title”:”YC, Morrison G, Gillihan R, Guo J, Ward RM, Fu X, Botero MF, Healy NA, Hilsenbeck SG, Phillips GL, Chamness GC, Rimawi MF, Osborne CK, Schiff R: Different mechanisms for resistance to trastuzumab versus lapatinib in HER2-positive breast cancers–role of estrogen receptor and HER2 reactivation. Breast Cancer Res. 2011;13(6):R121.”,”type”:”publication”,”url”:”https://breast-cancer-research.biomedcentral.com/articles/10.1186/bcr3067″,”cancer_type_terms_string”:”Breast”,”treatment_type_terms_string”:”Chemotherapy”,”grant_type_terms_string”:””,”research_project”:”SU2C Breast Cancer Dream Team: An Integrated Approach to Targeting Breast Cancer Molecular Subtypes and Their Resistance Phenotypes”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/breast-cancer-resistant-phenotypes-dream-team/”,”publisher_year”:”Breast Cancer Research, 2011″,”pub_med_id”:”22123186″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=22123186″},{“title”:”Ha KC, Lalonde E, Li L, Cavallone L, Natrajan R, Lambros MB, Mitsopoulos C, Hakas J, Kozarewa I, Fenwick K, Lord CJ, Ashworth A, Vincent-Salomon A, Basik M, Reis-Filho JS, Majewski J, Foulkes WD. Identification of gene fusion transcripts by transcriptome sequencing in BRCA1-mutated breast cancers and cell lines. BMC Med Genomics. 2011 Oct 27;4:75.”,”type”:”publication”,”url”:”https://bmcmedgenomics.biomedcentral.com/articles/10.1186/1755-8794-4-75″,”cancer_type_terms_string”:”Breast”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C Breast Cancer Dream Team: An Integrated Approach to Targeting Breast Cancer Molecular Subtypes and Their Resistance Phenotypes”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/breast-cancer-resistant-phenotypes-dream-team/”,”publisher_year”:”BMC Medical Genomics, 2011″,”pub_med_id”:”22032724″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=22032724″},{“title”:”Jordan VC, Obiorah I, Fan P, Kim HR, Ariazi E, Cunliffe H, Brauch H. The St. Gallen Prize Lecture: Evolution of Long-Term Adjuvant Anti-hormone Therapy: Consequences and Opportunities: Breast. 2011 Oct;20 Suppl 3:S1-11″,”type”:”publication”,”url”:”https://www.thebreastonline.com/article/S0960-9776(11)70287-9/pdf”,”cancer_type_terms_string”:”Breast”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C Breast Cancer Dream Team: An Integrated Approach to Targeting Breast Cancer Molecular Subtypes and Their Resistance Phenotypes”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/breast-cancer-resistant-phenotypes-dream-team/”,”publisher_year”:”Breast, 2011″,”pub_med_id”:”22015273″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=22015273″},{“title”:”Korkaya H, Liu S, Wicha MS. Regulation of cancer stem cells by cytokine networks: Attacking cancers inflammatory roots. Clin Cancer Res. 2011 Oct 1;17(19):6125-9.”,”type”:”publication”,”url”:”https://clincancerres.aacrjournals.org/content/17/19/6125″,”cancer_type_terms_string”:”Non – site Specific”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C Breast Cancer Dream Team: An Integrated Approach to Targeting Breast Cancer Molecular Subtypes and Their Resistance Phenotypes”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/breast-cancer-resistant-phenotypes-dream-team/”,”publisher_year”:”Clinical Cancer Research, 2011″,”pub_med_id”:”21685479″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=21685479″},{“title”:”Krig, S., Frietze, S., Simion, C., Miller, J.K., Fry, W.H., Rafidi, H., Kotelawala, L., Qi, L., Griffith, O., Gray, J.W., Carraway. K.L., Sweeney, C. (2011) Lrig1 is an estrogen regulated growth suppressor and correlates with longer relapse free survival in ERα-positive breast cancer. Mol Cancer Res. 2011 Oct;9(10):1406-17.”,”type”:”publication”,”url”:”https://mcr.aacrjournals.org/content/9/10/1406″,”cancer_type_terms_string”:”Breast”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C Breast Cancer Dream Team: An Integrated Approach to Targeting Breast Cancer Molecular Subtypes and Their Resistance Phenotypes”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/breast-cancer-resistant-phenotypes-dream-team/”,”publisher_year”:”Molecular Cancer Research, 2011″,”pub_med_id”:”21821674″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=21821674″},{“title”:”Robinson D.R., Kalyana-Sundaram S., Wu Y.-I., Shankar S., Cao X., Ateeq B., Asangani I.A., Iyer M., Maher C.A., Grasso C.S., Lonigro R.J., Quist M., Siddiqui J., Mehra R., Jing X., Giordano T.J., Sabel M.S., Kleer C.G., Palanisamy N., Natrajan R., Lambros M.B., Reis-Filho J.S., Kumar-Sinha C., and Chinnaiyan A.M. Functionally Recurrent Rearangements of the MAST Kinase and Notch Gene Families in Breast Cancer. Nat Med. 2011 Nov 20;17(12):1646-51.”,”type”:”publication”,”url”:”https://www.nature.com/articles/nm.2580″,”cancer_type_terms_string”:”Breast”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C Breast Cancer Dream Team: An Integrated Approach to Targeting Breast Cancer Molecular Subtypes and Their Resistance Phenotypes”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/breast-cancer-resistant-phenotypes-dream-team/”,”publisher_year”:”Nature Medicine, 2011″,”pub_med_id”:”22101766″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=22101766″},{“title”:”Li Y, Wicha MS, Schwartz SJ, Sun D. Implications of cancer stem cell theory for cancer chemoprevention by natural dietary compounds. J Nutr Biochem. 2011 Sep;22(9):799-806″,”type”:”publication”,”url”:”https://www.sciencedirect.com/science/article/abs/pii/S0955286310002445?via%3Dihub”,”cancer_type_terms_string”:”Breast, Pancreatic”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C Breast Cancer Dream Team: An Integrated Approach to Targeting Breast Cancer Molecular Subtypes and Their Resistance Phenotypes”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/breast-cancer-resistant-phenotypes-dream-team/”,”publisher_year”:”Journal of Nutritional Biochemistry, 2011″,”pub_med_id”:”21295962″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=21295962″},{“title”:”Huang C, Park CC, Hilsenbeck SG, Ward R, Rimawi MF, Wang YC, Shou J, Bissell MJ, Osborne CK, Schiff R. b1 integrin mediates an alternative survival pathway in breast cancer cells resistant to lapatinib. Breast Cancer Res. 2011 Aug 31;13(4):R84.21884573″,”type”:”publication”,”url”:”https://breast-cancer-research.biomedcentral.com/articles/10.1186/bcr2936″,”cancer_type_terms_string”:”Breast”,”treatment_type_terms_string”:”Chemotherapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C Breast Cancer Dream Team: An Integrated Approach to Targeting Breast Cancer Molecular Subtypes and Their Resistance Phenotypes”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/breast-cancer-resistant-phenotypes-dream-team/”,”publisher_year”:”Breast Cancer Research, 2011″,”pub_med_id”:”21884573″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=21884573″},{“title”:”Brough R, Frankum JR, Sims D, Mackay A, Mendes-Pereira AM, Bajrami I,Costa-Cabral S, Rafiq R, Ahmad AS, Cerone MA, Natrajan R, Sharpe R, Shiu KK,Wetterskog D, Dedes KJ, Lambros MB, Rawjee T, Linardopoulos S, Reis-Filho JS,Turner NC, Lord CJ, Ashworth A. Functional Viability Profiles of Breast Cancer. Cancer Discov. 2011 Aug;1(3):260-273.”,”type”:”publication”,”url”:”https://cancerdiscovery.aacrjournals.org/content/1/3/260″,”cancer_type_terms_string”:”Breast”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C Breast Cancer Dream Team: An Integrated Approach to Targeting Breast Cancer Molecular Subtypes and Their Resistance Phenotypes”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/breast-cancer-resistant-phenotypes-dream-team/”,”publisher_year”:”Cacner Discovery, 2011″,”pub_med_id”:”21984977″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=21984977″},{“title”:”Korkaya H, Wicha MS. Inflammation and autophagy conspire to promote tumor growth. Cell Cycle. 2011 Aug 15;10(16):2623-4.”,”type”:”publication”,”url”:”https://www.tandfonline.com/doi/abs/10.4161/cc.10.16.16414″,”cancer_type_terms_string”:”Breast”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C Breast Cancer Dream Team: An Integrated Approach to Targeting Breast Cancer Molecular Subtypes and Their Resistance Phenotypes”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/breast-cancer-resistant-phenotypes-dream-team/”,”publisher_year”:”Cell Cycle, 2011″,”pub_med_id”:”21829104″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=21829104″},{“title”:”Loveday C, Turnbull C, Ramsay E, Hughes D, Ruark E, Frankum JR, Bowden G,Kalmyrzaev B, Warren-Perry M, Snape K, Adlard JW, Barwell J, Berg J, Brady AF,Brewer C, Brice G, Chapman C, Cook J, Davidson R, Donaldson A, Douglas F,Greenhalgh L, Henderson A, Izatt L, Kumar A, Lalloo F, Miedzybrodzka Z, Morrison PJ, Paterson J, Porteous M, Rogers MT, Shanley S, Walker L; Breast Cancer Susceptibility Collaboration (UK), Eccles D, Evans DG, Renwick A, Seal S, Lord CJ, Ashworth A, Reis-Filho JS, Antoniou AC, Rahman N. Germline mutations in RAD51D confer susceptibility to ovarian cancer. Nat Genet. 2011 Aug7;43(9):879-82.”,”type”:”publication”,”url”:”https://www.nature.com/articles/ng.893″,”cancer_type_terms_string”:”Ovarian”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C Breast Cancer Dream Team: An Integrated Approach to Targeting Breast Cancer Molecular Subtypes and Their Resistance Phenotypes”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/breast-cancer-resistant-phenotypes-dream-team/”,”publisher_year”:”Nature Genetics, 2011″,”pub_med_id”:”21822267″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=21822267″},{“title”:”Sharpe R, Pearson A, Herrera-Abreu MT, Johnson D, Mackay A, Welti JC, Natrajan R, Reynolds AR, Reis-Filho JS, Ashworth A, Turner NC. FGFR signaling promotes the growth of triple-negative and basal-like breast cancer cell lines both in vitro and in vivo. Clin Cancer Res. 2011 Aug 15;17(16):5275-86.”,”type”:”publication”,”url”:”https://clincancerres.aacrjournals.org/content/17/16/5275″,”cancer_type_terms_string”:”Breast”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C Breast Cancer Dream Team: An Integrated Approach to Targeting Breast Cancer Molecular Subtypes and Their Resistance Phenotypes”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/breast-cancer-resistant-phenotypes-dream-team/”,”publisher_year”:”Clinical Cancer Research, 2011″,”pub_med_id”:”21712446″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=21712446″},{“title”:”Wang, N.J., Sanborn, Z., Arnett, K.L., Bayston, L.J., Liao, W., Proby, C.M., Leigh, I.M., Collisson, E.A., Gordon, P.B., Jakkula, L., Pennypacker, S., Zou, Y., Sharma, M., North, J.P., Vemula, S.S., Mauro, T.M., Neuhaus, I.M., Leboit, P.E., Hur, J.S., Park, K., Huh, N., Kwok, P.Y., Arron, S.T., Massion, P.P., Bale, A.E., Haussler, D., Cleaver, J.E., Gray, J.W., Spellman, P.T., South, A.P., Aster, J.C., Blacklow, S.C., Cho, R.J. Loss-of-function mutations in Notch receptors in cutaneous and lung squamous cell carcinoma.Proc Natl Acad Sci U S A. 2011 Oct 25;108(43):17761-6.”,”type”:”publication”,”url”:”https://www.pnas.org/content/108/43/17761″,”cancer_type_terms_string”:”Lung, Other”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C Breast Cancer Dream Team: An Integrated Approach to Targeting Breast Cancer Molecular Subtypes and Their Resistance Phenotypes”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/breast-cancer-resistant-phenotypes-dream-team/”,”publisher_year”:”PNAS, 2011″,”pub_med_id”:”22006338″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=22006338″},{“title”:”Zielske SP, Spalding AC, Wicha MS, Lawrence TS. Ablation of breast cancer stem cells with radiation. Transl Oncol. 2011 Aug;4(4):227-33.”,”type”:”publication”,”url”:”https://www.sciencedirect.com/science/article/pii/S1936523311800252?via%3Dihub”,”cancer_type_terms_string”:”Breast”,”treatment_type_terms_string”:”Radiation Therapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C Breast Cancer Dream Team: An Integrated Approach to Targeting Breast Cancer Molecular Subtypes and Their Resistance Phenotypes”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/breast-cancer-resistant-phenotypes-dream-team/”,”publisher_year”:”Translational Oncology, 2011″,”pub_med_id”:”21804918″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=21804918″},{“title”:”Durinck, S., Ho, C., Wang, N.J., Liao, W., Jakkula, L.R., Collisson, E.A., Pons, J., Chan, S.-W., Lam, E.T., Chu, C., Park, K., Hong, S.-W., Hur, J.S., Huh, N., Neuhaus, I.M., Yu, S.S., Grekin, R.T., Mauro, T.M., Cleaver, J.E., Kwok, P.-Y., LeBoit, P.E., Getz, G., Cibulskis, K., Aster, J.C., Huang, H., Purdom, E., Li, J., Bolund, L., Arron, S.T., Gray, J.W., Spellman, P.T., Cho, R.J. (2011) Temporal dissection of tumorigenesis in primary cancers. Cancer Discov. 2011 Jul;1(2):137-43.”,”type”:”publication”,”url”:”https://cancerdiscovery.aacrjournals.org/content/1/2/137″,”cancer_type_terms_string”:”Ovarian, Other”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C Breast Cancer Dream Team: An Integrated Approach to Targeting Breast Cancer Molecular Subtypes and Their Resistance Phenotypes”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/breast-cancer-resistant-phenotypes-dream-team/”,”publisher_year”:”Cancer Discovery, 2011″,”pub_med_id”:”21984974″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=21984974″},{“title”:”V. Craig Jordan: Yang CZ, Yaniger SI, Jordan VC, Klein DJ, Bittner GD. Most plastic products release estrogenic chemicals: a potential health problem that can be solved. Environ Health Perspect. 2011 Jul;119(7):989-96.”,”type”:”publication”,”url”:”https://ehp.niehs.nih.gov/doi/10.1289/ehp.1003220″,”cancer_type_terms_string”:”Non – site Specific”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C Breast Cancer Dream Team: An Integrated Approach to Targeting Breast Cancer Molecular Subtypes and Their Resistance Phenotypes”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/breast-cancer-resistant-phenotypes-dream-team/”,”publisher_year”:”Environmental Health Perspectives, 2011″,”pub_med_id”:”21367689″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=21367689″},{“title”:”Silva IA, Bai S, McLean K, Yang K, Griffith KA, Dafydd T, Ginestier C, Johnston C, Kueck A, Reynolds K, Wicha MS, Buckanovich RJ. Aldehyde dehydrogenase and CD133 define angiogenic ovarian cancer stem cells that portend poor patient survival. Cancer Res. 2011 Jun 1;71(11):3991-4001.”,”type”:”publication”,”url”:”https://cancerres.aacrjournals.org/content/71/11/3991″,”cancer_type_terms_string”:”Ovarian”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C Breast Cancer Dream Team: An Integrated Approach to Targeting Breast Cancer Molecular Subtypes and Their Resistance Phenotypes”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/breast-cancer-resistant-phenotypes-dream-team/”,”publisher_year”:”Cancer Research, 2011″,”pub_med_id”:”21498635″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=21498635″},{“title”:”Jordan VC and Ford LS. Paradoxical Clinical Effect of Estrogen on Breast Cancer Risk: A “New” Biology of Estrogen-Induced Apoptosis.Cancer Prev Res (Phila). 2011 May;4(5):633-7″,”type”:”publication”,”url”:”https://cancerpreventionresearch.aacrjournals.org/content/4/5/633″,”cancer_type_terms_string”:”Breast”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C Breast Cancer Dream Team: An Integrated Approach to Targeting Breast Cancer Molecular Subtypes and Their Resistance Phenotypes”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/breast-cancer-resistant-phenotypes-dream-team/”,”publisher_year”:”Cancer Prevention Research, 2011″,”pub_med_id”:”21478501″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=21478501″},{“title”:”Turner NC, Ashworth A. Biomarkers of PARP inhibitor sensitivity. Breast Cancer Res Treat. 2011 May;127(1):283-6.”,”type”:”publication”,”url”:”https://link.springer.com/article/10.1007%2Fs10549-011-1375-8″,”cancer_type_terms_string”:”Breast”,”treatment_type_terms_string”:”Chemotherapy, Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C Breast Cancer Dream Team: An Integrated Approach to Targeting Breast Cancer Molecular Subtypes and Their Resistance Phenotypes”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/breast-cancer-resistant-phenotypes-dream-team/”,”publisher_year”:”Breast Cancer Research and Treatment, 2011″,”pub_med_id”:”21301956″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=21301956″},{“title”:”Fellmann C, Zuber J, McJunkin K, Chang K, Malone CD, Dickins RA, Xu Q, Hengartner MO, Elledge SJ, Hannon GJ, Lowe SW. Functional identification of optimized RNAi triggers using a massively parallel sensor assay. Mol Cell. 2011 Mar 18;41(6):733-46.”,”type”:”publication”,”url”:”https://www.cell.com/molecular-cell/fulltext/S1097-2765(11)00091-8?_returnURL=https%3A%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2FS1097276511000918%3Fshowall%3Dtrue”,”cancer_type_terms_string”:”Non – site Specific”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C Breast Cancer Dream Team: An Integrated Approach to Targeting Breast Cancer Molecular Subtypes and Their Resistance Phenotypes”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/breast-cancer-resistant-phenotypes-dream-team/”,”publisher_year”:”Molecular Cell, 2011″,”pub_med_id”:”21353615″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=21353615″},{“title”:”Maximov P, Sengupta S, Lewis-Wambi JS, Kim HR, Curpan RF, Jordan VC. The conformation of the estrogen receptor directs estrogen-induced apoptosis in breast cancer: a hypothesis. Horm Mol Biol Clin Investig. 2011 Mar 1;5(1):27-34.”,”type”:”publication”,”url”:”https://www.degruyter.com/view/j/hmbci.2011.5.issue-1/hmbci.2010.047/hmbci.2010.047.xml”,”cancer_type_terms_string”:”Breast”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C Breast Cancer Dream Team: An Integrated Approach to Targeting Breast Cancer Molecular Subtypes and Their Resistance Phenotypes”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/breast-cancer-resistant-phenotypes-dream-team/”,”publisher_year”:”Hormone Molecular Biology and Clinical Investigation, 2011″,”pub_med_id”:”21660224″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=21660224″},{“title”:”More on FOX News: FOXA1 on the horizon of estrogen receptor function and endocrine response. Fu X, Huang C, Schiff R. Breast Cancer Res. 2011 Apr 20;13(2):307.”,”type”:”publication”,”url”:”https://breast-cancer-research.biomedcentral.com/articles/10.1186/bcr2849″,”cancer_type_terms_string”:”Breast”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C Breast Cancer Dream Team: An Integrated Approach to Targeting Breast Cancer Molecular Subtypes and Their Resistance Phenotypes”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/breast-cancer-resistant-phenotypes-dream-team/”,”publisher_year”:”Breast Cancer Research, 2011″,”pub_med_id”:”21575280″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=21575280″},{“title”:”Rimawi MF, Wiechmann LS, Wang YC, Huang C, Migliaccio I, Wu MF, Gutierrez C, Hilsenbeck SG, Arpino G, Massarweh S, Ward R, Soliz R, Osborne CK, Schiff R. Reduced dose and intermittent treatment with lapatinib and trastuzumab for potent blockade of the HER pathway in HER2/neu-overexpressing breast tumor xenografts. Clin Cancer Res. 2011 Mar 15;17(6):1351-61.”,”type”:”publication”,”url”:”https://clincancerres.aacrjournals.org/content/17/6/1351″,”cancer_type_terms_string”:”Breast”,”treatment_type_terms_string”:”Chemotherapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C Breast Cancer Dream Team: An Integrated Approach to Targeting Breast Cancer Molecular Subtypes and Their Resistance Phenotypes”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/breast-cancer-resistant-phenotypes-dream-team/”,”publisher_year”:”Clinical Cancer Research, 2011″,”pub_med_id”:”21138857″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=21138857″},{“title”:”Wicha MS, Hayes DF. Circulating Tumor Cells: Not All Detected Cells Are Bad and Not All Bad Cells Are Detected.J Clin Oncol. 2011 Apr 20;29(12):1508-11.”,”type”:”publication”,”url”:”https://ascopubs.org/doi/10.1200/JCO.2010.34.0026″,”cancer_type_terms_string”:”Colorectal, Lung”,”treatment_type_terms_string”:”Screening/ Early Detection, Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C Breast Cancer Dream Team: An Integrated Approach to Targeting Breast Cancer Molecular Subtypes and Their Resistance Phenotypes”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/breast-cancer-resistant-phenotypes-dream-team/”,”publisher_year”:”Journal of Clinical Oncology, 2011″,”pub_med_id”:”21422428″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=21422428″},{“title”:”Sun T, Aceto N, Meerbrey KL, Kessler JD, Zhou C, Migliaccio I, Nguyen DX, Pavlova NN, Botero M, Huang J, Bernardi RJ, Schmitt E, Hu G, Li MZ, Dephoure N, Gygi SP, Rao M, Creighton CJ, Hilsenbeck SG, Shaw CA, Muzny D, Gibbs RA, Wheeler DA, Osborne CK, Schiff R, Bentires-Alj M, Elledge SJ, Westbrook TF. Activation of multiple proto-oncogenic tyrosine kinases in breast cancer via loss of the PTPN12 phosphatase. Cell. 2011 Mar 4;144(5):703-18.”,”type”:”publication”,”url”:”https://www.cell.com/cell/fulltext/S0092-8674(11)00117-6?_returnURL=https%3A%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2FS0092867411001176%3Fshowall%3Dtrue”,”cancer_type_terms_string”:”Breast”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C Breast Cancer Dream Team: An Integrated Approach to Targeting Breast Cancer Molecular Subtypes and Their Resistance Phenotypes”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/breast-cancer-resistant-phenotypes-dream-team/”,”publisher_year”:”Cell, 2011″,”pub_med_id”:”21376233″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=21376233″},{“title”:”Meerbrey KL, Hu G, Kessler JD, Roarty K, Li MZ, Fang JE, Herschkowitz JI, Burrows AE, Ciccia A, Sun T, Schmitt EM, Bernardi RJ, Fu X, Bland CS, Cooper TA, Schiff R, Rosen JM, Westbrook TF, Elledge SJ: The pINDUCER lentiviral toolkit for inducible RNA interference in vitro and in vivo. Proc Natl Acad Sci U S A. 2011 Mar 1;108(9):3665-70.”,”type”:”publication”,”url”:”https://www.pnas.org/content/108/9/3665″,”cancer_type_terms_string”:”Non – site Specific”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C Breast Cancer Dream Team: An Integrated Approach to Targeting Breast Cancer Molecular Subtypes and Their Resistance Phenotypes”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/breast-cancer-resistant-phenotypes-dream-team/”,”publisher_year”:”PNAS, 2011″,”pub_med_id”:”21307310″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=21307310″},{“title”:”Osborne CK, Neven P, Dirix LY, Mackey JR, Robert J, Underhill C, Schiff R, Gutierrez C, Migliaccio I, Anagnostou VK, Rimm DL, Magill P, Sellers M: Gefitinib or placebo in combination with tamoxifen in patients with hormone receptorpositive metastatic breast cancer: a randomized phase II study. Clin Cancer Res. 2011 Mar 1;17(5):1147-59.”,”type”:”publication”,”url”:”https://clincancerres.aacrjournals.org/content/17/5/1147″,”cancer_type_terms_string”:”Breast”,”treatment_type_terms_string”:”Chemotherapy, Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C Breast Cancer Dream Team: An Integrated Approach to Targeting Breast Cancer Molecular Subtypes and Their Resistance Phenotypes”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/breast-cancer-resistant-phenotypes-dream-team/”,”publisher_year”:”Clinical Cancer Research, 2011″,”pub_med_id”:”21220480″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=21220480″},{“title”:”Slorach, E. M., J. Chou & Z. Werb (2011). Zeppo1 is a novel metastasis promoter that represses E-cadherin expression and regulates p120-catenin isoform expression and localization. Genes Dev. 2011 Mar 1;25(5):471-84.”,”type”:”publication”,”url”:”http://genesdev.cshlp.org/content/25/5/471″,”cancer_type_terms_string”:”Breast”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C Breast Cancer Dream Team: An Integrated Approach to Targeting Breast Cancer Molecular Subtypes and Their Resistance Phenotypes”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/breast-cancer-resistant-phenotypes-dream-team/”,”publisher_year”:”Genes & Development, 2011″,”pub_med_id”:”21317240″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=21317240″},{“title”:”Suo J, Snider SJ, Mills GB, Creighton CJ, Chen AC, Schiff R, Lloyd RE, Chang EC. Int6 regulates both proteasomal degradation and translation initiation and is critical for proper formation of acini by human mammary epithelium. Oncogene. 2011 Feb 10;30(6):724-36.”,”type”:”publication”,”url”:”https://www.nature.com/articles/onc2010445″,”cancer_type_terms_string”:”Breast”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C Breast Cancer Dream Team: An Integrated Approach to Targeting Breast Cancer Molecular Subtypes and Their Resistance Phenotypes”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/breast-cancer-resistant-phenotypes-dream-team/”,”publisher_year”:”Oncogene, 2011″,”pub_med_id”:”20890303″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=20890303″},{“title”:”Osborne CK, Schiff R.Mechanisms of endocrine resistance in breast cancer. Annu Rev Med. 2011 Feb 18;62:233-47.”,”type”:”publication”,”url”:”https://www.annualreviews.org/doi/10.1146/annurev-med-070909-182917″,”cancer_type_terms_string”:”Breast”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C Breast Cancer Dream Team: An Integrated Approach to Targeting Breast Cancer Molecular Subtypes and Their Resistance Phenotypes”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/breast-cancer-resistant-phenotypes-dream-team/”,”publisher_year”:”Annual Review of Medicine, 2011″,”pub_med_id”:”20887199″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=20887199″},{“title”:”Wicha MS. Stemming a tumor with a little miR. Nat. Med 2011 Feb;17(2):162-164. “,”type”:”publication”,”url”:”https://www.nature.com/articles/nm0211-162″,”cancer_type_terms_string”:”Prostate”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C Breast Cancer Dream Team: An Integrated Approach to Targeting Breast Cancer Molecular Subtypes and Their Resistance Phenotypes”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/breast-cancer-resistant-phenotypes-dream-team/”,”publisher_year”:”Nature Medicine, 2011″,”pub_med_id”:”21297608″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=21297608″},{“title”:”Dave B, Migliaccio I, Gutierrez MC, Wu MF, Chamness GC, Wong H, Narasanna A, Chakrabarty A, Hilsenbeck SG, Huang J, Rimawi M, Schiff R, Arteaga C, Osborne CK, Chang JC: Loss of phosphatase and tensin homolog or phosphoinositol-3 kinase activation and response to trastuzumab or lapatinib in human epidermal growth factor receptor 2- overexpressing locally advanced breast cancers. J Clin Oncol. 2011 Jan 10;29(2):166-73.”,”type”:”publication”,”url”:”https://ascopubs.org/doi/10.1200/JCO.2009.27.7814″,”cancer_type_terms_string”:”Breast”,”treatment_type_terms_string”:”Chemotherapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C Breast Cancer Dream Team: An Integrated Approach to Targeting Breast Cancer Molecular Subtypes and Their Resistance Phenotypes”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/breast-cancer-resistant-phenotypes-dream-team/”,”publisher_year”:”Journal of Clinical Oncology, 2011″,”pub_med_id”:”21135276″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=21135276″},{“title”:”Liu S, Ginestier C, Ou SJ, Clouthier SG, Patel SH, Monville F, Korkaya H, Heath A, Dutcher J, Kleer CG, Jung Y, Dontu G, Taichman R, Wicha MS. Breast Cancer Stem Cells Are Regulated by Mesenchymal Stem Cells through Cytokine Networks. Cancer Res. 2011 Jan 15;71(2):614-24.”,”type”:”publication”,”url”:”https://cancerres.aacrjournals.org/content/71/2/614″,”cancer_type_terms_string”:”Breast”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C Breast Cancer Dream Team: An Integrated Approach to Targeting Breast Cancer Molecular Subtypes and Their Resistance Phenotypes”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/breast-cancer-resistant-phenotypes-dream-team/”,”publisher_year”:”Cancer Research, 2011″,”pub_med_id”:”21224357″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=21224357″},{“title”:”Sanborn JZ, Benz SC, Craft B, Szeto C, Kober KM, Meyer L, Vaske CJ, Goldman M, Smith KE, Kuhn RM, Karolchik D, Kent WJ, Stuart JM, Haussler D, Zhu J. The UCSC Cancer Genomics Browser: update 2011. Nucleic Acids Res. 2011 Jan;39(Database issue):D951-9.”,”type”:”publication”,”url”:”https://academic.oup.com/nar/article/39/suppl_1/D951/2506941″,”cancer_type_terms_string”:”Non – site Specific”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C Breast Cancer Dream Team: An Integrated Approach to Targeting Breast Cancer Molecular Subtypes and Their Resistance Phenotypes”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/breast-cancer-resistant-phenotypes-dream-team/”,”publisher_year”:”Nucleic Acids Research, 2011″,”pub_med_id”:”21059681″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=21059681″},{“title”:”Li CY, Wood DK, Hsu CM and Bhatia SNv(2011). DNA-templated assembly of droplet-derived PEG microtissues. Lab Chip. 2011 Sep 7;11(17):2967-75.”,”type”:”publication”,”url”:”https://pubs.rsc.org/en/content/articlelanding/2011/LC/c1lc20318e#!divAbstract”,”cancer_type_terms_string”:”Non – site Specific”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C Circulating Tumor Cell Dream Team: Bioengineering and Clinical Applications of Circulating Tumor Cell Chip”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/circulating-tumor-cells-dream-team/”,”publisher_year”:”Lab on a Chip, 2011″,”pub_med_id”:”21776518″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=21776518″},{“title”:”Brevet M, Johnson ML, Azzoli CG, Ladanyi M. Detection of EGFR mutations in plasma DNA from lung cancer patients by mass spectrometry genotyping is predictive of tumor EGFR status and response to EGFR inhibitors. Lung Cancer. 2011 Jul;73(1):96-102.”,”type”:”publication”,”url”:”https://www.lungcancerjournal.info/article/S0169-5002(10)00519-2/fulltext”,”cancer_type_terms_string”:”Lung”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C Circulating Tumor Cell Dream Team: Bioengineering and Clinical Applications of Circulating Tumor Cell Chip”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/circulating-tumor-cells-dream-team/”,”publisher_year”:”Lung Cancer, 2011″,”pub_med_id”:”21130517″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=21130517″},{“title”:”Arcila ME, Oxnard GR, Nafa K, Riely GJ, Solomon SB, Zakowski MF, Kris MG, Pao W, Miller VA, Ladanyi M. Rebiopsy of lung cancer patients with acquired resistance to EGFR inhibitors and enhanced detection of the T790M mutation using a locked nucleic acid-based assay. Clin Cancer Res. 2011 Mar 1;17(5):1169-80.”,”type”:”publication”,”url”:”https://clincancerres.aacrjournals.org/content/17/5/1169″,”cancer_type_terms_string”:”Lung”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C Circulating Tumor Cell Dream Team: Bioengineering and Clinical Applications of Circulating Tumor Cell Chip”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/circulating-tumor-cells-dream-team/”,”publisher_year”:”Clinical Cancer Research, 2011″,”pub_med_id”:”21248300″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=21248300″},{“title”:”Juergens RA, Wrangle J, Vendetti FP, Murphy SC, Zhao M, Coleman B, Sebree R, Rodgers K, Hooker CM, Franco N, Lee B, Tsai S, Espinoza Delgado I, Rudek MA, Belinsky SA, Herman JG, Baylin SB, Brock MV, Rudin CM. Combination Epigenetic Therapy Has Efficacy in Patients with Refractory Advanced Non–Small Cell Lung Cancer. Cancer Discov. 2011 Dec;1(7):598-607.”,”type”:”publication”,”url”:”https://cancerdiscovery.aacrjournals.org/content/1/7/598″,”cancer_type_terms_string”:”Lung”,”treatment_type_terms_string”:”Epigenetic Therapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C Epigenetics Dream Team: Bringing Epigenetic Therapy to the Forefront of Cancer Management”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/epigenetics-therapy-2009-dream-team/”,”publisher_year”:”Cancer Discovery, 2011″,”pub_med_id”:”22586682″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=22586682″},{“title”:”Ting DT, Lipson D, Paul S, Brannigan BW, Akhavanfard S, Coffman EJ, Contino G, Deshpande V, Iafrate AJ, Letovsky S, Rivera MN, Bardeesy N, Maheswaran S, Haber DA. Aberrant expression of satellite repeats in pancreatic and epithelial cancers. Science. 2011 Feb 4;331(6017):593-6. ​”,”type”:”publication”,”url”:”https://science.sciencemag.org/content/331/6017/593″,”cancer_type_terms_string”:”Colorectal, Kidney, Lung, Ovarian, Pancreatic, Prostate”,”treatment_type_terms_string”:”Epigenetic Therapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C Epigenetics Dream Team: Bringing Epigenetic Therapy to the Forefront of Cancer Management”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/epigenetics-therapy-2009-dream-team/”,”publisher_year”:”Science, 2011″,”pub_med_id”:”21233348″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=21233348″},{“title”:”Belinsky SA, Grimes MJ, Picchi MA, Mitchell HD, Stidley CA, Tesfaigzi Y, Channell MM, Liu Y, Casero RA Jr, Baylin SB, Reed MD, Tellez CS, March TH. Combination therapy with vidaza and entinostat suppresses tumor growth and reprograms the epigenome in an orthotopic lung cancer model. Cancer Res. 2011 Jan 15;71(2):454-62.”,”type”:”publication”,”url”:”https://cancerres.aacrjournals.org/content/71/2/454″,”cancer_type_terms_string”:”Lung”,”treatment_type_terms_string”:”Epigenetic Therapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C Epigenetics Dream Team: Bringing Epigenetic Therapy to the Forefront of Cancer Management”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/epigenetics-therapy-2009-dream-team/”,”publisher_year”:”Cancer Research, 2011″,”pub_med_id”:”21224363″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=21224363″},{“title”:”Lieberman, BP, Ploessl K, Wang, L, Qu, W, Zha, Z, Wise, DR, Seidel, H, Chodosh, LA, Belka, G, Thompson, CB, Kung, HF. PET Imaging of Glutaminolysis in tumors by [18F](2S,4R)4-Fluoroglutatmine. J Nucl Med. 2011 Dec;52(12):1947-55.”,”type”:”publication”,”url”:”http://jnm.snmjournals.org/content/52/12/1947″,”cancer_type_terms_string”:”Brain/Nervous System”,”treatment_type_terms_string”:”Screening/ Early Detection”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C Pancreatic Dream Team: Cutting Off the Fuel Supply: A New Approach in the Treatment of Pancreatic Cancer”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/cutting-fuel-supply-to-pancreatic-cancer-dream-team/”,”publisher_year”:”Journal of Nuclear Medicine, 2011″,”pub_med_id”:”22095958″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=22095958″},{“title”:”Kamphorst, J. J., Fan, J., Lu, W., White, E., Rabinowitz, J. D. (2011). Liquid chromatography-high resolution mass spectrometry analysis of fatty acid metabolism. Anal Chem. 2011 Dec 1;83(23):9114-22.”,”type”:”publication”,”url”:”https://pubs.acs.org/doi/10.1021/ac202220b”,”cancer_type_terms_string”:”Non – site Specific”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C Pancreatic Dream Team: Cutting Off the Fuel Supply: A New Approach in the Treatment of Pancreatic Cancer”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/cutting-fuel-supply-to-pancreatic-cancer-dream-team/”,”publisher_year”:”Analytical Chemistry, 2011″,”pub_med_id”:”22004349″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=22004349″},{“title”:”Von Hoff DD, Ramanathan RK, Borad MJ, Laheru DA, Smith LS, Wood TE, Korn RL, Desai N, Trieu V, Iglesias JL, Zhang H, Soon-Shiong P, Shi T, Rajeshkumar NV, Maitra A, Hidalgo M. Gemcitabine Plus nab-Paclitaxel Is an Active Regimen in Patients With Advanced Pancreatic Cancer: A Phase I/II Trial. J Clin Oncol. 2011 Dec 1;29(34):4548-54.”,”type”:”publication”,”url”:”https://ascopubs.org/doi/10.1200/JCO.2011.36.5742″,”cancer_type_terms_string”:”Pancreatic”,”treatment_type_terms_string”:”Chemotherapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C Pancreatic Dream Team: Cutting Off the Fuel Supply: A New Approach in the Treatment of Pancreatic Cancer”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/cutting-fuel-supply-to-pancreatic-cancer-dream-team/”,”publisher_year”:”Journal of Clincal Oncology, 2011″,”pub_med_id”:”21969517″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=21969517″},{“title”:”Rabinowitz, J. D., Purdy, J. G., Vastag, L., Shenk, T., Koyuncu, E. (2011). Metabolomics in drug target discovery. Cold Spring Harb Symp Quant Biol. 2011;76:235-46.”,”type”:”publication”,”url”:”http://symposium.cshlp.org/content/76/235″,”cancer_type_terms_string”:”Non – site Specific”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C Pancreatic Dream Team: Cutting Off the Fuel Supply: A New Approach in the Treatment of Pancreatic Cancer”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/cutting-fuel-supply-to-pancreatic-cancer-dream-team/”,”publisher_year”:”Cold Spring Harbor Symposia on Quantum Biology, 2011″,”pub_med_id”:”22114327″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=22114327″},{“title”:”Jiao Y, Shi C, Edil BH, de Wilde RF, Klimstra DS, Maitra A, Schulick RD, Tang LH, Wolfgang CL, Choti MA, Velculescu VE, Diaz LA Jr, Vogelstein B, Kinzler KW, Hruban RH, Papadopoulos N. DAXX/ATRX, MEN1, and mTOR pathway genes are frequently altered in pancreatic neuroendocrine tumors.Science. 2011 Mar 4;331(6021):1199-203.”,”type”:”publication”,”url”:”https://science.sciencemag.org/content/331/6021/1199″,”cancer_type_terms_string”:”Pancreatic”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C Pancreatic Dream Team: Cutting Off the Fuel Supply: A New Approach in the Treatment of Pancreatic Cancer”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/cutting-fuel-supply-to-pancreatic-cancer-dream-team/”,”publisher_year”:”Science, 2011″,”pub_med_id”:”21252315″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=21252315″},{“title”:”Qu W, Zha Z, Ploessl K, Lieberman BP, Zhu L, Wise D, Thompson C, Kung HF. Synthesis of Optically Pure 4-Fluoro-Glutamines as Potential Metabolic Imaging Agents for Tumors. J Am Chem Soc. 2011 Feb 2;133(4):1122-33.”,”type”:”publication”,”url”:”https://pubs.acs.org/doi/10.1021/ja109203d”,”cancer_type_terms_string”:”Non – site Specific”,”treatment_type_terms_string”:”Screening/ Early Detection”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C Pancreatic Dream Team: Cutting Off the Fuel Supply: A New Approach in the Treatment of Pancreatic Cancer”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/cutting-fuel-supply-to-pancreatic-cancer-dream-team/”,”publisher_year”:”Journal of the American Chemical Society, 2011″,”pub_med_id”:”21190335″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=21190335″},{“title”:”Parsons DW, Li M, Zhang X, Jones S, Leary RJ, Lin JC, Boca SM, Carter H, Samayoa J, Bettegowda C, Gallia GL, Jallo GI, Binder ZA, Nikolsky Y, Hartigan J, Smith DR, Gerhard DS, Fults DW, VandenBerg S, Berger MS, Marie SK, Shinjo SM, Clara C, Phillips PC, Minturn JE, Biegel JA, Judkins AR, Resnick AC, Storm PB, Curran T, He Y, Rasheed BA, Friedman HS, Keir ST, McLendon R, Northcott PA, Taylor MD, Burger PC, Riggins GJ, Karchin R, Parmigiani G, Bigner DD, Yan H, Papadopoulos N, Vogelstein B, Kinzler KW, Velculescu VE. The genetic landscape of the childhood cancer medulloblastoma. Science. 2011 Jan 28;331(6016):435-9.”,”type”:”publication”,”url”:”https://science.sciencemag.org/content/331/6016/435″,”cancer_type_terms_string”:”Pediatric – Solid Tumor”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C Pancreatic Dream Team: Cutting Off the Fuel Supply: A New Approach in the Treatment of Pancreatic Cancer”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/cutting-fuel-supply-to-pancreatic-cancer-dream-team/”,”publisher_year”:”Science, 2011″,”pub_med_id”:”21163964″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=21163964″},{“title”:”Fox EM, Miller TW, Balko JM, Kuba MG, Sanchez V, Smith RA, Liu S, Gonzalez-Angulo AM, Mills GB, Ye F, Shyr Y, Manning HC., Buck E, Arteaga CL. A kinome-wide screen identifies the Insulin/IGF-1 receptor pathway as a mechanism of escape from hormone dependence breast cancer. Cancer Res. 2011 Nov 1;71(21):6773-84.”,”type”:”publication”,”url”:”https://cancerres.aacrjournals.org/content/71/21/6773″,”cancer_type_terms_string”:”Breast”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C PI3K Dream Team: Targeting the PI3K Pathway in Women’s Cancers”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/womens-cancers-pi3k-dream-team/”,”publisher_year”:”Cancer Research, 2011″,”pub_med_id”:”21908557″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=21908557″},{“title”:”Miller TW, Rexer BN, Garrett JT, Arteaga CL. Mutations in the phosphatidylinositol 3-kinase pathway: role in tumor progression and therapeutic implications in breast cancer. Breast Cancer Res. 2011;13(6):224.”,”type”:”publication”,”url”:”https://breast-cancer-research.biomedcentral.com/articles/10.1186/bcr3039″,”cancer_type_terms_string”:”Breast”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C PI3K Dream Team: Targeting the PI3K Pathway in Women’s Cancers”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/womens-cancers-pi3k-dream-team/”,”publisher_year”:”Breast Cancer Research, 2011″,”pub_med_id”:”22114931″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=22114931″},{“title”:”Rexer, B, Ham A-J, Rinehard, C, Hill S., Granja-Ingram N, Gonzalez-Angulo A, Mills G.B, Dave B, Chang J, Liebler, DC, Arteaga, C. Phosphoproteomic mass spectroscopy profiling links src family kinases to escape from HER2 tyrosine kinase inhibitors. Oncogene. 2011 Oct 6;30(40):4163-74.”,”type”:”publication”,”url”:”https://www.nature.com/articles/onc2011130″,”cancer_type_terms_string”:”Breast”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C PI3K Dream Team: Targeting the PI3K Pathway in Women’s Cancers”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/womens-cancers-pi3k-dream-team/”,”publisher_year”:”Oncogene, 2011″,”pub_med_id”:”21499296″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=21499296″},{“title”:”Yang X, Turke AB, Qi J, Song Y, Rexer BN, Miller TW, Jänne PA, Aretega CL, Cantley LC, Engelman JA, Asara JM. Using tandem mass spectrometry in targeted mode to identify activators of class IA PI3K in cancer. Cancer Res. 2011 Sep 15;71(18):5965-75.”,”type”:”publication”,”url”:”https://cancerres.aacrjournals.org/content/71/18/5965″,”cancer_type_terms_string”:”Breast, Lung”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C PI3K Dream Team: Targeting the PI3K Pathway in Women’s Cancers”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/womens-cancers-pi3k-dream-team/”,”publisher_year”:”Cancer Research, 2011″,”pub_med_id”:”21775521″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=21775521″},{“title”:”Miller TW, Fox EM, Balko JM, Ghazoui, Z, Dunbier A, Anderson H, Dowsett, M, Jiang A, Smith RA, Sanchez V, Maira S-M, Manning HC, Gonzalez-Angulo AM, Mills GB, Highman C, Ye F, Miller WR, Shyr Y, and Arteaga CL. ER-dependent E2F transcription can mediate resistance to estrogen deprivation in human breast cancer. Cancer Discov. 2011 Sep;1(4):338-51.”,”type”:”publication”,”url”:”https://cancerdiscovery.aacrjournals.org/content/1/4/338″,”cancer_type_terms_string”:”Breast”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C PI3K Dream Team: Targeting the PI3K Pathway in Women’s Cancers”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/womens-cancers-pi3k-dream-team/”,”publisher_year”:”Cancer Discovery, 2011″,”pub_med_id”:”22049316″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=22049316″},{“title”:”Liu P, Cheng H, Santiago S, Raeder M, Lin H, Zhang F, Isabella A, Yang J, Semaan DJ, Chen C, Fox EA, Gray NS, Monahan J, Schlegel R, Roberts TM, Beroukhim R, Mills GB, Zhao JJ. Oncogenic PIK3CA-driven mammary tumors frequently recur via PI3K pathway-dependent and PI3K pathway-independent mechanisms. Nat Med. 2011 Aug 7;17(9):1116-20.”,”type”:”publication”,”url”:”https://www.nature.com/articles/nm.2402″,”cancer_type_terms_string”:”Breast”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C PI3K Dream Team: Targeting the PI3K Pathway in Women’s Cancers”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/womens-cancers-pi3k-dream-team/”,”publisher_year”:”Nature Medicine, 2011″,”pub_med_id”:”21822287″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=21822287″},{“title”:”Cheung LWT, Hennessy BT, Lie J, Yu, S, Myers AP, Djordjevic B, Lu Y, Stemke-Hale K, Zhang F, Ju Z, Cantley LC, Scherer SE, Liang H, Lu KH, Broaddus RR, and Mills GB. High frequency of PIK3R1 and PIK3R2 mutations in endometrial cancer elucidates a novel mechanism for regulation of PTEN protein stability. Cancer Discov. 2011 Jul;1(2):170-85.”,”type”:”publication”,”url”:”https://cancerdiscovery.aacrjournals.org/content/1/2/170″,”cancer_type_terms_string”:”Endometiral/Uterin”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C PI3K Dream Team: Targeting the PI3K Pathway in Women’s Cancers”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/womens-cancers-pi3k-dream-team/”,”publisher_year”:”Cancer Discovery, 2011″,”pub_med_id”:”21984976″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=21984976″},{“title”:”Gonzalez-Angulo AM, Ferrer-Lozano J, Stemke-Hale K, Liu S, Barrera JA, Gurgues O, Lluch AM, Chen H, Hortobagyi GN, Mills GB, Meric-Bernstam F. PI3K pathway mutations and PTEN levels in primary and metastatic breast cancer. Mol Cancer Ther. 2011 Jun;10(6):1093-101.”,”type”:”publication”,”url”:”https://mct.aacrjournals.org/content/10/6/1093″,”cancer_type_terms_string”:”Breast”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C PI3K Dream Team: Targeting the PI3K Pathway in Women’s Cancers”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/womens-cancers-pi3k-dream-team/”,”publisher_year”:”Molecular Cancer Therapeutics, 2011″,”pub_med_id”:”21490305″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=21490305″},{“title”:”Miller TW, Balko JM, Ghazoul Z, Dunbier A, Anderson H, Dowsett M, Gonzalez-Angulo AM, Mills GB, Miller WR, Wu H, Shyr Y, Arteaga CL. A gene expression signature from human breast cancer cells with acquired hormone independence identifies MYC as a mediator of antiestrogen resistance. Clin Cancer Res. 2011; Apr 1; 17(7): 2024-34.”,”type”:”publication”,”url”:”https://clincancerres.aacrjournals.org/content/17/7/2024″,”cancer_type_terms_string”:”Breast”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C PI3K Dream Team: Targeting the PI3K Pathway in Women’s Cancers”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/womens-cancers-pi3k-dream-team/”,”publisher_year”:”Clinical Cancer Research, 2011″,”pub_med_id”:”21346144″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=21346144″},{“title”:”Ghosh R, Narasanna A, Wang SE, Liu S., Balko JM, Gonzalez AM, Mills GB, Penuel E, Winslow J, Sperinde J, Leitzel K, Kostler WJ, Lipton A, Bates M, and Arteaga C. Trastuzumab has preferential activity against breast cancers driven by HER2 homodimers. Cancer Res. 2011 Mar 1;71(5):1871-82.”,”type”:”publication”,”url”:”https://cancerres.aacrjournals.org/content/71/5/1871″,”cancer_type_terms_string”:”Breast”,”treatment_type_terms_string”:”Chemotherapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C PI3K Dream Team: Targeting the PI3K Pathway in Women’s Cancers”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/womens-cancers-pi3k-dream-team/”,”publisher_year”:”Cancer Research, 2011″,”pub_med_id”:”21324925″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=21324925″},{“title”:”Suo J, Snider SJ, Mills GB, Creighton C, Schiff R, Lloyd RE, Chang EC. Int6 regulates both proteasomal degradation and translation initiation and is critical for proper formation of acini by human mammary epithelium. Oncogene. 2011 Feb 10;30(6):724-36.”,”type”:”publication”,”url”:”https://www.nature.com/articles/onc2010445″,”cancer_type_terms_string”:”Breast”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C PI3K Dream Team: Targeting the PI3K Pathway in Women’s Cancers”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/womens-cancers-pi3k-dream-team/”,”publisher_year”:”Oncogene, 2011″,”pub_med_id”:”20890303″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=20890303″},{“title”:”Wong CK, Vaske CJ, Ng S, Sanborn JZ, Benz SC, Haussler D, Stuart JM. The UCSC Interaction Browser: multidimensional data views in pathway context. Nucleic Acids Res. 2013 Jul;41(Web Server issue):W218-24.”,”type”:”publication”,”url”:”https://academic.oup.com/nar/article/41/W1/W218/1109954″,”cancer_type_terms_string”:”Non – site Specific”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C–Prostate Cancer Foundation Prostate Dream Team: Targeting Adaptive Pathways in Metastatic Castration-Resistant Prostate Cancer”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/metastatic-treatment-resistant-prostate-cancer-dream-team/”,”publisher_year”:”Nucleic Acids Research, 2011″,”pub_med_id”:”23748957″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=23748957″},{“title”:”Graeser M, McCarthy A, Lord CJ, Savage K, Hills M, Salter J, Orr N, Parton M, Smith IE, Reis-Filho JS, Dowsett M, Ashworth A, Turner NC. A marker of homologous recombination predicts pathologic complete response to neoadjuvant chemotherapy in primary breast cancer. Clin Cancer Res. 2010 Dec 15;16(24):6159-68.”,”type”:”publication”,”url”:”https://clincancerres.aacrjournals.org/content/16/24/6159″,”cancer_type_terms_string”:”Breast”,”treatment_type_terms_string”:”Chemotherapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C Breast Cancer Dream Team: An Integrated Approach to Targeting Breast Cancer Molecular Subtypes and Their Resistance Phenotypes”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/breast-cancer-resistant-phenotypes-dream-team/”,”publisher_year”:”Clinical Cancer Research, 2010″,”pub_med_id”:”20802015″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=20802015″},{“title”:”Krishnamurthy S, Dong Z, Vodopyanov D, Imai A, Helman JI, Prince ME, Wicha MS, Nör JE. Endothelial cell-initiated signaling promotes the survival and self-renewal of cancer stem cells. Cancer Res. 2010 Dec 1;70(23):9969-78.”,”type”:”publication”,”url”:”https://cancerres.aacrjournals.org/content/70/23/9969″,”cancer_type_terms_string”:”Head and Neck”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C Breast Cancer Dream Team: An Integrated Approach to Targeting Breast Cancer Molecular Subtypes and Their Resistance Phenotypes”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/breast-cancer-resistant-phenotypes-dream-team/”,”publisher_year”:”Cancer Research, 2010″,”pub_med_id”:”21098716″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=21098716″},{“title”:”Stark A, Kleer CG, Martin I, Awuah B, Nsiah-Asare A, Takyi V, Braman M, Quayson SE, Zarbo R, Wicha M, Newman L. African ancestry and higher prevalence of triple-negative breast cancer: findings from an international study. Cancer. 2010 Nov 1;116(21):4926-32.”,”type”:”publication”,”url”:”https://onlinelibrary.wiley.com/doi/full/10.1002/cncr.25276″,”cancer_type_terms_string”:”Breast”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C Breast Cancer Dream Team: An Integrated Approach to Targeting Breast Cancer Molecular Subtypes and Their Resistance Phenotypes”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/breast-cancer-resistant-phenotypes-dream-team/”,”publisher_year”:”Cancer, 2010″,”pub_med_id”:”20629078″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=20629078″},{“title”:”Liu S, Wicha MS. Targeting Breast Cancer Stem Cells. J Clin Oncol. 2010 Sep 1;28(25):4006-12.”,”type”:”publication”,”url”:”https://ascopubs.org/doi/10.1200/JCO.2009.27.5388″,”cancer_type_terms_string”:”Breast”,”treatment_type_terms_string”:”Chemotherapy, Radiation Therapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C Breast Cancer Dream Team: An Integrated Approach to Targeting Breast Cancer Molecular Subtypes and Their Resistance Phenotypes”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/breast-cancer-resistant-phenotypes-dream-team/”,”publisher_year”:”Journal of Clinical Oncology, 2010″,”pub_med_id”:”20498387​”,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=20498387%E2%80%8B”},{“title”:”Creighton CJ, Fu X, Hennessy BT, Casa AJ, Zhang Y, Gonzalez-Angulo AM, Lluch A, Gray JW, Brown PH, Hilsenbeck SG, Osborne CK, Mills GB, Lee AV, Schiff R: Proteomic and transcriptomic profiling reveals a link between the PI3K pathway and lower estrogen-receptor (ER) levels and activity in ER+ breast cancer.Breast Cancer Res. 2010;12(3):R40.”,”type”:”publication”,”url”:”https://breast-cancer-research.biomedcentral.com/articles/10.1186/bcr2594″,”cancer_type_terms_string”:”Breast”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C Breast Cancer Dream Team: An Integrated Approach to Targeting Breast Cancer Molecular Subtypes and Their Resistance Phenotypes”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/breast-cancer-resistant-phenotypes-dream-team/”,”publisher_year”:”Breast Cancer Research, 2010″,”pub_med_id”:”20569503″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=20569503″},{“title”:”Vaske CJ, Benz SC (2010). Inference of patient-specific pathway activities from multi-dimensional cancer genomics data using PARADIGM. Bioinformatics. 2010 Jun 15;26(12):i237-45.”,”type”:”publication”,”url”:”https://academic.oup.com/bioinformatics/article/26/12/i237/282591″,”cancer_type_terms_string”:”Non – site Specific”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C Breast Cancer Dream Team: An Integrated Approach to Targeting Breast Cancer Molecular Subtypes and Their Resistance Phenotypes”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/breast-cancer-resistant-phenotypes-dream-team/”,”publisher_year”:”Bioinformatics, 2010″,”pub_med_id”:”20529912″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=20529912″},{“title”:”McDermott SP, Wicha MS. Breast tumors: of mice and women. Breast Cancer Res. 2010;12(3):108.”,”type”:”publication”,”url”:”https://breast-cancer-research.biomedcentral.com/articles/10.1186/bcr2569″,”cancer_type_terms_string”:”Breast”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C Breast Cancer Dream Team: An Integrated Approach to Targeting Breast Cancer Molecular Subtypes and Their Resistance Phenotypes”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/breast-cancer-resistant-phenotypes-dream-team/”,”publisher_year”:”Breast Cancer Research, 2010″,”pub_med_id”:”20550730″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=20550730″},{“title”:”Turner N, Lambros MB, Horlings HM, Pearson A, Sharpe R, Natrajan R, Geyer FC, van Kouwenhove M, Kreike B, Mackay A, Ashworth A, van de Vijver MJ, Reis-Filho JS. Integrative Molecular Profiling of Triple Negative Breast Cancers Identifies Amplicon Drivers and Potential Therapeutic Targets. Oncogene. 2010 Apr 8;29(14):2013-23.”,”type”:”publication”,”url”:”https://www.nature.com/articles/onc2009489″,”cancer_type_terms_string”:”Breast”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C Breast Cancer Dream Team: An Integrated Approach to Targeting Breast Cancer Molecular Subtypes and Their Resistance Phenotypes”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/breast-cancer-resistant-phenotypes-dream-team/”,”publisher_year”:”Oncogene, 2010″,”pub_med_id”:”20101236″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=20101236″},{“title”:”D’Angelo RC, Wicha MS. Stem cells in normal development and cancer. Prog Mol Biol Transl Sci 2010;95:113-158.”,”type”:”publication”,”url”:”https://linkinghub.elsevier.com/retrieve/pii/B978012385071300006X”,”cancer_type_terms_string”:”Non – site Specific”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C Breast Cancer Dream Team: An Integrated Approach to Targeting Breast Cancer Molecular Subtypes and Their Resistance Phenotypes”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/breast-cancer-resistant-phenotypes-dream-team/”,”publisher_year”:”Progess in Molecular Biology and Translatonal Science, 2010″,”pub_med_id”:”21075331″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=21075331″},{“title”:”Stott SL, Hsu CH, Tsukrov DI, Yu M, Miyamoto DT, Waltman BA, Rothenberg SM, Shah AM, Smas ME, Korir GK, Floyd FP Jr, Gilman AJ, Lord JB, Winokur D, Springer S, Irimia D, Nagrath S, Sequist LV, Lee RJ, Isselbacher KJ, Maheswaran S, Haber DA, Toner M.Isolation of circulating tumor cells using a microvortex-generating herringbone-chip. Proc Natl Acad Sci U S A. 2010 Oct 26;107(43):18392-7.”,”type”:”publication”,”url”:”https://www.pnas.org/content/107/43/18392″,”cancer_type_terms_string”:”Prostate”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C Circulating Tumor Cell Dream Team: Bioengineering and Clinical Applications of Circulating Tumor Cell Chip”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/circulating-tumor-cells-dream-team/”,”publisher_year”:”PNAS, 2010″,”pub_med_id”:”20930119″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=20930119″},{“title”:”Flores LM, Kindelberger DW, Ligon AH, Capelletti M, Fiorentino M, Loda M, Cibas ES, Jänne PA, Krop IE. Improving the yield of circulating tumour cells facilitates molecular characterisation and recognition of discordant HER2 amplification in breast cancer. Br J Cancer. 2010 May 11;102(10):1495-502.​”,”type”:”publication”,”url”:”https://www.nature.com/articles/6605676″,”cancer_type_terms_string”:”Breast”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C Circulating Tumor Cell Dream Team: Bioengineering and Clinical Applications of Circulating Tumor Cell Chip”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/circulating-tumor-cells-dream-team/”,”publisher_year”:”British Journal of Cancer, 2010″,”pub_med_id”:”20461092″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=20461092″},{“title”:”Stott SL, Lee RJ, Nagrath S, Yu M, Miyamoto DT, Ulkus L, Inserra EJ, Ulman M, Springer S, Nakamura Z, Moore AL, Tsukrov DI, Kempner ME, Dahl DM, Wu CL, Iafrate AJ, Smith MR, Tompkins RG, Sequist LV, Toner M, Haber DA, Maheswaran S. Isolation and characterization of circulating tumor cells from patients with localized and metastatic prostate cancer. Sci Transl Med. 2010 Mar 31;2(25):25ra23.”,”type”:”publication”,”url”:”https://stm.sciencemag.org/content/2/25/25ra23″,”cancer_type_terms_string”:”Prostate”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C Circulating Tumor Cell Dream Team: Bioengineering and Clinical Applications of Circulating Tumor Cell Chip”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/circulating-tumor-cells-dream-team/”,”publisher_year”:”Science Translational Medicine, 2010″,”pub_med_id”:”20424012″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=20424012″},{“title”:”Yang, X., Lay, F., Han, H., Jones, P.A. Targeting DNA methylation for epigenetic therapy. Trends Pharmacol Sci. 2010 Nov;31(11):536-46.”,”type”:”publication”,”url”:”https://www.cell.com/trends/pharmacological-sciences/fulltext/S0165-6147(10)00142-2?_returnURL=https%3A%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2FS0165614710001422%3Fshowall%3Dtrue”,”cancer_type_terms_string”:”Leukemia (all types)”,”treatment_type_terms_string”:”Epigenetic Therapy”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C Epigenetics Dream Team: Bringing Epigenetic Therapy to the Forefront of Cancer Management”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/epigenetics-therapy-2009-dream-team/”,”publisher_year”:”Trends in Pharmacological Sciences, 2010″,”pub_med_id”:”20846732″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=20846732″},{“title”:”Seltzer MJ, Bennett BD, Joshi AD, Gao P, Thomas AG, Ferraris DV, Tsukamoto T, Rojas C, Slusher BS, Rabinowitz JD, Dang CV, Riggins GJ. Inhibition of glutaminase preferentially slows growth of glioma cells with mutant IDH1. Cancer Res. 2010 Nov 15;70(22):8981-7.”,”type”:”publication”,”url”:”https://cancerres.aacrjournals.org/content/70/22/8981″,”cancer_type_terms_string”:”Brain/Nervous System”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C Pancreatic Dream Team: Cutting Off the Fuel Supply: A New Approach in the Treatment of Pancreatic Cancer”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/cutting-fuel-supply-to-pancreatic-cancer-dream-team/”,”publisher_year”:”Cancer Research, 2010″,”pub_med_id”:”21045145​”,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=21045145%E2%80%8B”},{“title”:”Figueroa ME, Abdel-Wahab O, Lu C, Ward PS, Patel J, Shih A, Li Y, Bhagwat N, Vasanthakumar A, Fernandez HF, Tallman MS, Sun Z, Wolniak K, Peeters JK, Liu W, Choe SE, Fantin VR, Paietta E, Löwenberg B, Licht JD, Godley LA, Delwel R, Valk PJ, Thompson CB, Levine RL, Melnick A. Leukemic IDH1 and IDH2 mutations result in a hypermethylation phenotype, disrupt TET2 function, and impair hematopoietic differentiation. Cancer Cell. 2010 Dec 14;18(6):553-67.”,”type”:”publication”,”url”:”https://www.cell.com/cancer-cell/fulltext/S1535-6108(10)00483-6″,”cancer_type_terms_string”:”Leukemia (all types)”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C Pancreatic Dream Team: Cutting Off the Fuel Supply: A New Approach in the Treatment of Pancreatic Cancer”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/cutting-fuel-supply-to-pancreatic-cancer-dream-team/”,”publisher_year”:”Cancer Cell, 2010″,”pub_med_id”:”21130701″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=21130701″},{“title”:”Wang JB, Erickson JW, Fuji R, Ramachandran S, Gao P, Dinavahi R, Wilson KF, Ambrosio ALB, Dias SMG, Dang CV, Cerione RA. Targeting mitochondrial glutaminase activity inhibits oncogenic transformation. Cancer Cell. 2010 Sep 14;18(3):207-19.”,”type”:”publication”,”url”:”https://www.cell.com/cancer-cell/fulltext/S1535-6108(10)00306-5″,”cancer_type_terms_string”:”Breast, Lymphoma”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C Pancreatic Dream Team: Cutting Off the Fuel Supply: A New Approach in the Treatment of Pancreatic Cancer”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/cutting-fuel-supply-to-pancreatic-cancer-dream-team/”,”publisher_year”:”Cancer Cell, 2010″,”pub_med_id”:”20832749​”,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=20832749%E2%80%8B”},{“title”:”Ward PS, Patel J, Wise DR, Abdel-Wahab O, Bennett BD, Coller HA, Cross JR, Fantin VR, Hedvat CV, Perl AE, Rabinowitz JD, Carroll M, Su SM, Sharp KA, Levine RL, Thompson C. The common feature of leukemia-associated IDH1 and IDH2 mutations is a neomorphic enzyme activity converting alpha-ketoglutarate to 2-hydroxyglutarate.Cancer Cell. 2010 Mar 16;17(3):225-34.”,”type”:”publication”,”url”:”https://www.cell.com/cancer-cell/fulltext/S1535-6108(10)00036-X”,”cancer_type_terms_string”:”Leukemia (all types)”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C Pancreatic Dream Team: Cutting Off the Fuel Supply: A New Approach in the Treatment of Pancreatic Cancer”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/cutting-fuel-supply-to-pancreatic-cancer-dream-team/”,”publisher_year”:”Cancer Cell, 2010″,”pub_med_id”:”20171147″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=20171147″},{“title”:”Dang CV. Rethinking the Warburg effect with Myc micromanaging glutamine metabolism. Cancer Res. 2010 Feb 1;70(3):859-62.”,”type”:”publication”,”url”:”https://cancerres.aacrjournals.org/content/70/3/859″,”cancer_type_terms_string”:”Non – site Specific”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C Pancreatic Dream Team: Cutting Off the Fuel Supply: A New Approach in the Treatment of Pancreatic Cancer”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/cutting-fuel-supply-to-pancreatic-cancer-dream-team/”,”publisher_year”:”Cancer Research, 2010″,”pub_med_id”:”20086171″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=20086171″},{“title”:”Miller TW, Hennessy BT, Gonzalez-Angulo AM, Fox EM, Mills GB, Chen H, Highan C, Garcia- Echevarria, Shyr Y, Arteaga CL.. Hyperactivation of phosphatidylinositol-3 kinase promotes escape from hormone dependence in estrogen receptor-positive human breast cancer. J Clin Invest. 2010 Jul;120(7):2406-13.”,”type”:”publication”,”url”:”https://www.jci.org/articles/view/41680″,”cancer_type_terms_string”:”Breast”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C PI3K Dream Team: Targeting the PI3K Pathway in Women’s Cancers”,”research_project_url”:”https://standuptocancer.org/research/research-portfolio/dream-teams/womens-cancers-pi3k-dream-team/”,”publisher_year”:”Journal of Clinical Investigation, 2010″,”pub_med_id”:”20530877″,”pub_med_url”:”https://www.ncbi.nlm.nih.gov/pubmed/?term=20530877″},{“title”:”Zhu J, Sanborn JZ, Benz S, Szeto C, Hsu F, Kuhn RM, Karolchik D, Archie J, Lenburg ME, Esserman LJ, Kent WJ, Haussler D, Wang T. The UCSC Cancer Genomics Browser. Nat Methods. 2009 Apr;6(4):239-40.”,”type”:”publication”,”url”:”https://www.nature.com/articles/nmeth0409-239″,”cancer_type_terms_string”:”Non – site Specific”,”treatment_type_terms_string”:”Other”,”grant_type_terms_string”:”Dream Team”,”research_project”:”SU2C Breast Cancer Dream