For further information, please visit us at:

www.StandUpToCancer.org
January 2024

Dear Members of the Stand Up To Cancer Family,

Welcome to the SU2C Scientific Summit 2024. We are thrilled to come together, once again, in Coronado to celebrate the groundbreaking research, advances in clinical and translational medicine, and efforts towards health equity that have taken place over the past year.

We feel incredibly fortunate to welcome not only team members from new and active teams, but also the leaders and co-leaders from past teams who have helped us create an incredible network of cancer researchers. It is a testament to the collaborative spirit of this organization and groups of researchers past and present that we have witnessed such dramatic and innovative breakthroughs across the past 15 years. It is our hope that during this SU2C Scientific Summit, you have time to collaborate, network, and forge new partnerships with scientists and clinicians in different fields of research than your expertise.

The overarching goal of SU2C is to help people with cancer as quickly as possible, but we cannot do it alone. We are indebted to many individuals and organizations for their long-standing commitment and contributions to our ever-growing portfolio of pioneering clinical trials and research projects.

We must first thank the members of our Scientific Advisory Committee (SAC) led by Nobel laureate, Dr. Phillip A. Sharp, and vice-chairs Dr. John Carpten, Dr. Arnie Levine, and Dr. William Nelson. Their tireless guidance and rigorous oversight continue to be the keystone of SU2C’s scientific review process.

We must also thank our scientific partner, the American Association of Cancer Research. Led by Dr. Margaret Foti, the AACR has been with SU2C since the beginning, and all of this is possible with the support and professional guidance of their remarkable staff.

Thanks also to our generous donors. Thank you for your trust, your support, and your patience as we work together to help as many people as we possibly can. All of this is possible with your financial contribution.

Finally, we want to thank the entire SU2C community for your continued support of this collaborative research model and for working together toward a time when all cancer patients become long-term survivors. On behalf of the Founders and Advisors Committee, we look forward to an exciting SU2C Scientific Summit 2024.

Julian Adams, Ph.D.
Chief Executive Officer
Dear Colleagues and Friends:

We are pleased to welcome you to Coronado for the 2024 Stand Up To Cancer Scientific Summit. Once more, we gather to hear from colleagues about their exciting research, celebrate the many accomplishments, and dedicate ourselves to the profound mission that lies ahead in our fight against cancer.

Stand Up To Cancer's many successes during the past 15 years give us great hope and confidence that we will continue to make more progress and save more lives from cancer.

We have come a long way since 2008 when Stand Up to Cancer was formed with the American Association for Cancer Research as its Scientific Partner. The AACR was thrilled then, and still is today, to work collaboratively with the Co-Founders, the extraordinary group of women who are determined to advance cancer research and improve treatment.

We are also honored to work with the stellar group of scientists who serve on the Scientific Advisory Committee, led with distinction by Nobel Laureate Dr. Phil Sharp and the Vice Chairs. Their tireless dedication to this important cause is truly inspiring.

The AACR is proud of our ongoing partnership with SU2C CEO Dr. Julian Adams, Chief Financial Officer Shawn Burke, Chief Development Officer Stephanie Herron, General Counsel and Human Resources Officer Dana Hirsch Lipman, and the entire SU2C staff. We look forward to forging ahead as SU2C's dedicated Scientific Partner in our collective endeavor to conquer cancer in all its forms.

As we begin this Summit, we encourage you to seize every opportunity to embrace the spirit of collaboration and innovation, and to direct your passion to the mission we all share — to deliver new and effective therapies to patients and cure all cancers.

Have a productive meeting!

Sincerely,

Margaret Foti, PhD, MD (hc)
Chief Executive Officer, AACR
TABLE OF CONTENTS

WELCOME FROM STAND UP TO CANCER ... 1

WELCOME FROM AACR .. 2

SCHEDULE .. 11-18

ADVISORY COMMITTEES .. 19-22

SPEAKERS .. 23-29

ABOUT SU2C ... 30

DREAM TEAMS .. 31-96

- SU2C COLORECTAL CANCER HEALTH EQUITY DREAM TEAM DT6214
 - COMMUNITY COLLABORATION TO ADVANCE RACIAL/ETHNIC EQUITY IN CRC SCREENING........ 32-33
- SU2C HEALTH EQUITY BREAKTHROUGH TEAM BT6209
 - DISRUPT: DIVERSITY AND INCLUSION IN RESEARCH UNDERPINNING PREVENTION AND THERAPY TRIALS... 34-35
- SU2C CANADA-LUSTGARTEN FOUNDATION-PANCREATIC CANCER CANADA PASS CONVERGENCE DREAM TEAM CV6179, CV6185
 - PASS-01 - PANCREATIC ADENOCARCINOMA SIGNATURE STRATIFICATION FOR TREATMENT-01.... 36-37
- SU2C CANADA METASTATIC BREAST CANCER DREAM TEAM DT5745
 - TARGETING MRNA TRANSLATION TO EFFECTIVELY TREAT METASTATIC BREAST CANCER 38
- SU2C MEG VOSBURG T-CELL LYMPHOMA DREAM TEAM DT6164
 - TAILORING CAR-BASED IMMUNOTHERAPY STRATEGIES TO T-CELL LYMPHOMA............................ 39-40
- SU2C MULTIPLE MYELOMA DREAM TEAM DT6046
 - SCREENING AND INTERCEPTION OF PRECURSOR MYELOMA ... 41-42
- SU2C-LUNGEVITY FOUNDATION-AMERICAN LUNG ASSOCIATION LUNG CANCER INTERCEPTION DREAM TEAM DT6045
 - INTERCEPT LUNG CANCER THROUGH IMMUNE, IMAGING, AND MOLECULAR EVALUATION (INTIME)... 43-44
- SU2C-LUSTGARTEN FOUNDATION PANCREATIC CANCER INTERCEPTION DREAM TEAM DT6047
 - INTERCEPTING PANCREATIC CANCER IN HIGH-RISK COHORTS... 45-46
- ST. BALDRICK’S FOUNDATION-SU2C PEDIATRIC CANCER DREAM TEAM DT6065
 - IMMUNOGENOMICS TO CREATE NEW THERAPIES FOR HIGH-RISK CHILDHOOD CANCERS.......... 47-49
- SU2C COLORECTAL CANCER DREAM TEAM DT6044
 - TARGETING GENOMIC, METABOLIC, AND IMMUNOLOGICAL VULNERABILITIES OF COLORECTAL CANCER... 50-51
- SU2C CANADA-CANADIAN CANCER SOCIETY BREAST CANCER DREAM TEAM DT6144
 - TRANSLATIONAL DEVELOPMENT OF NOVEL DRUGS TARGETING TUMOR VULNERABILITIES........ 52-53
TABLE OF CONTENTS

SU2C-CANCER RESEARCH UK-LUSTGARTEN FOUNDATION PANCREATIC CANCER DREAM TEAM DT6014
REPROGRAMMING OF TRANSCRIPTIONAL CIRCUITRY TO CONTROL PANCREATIC CANCER........ 54-55
SU2C CANADA CANCER STEM CELL DREAM TEAM DT6145
TARGETING BRAIN TUMOR STEM CELL EPIGENETIC AND MOLECULAR NETWORKS................. 56-57
SU2C-AMERICAN CANCER SOCIETY LUNG CANCER DREAM TEAM DT5977
TARGETING KRAS-MUTANT LUNG CANCERS .. 58-60
SU2C-OVARIAN CANCER RESEARCH ALLIANCE-NATIONAL OVARIAN CANCER
COALITION OVARIAN CANCER DREAM TEAM DT5978
DNA REPAIR THERAPIES FOR OVARIAN CANCER .. 61-62
SU2C-DUTCH CANCER SOCIETY COLORECTAL CANCER EARLY DETECTION DREAM TEAM DT5916
MOLECULAR EARLY DETECTION OF COLORECTAL CANCER (MEDOCC) 63-64
VAN ANDEL INSTITUTE-SU2C CANCER EPGENETICS DREAM TEAM DT5957 65-67
SU2C-LUSTGARTEN FOUNDATION PANCREATIC CANCER DREAM TEAM DT5915
TRANSFORMING PANCREATIC CANCER TO TREATABLE DISEASE .. 68-69
SU2C-DUTCH CANCER SOCIETY TUMOR ORGANOID DREAM TEAM DT5906
A NEW PRECLINICAL MODEL FOR DRUG SENSITIVITY ANALYSIS .. 70-71
SU2C-ST. BALDRICK’S FOUNDATION PEDIATRIC CANCER DREAM TEAM DT5908
IMMUNOGENOMICS TO CREATE NEW THERAPIES FOR HIGH-RISK CHILDHOOD CANCERS 72-75
SU2C-CANCER RESEARCH INSTITUTE CANCER IMMUNOLOGY DREAM TEAM DT5907
IMMUNOLOGIC CHECKPOINT BLOCKADE AND ADOPTIVE CELL TRANSFER IN CANCER THERAPY ... 76-78
SU2C-PROSTATE CANCER FOUNDATION PROSTATE CANCER DREAM TEAM DT5904
TARGETING ADAPTIVE PATHWAYS IN METASTATIC CASTRATION-RESISTANT PROSTATE CANCER ... 79-81
SU2C-PROSTATE CANCER FOUNDATION PROSTATE CANCER DREAM TEAM DT5903
PRECISION THERAPY OF ADVANCED PROSTATE CANCER ... 82-83
SU2C-MELANOMA RESEARCH ALLIANCE MELANOMA DREAM TEAM DT5913
PERSONALIZED MEDICINE FOR PATIENTS WITH BRAF WILD-TYPE (BRAFWT) CANCER 84-85
SU2C PANCREATIC DREAM TEAM DT5921
CUTTING OFF THE FUEL SUPPLY: A NEW APPROACH TO THE TREATMENT OF PANCREATIC CANCER .. 86-87
SU2C EPIGENETICS DREAM TEAM DT5917
BRINGING EPIGENETIC THERAPY TO THE FOREFRONT OF CANCER MANAGEMENT 88-89
SU2C CIRCULATING TUMOR CELL (CTC) DREAM TEAM DT5919
BIOENGINEERING AND CLINICAL APPLICATIONS OF CIRCULATING TUMOR CELL CHIP 90-91
SU2C PL3K DREAM TEAM DT5918
TARGETING THE PL3K PATHWAY IN WOMEN’S CANCERS ... 92-94
SU2C BREAST CANCER DREAM TEAM DT5920
AN INTEGRATED APPROACH TO TARGETING BREAST CANCER MOLECULAR SUBTYPES AND THEIR RESISTANCE PHENOTYPES ... 95-96
TABLE OF CONTENTS

RESEARCH TEAMS ... 97-136

SU2C-TORREY COAST FOUNDATION GASTROESOPHAGEAL CANCER RESEARCH TEAM RT6352
- Targeting Immune Evasion in Gastroesophageal Cancer .. 98

SU2C-TORREY COAST FOUNDATION GASTROESOPHAGEAL CANCER RESEARCH TEAM RT6353
- Novel Therapeutic Approaches for Esophageal Squamous Cell Carcinoma 99

SU2C-TORREY COAST FOUNDATION GASTROESOPHAGEAL CANCER RESEARCH TEAM RT6354
- Therapeutics for Gastroesophageal Adenocarcinoma: Application, Translation and Discovery ... 100

SU2C DIVERSITY IN EARLY DEVELOPMENT CLINICAL TRIALS RESEARCH GRANTS PROGRAM RT6342, RT6343, RT6344, RT6345: INCREASING DIVERSITY IN CANCER CLINICAL TRIALS... 101-105
- **UNIVERSITY OF CHICAGO RT6344**
 - Project: Enhancing Diversity in Early Phase Clinical Trials in an Urban Underserved Community ... 102

- **UNIVERSITY OF TEXAS SOUTHWESTERN MEDICAL CENTER RT6342**
 - Project: Transferring Care to Enhance Access to Early-Phase Cancer Clinical Trials ... 103

- **UNIVERSITY OF SOUTHERN CALIFORNIA RT6345**
 - Project: Eliminating Enrollment Barriers to Early Phase Trials in a Diverse Population in Los Angeles County .. 104

- **THE RESEARCH INSTITUTE OF FOX CHASE CANCER CENTER RT6343**
 - Project: Accelerating and Diversifying Access to Clinical Trials (ADACT) 105

SU2C LUNG CANCER HEALTH EQUITY RESEARCH TEAM RT6228
- Southeastern Consortium for Lung Cancer Health Equity ... 106

STAND UP TO CANCER–FANCONI ANEMIA RESEARCH FUND–FARRAH FAWCETT FOUNDATION HEAD AND NECK CANCER RESEARCH TEAM RT6219
- Precision Therapy for Fanconi Anemia and HPV-Related Head and Neck Cancers .. 107-108

SU2C-CRUK PEDIATRIC CANCER NEW DISCOVERIES CHALLENGE RESEARCH TEAM RT6188
- Combinatorial Targeting of Oncogene-Driven Childhood Cancer 109-110

SU2C-CRUK PEDIATRIC CANCER NEW DISCOVERIES CHALLENGE RESEARCH TEAM RT6187
- Targeting R-Loop Stability in Ewing Sarcoma ... 111-112

SU2C-CRUK PEDIATRIC CANCER NEW DISCOVERIES CHALLENGE RESEARCH TEAM RT6186
- Brainatomy: A Validated Anatomical Atlas of Childhood Neuroradiation Damage ... 113-114

SU2C GASTRIC CANCER INTERCEPTION RESEARCH TEAM RT6072
- Early Detection and Interception of Diffuse and Intestinal Gastric Cancer 115-116

PANCREATIC CANCER COLLECTIVE RESEARCH TEAMS—COMPUTATIONAL APPROACHES TO IDENTIFYING HIGH-RISK PANCREATIC CANCER POPULATIONS RT6179
- Identification of Genomic and Immune Factors in High-Risk Populations for Pancreatic Cancer .. 117-118

PANCREATIC CANCER COLLECTIVE RESEARCH TEAMS—COMPUTATIONAL APPROACHES TO IDENTIFYING HIGH-RISK PANCREATIC CANCER POPULATIONS RT6180
- Identifying Individuals at High Risk of Pancreatic Cancer Through Machine Learning Analysis of Clinical Records and Images ... 119
TABLE OF CONTENTS

PANCREATIC CANCER COLLECTIVE RESEARCH TEAM–NEW THERAPIES CHALLENGE RT6156
- Targeting SHP2 in Pancreatic Cancer ... 120

PANCREATIC CANCER COLLECTIVE RESEARCH TEAM–NEW THERAPIES CHALLENGE RT6155
- Exploiting DNA Repair Gene Mutations in Pancreatic Cancer 121

PANCREATIC CANCER COLLECTIVE RESEARCH TEAM–NEW THERAPIES CHALLENGE RT6154
- Adoptive Transfer of TGF-β-Resistant TIL To Defeat Immunosuppressive PDAC............. 122

PANCREATIC CANCER COLLECTIVE RESEARCH TEAM–NEW THERAPIES CHALLENGE RT6152
- Combined Targeting of MEK1/2 and Autophagy for Pancreatic Cancer Therapy 123

PANCREATIC CANCER COLLECTIVE RESEARCH TEAM–NEW THERAPIES CHALLENGE RT6157
- Targeting Stem Cell Signals in Pancreatic Cancer ... 124

PANCREATIC CANCER COLLECTIVE RESEARCH TEAM–NEW THERAPIES CHALLENGE RT6153
- Molecularly Targeted Radionuclide Therapy Via the Integrin AVβ6 125–126

SU2C–LUSTGARTEN FOUNDATION PANCREATIC CANCER INTERCEPTION RESEARCH TEAM RT6059
- Developing Novel Approaches to Detect and Treat Early Pancreatic Cancer 128

SU2C–LUNGevity FOUNDATION-AMERICAN LUNG ASSOCIATION LUNG CANCER INTERCEPTION RESEARCH TEAM RT6058
- Blood-Based Early Interception of Lung Cancer .. 129

SU2C-LUSTGARTEN FOUNDATION TRANSLATIONAL RESEARCH TEAM RT6116, RT6162
- Chimeric Antigen Receptor T-Cell (CAR T) Therapy for Pancreatic Cancer 130–131

LAURA ZISKIN TRANSLATIONAL AWARD RESEARCH TEAM RT5934
- Phosphatidylinositol 3-Kinase δ Inhibition to Treat Patients with Relapsed or Refractory Follicular Lymphoma .. 132

SU2C–FARRAH FAWCETT FOUNDATION HPV RESEARCH TEAM RT5914
- Therapeutic CD8 Vaccines Against Conserved E7 HPV Epitopes Identified by MS 133

SU2C-TRANSLATIONAL GENOMICS RESEARCH INSTITUTE GRANT RT1234
- Next-Generation Sequencing of Small Cell Lung Cancer to Identify Actionable Targets for Treatment .. 134

SU2C–DUTCH CANCER SOCIETY TRANSLATIONAL RESEARCH TEAM RT5905
- Prospective Use of DNA-Guided Personalized Cancer Treatment 135–136
TABLE OF CONTENTS

SU2C CONVERGENCE RESEARCH TEAMS ... 137-162

SU2C CONVERGENCE™ 3.1416 RESEARCH TEAM CV6204
MOLECULAR AND BIOPHYSICAL DEFINITION OF TUMOR- HOST INTERACTIONS AND IMPACT ON TUMORIGENESIS AND THERAPEUTIC RESPONSE .. 138-140

SU2C CONVERGENCE™ 3.1416 RESEARCH TEAM CV6205
INTEGRATING GNOTOBIOTIC, ORGANOID, AND METABOLOMIC PIPELINES TO PROBE THE CANCER- MICROBIOME CONNECTION .. 141-142

SU2C CONVERGENCE™ 3.1416 RESEARCH TEAM CV6206
INTEGRATING MICROBIOME AND ORGANOID ANALYSES OF PATIENT COHORTS FOR IMMUNO-ONCOLOGY THERAPEUTIC DEVELOPMENT ... 143-144

SU2C CONVERGENCE™ 3.1416 RESEARCH TEAM CV6207
MULTI-OMIC ANALYSIS OF IMMUNE SYSTEM AND MICROBIOTA INFLUENCE ON TEMPORAL AND SPATIAL EVOLUTION OF TUMOR MICROENVIRONMENTS .. 145-146

SU2C CONVERGENCE™ RESEARCH TEAM CV6126
CORRELATING IMMUNOLOGICAL HEALTH TO CANCER SUSCEPTIBILITY 147

SU2C CONVERGENCE™ RESEARCH TEAM CV6124
SINGLE-CELL FUNCTIONAL MULTI-OMICS TO CHARACTERIZE AND MONITOR CAR T THERAPY .. 148-149

SU2C CONVERGENCE™ RESEARCH TEAM CV6123
MACHINE LEARNING FOR CANCER IMMUNOTHERAPY ... 150

SU2C-LUSTGARTEN FOUNDATION CONVERGENCE™ RESEARCH TEAM CV6122
COMPUTATIONAL DECONSTRUCTION OF NEOANTIGEN-TCR DEGENERACY FOR CANCER IMMUNOTHERAPY .. 151

SU2C CONVERGENCE™ RESEARCH TEAM CV6125
INTEGRATING EXPERIMENTAL AND COMPUTATIONAL PIPELINES TO DEVELOP BIOMARKERS OF TUMOR CELL RESISTANCE TO NK CELLS ... 152

SU2C CONVERGENCE™ RESEARCH TEAM CV6128
RESPONDERS AND NON-RESPONDERS TO ENDOMETRIAL CANCERS WITH MISMATCH REPAIR ... 153-154

SU2C CONVERGENCE™ RESEARCH TEAM CV6127
CONNECTING IMMUNE HEALTH AND TUMOR BIOLOGY IN GYNECOLOGIC CANCERS 155-156

SU2C-BREAST CANCER RESEARCH FOUNDATION CONVERGENCE™ RESEARCH TEAM CV6004
ECOLOGY OF THE TUMOR MICROENVIRONMENT IN BREAST CANCER 157

SU2C-NATIONAL SCIENCE FOUNDATION CONVERGENCE™ RESEARCH TEAM CV6006
RATIONAL DESIGN OF ANTICANCER DRUG COMBINATIONS WITH DYNAMIC MULTI-DIMENSIONAL INPUT ... 158

SU2C-NATIONAL SCIENCE FOUNDATION CONVERGENCE™ RESEARCH TEAM CV6007
GENETIC, EPIGENETIC, AND IMMUNOLOGICAL UNDERPINNINGS OF CANCER EVOLUTION THROUGH TREATMENT .. 159

SU2C-NATIONAL SCIENCE FOUNDATION-LUSTGARTEN FOUNDATION CONVERGENCE™ RESEARCH TEAM CV6005
LIBERATING T-CELL MEDIATED IMMUNITY TO PANCREATIC CANCER 160-161
TABLE OF CONTENTS

SU2C CATALYST RESEARCH TEAMS .. 163-193

SU2C CATALYST® RESEARCH TEAM WITH SUPPORT FROM ZENTALIS PHARMACEUTICALS CT6360
- Therapeutically Targeting WEE1 in HPV+ Head and Neck Cancer .. 164

SU2C CATALYST® RESEARCH TEAM WITH SUPPORT FROM JAZZ PHARMACEUTICALS CT6330
- The LIFFT Study (Lurbinectedin in Fet-Fusion Tumors) .. 165

SU2C CATALYST® RESEARCH TEAM WITH SUPPORT FROM JAZZ PHARMACEUTICALS CT6334
- Identification of Combination Therapeutics Using JZP-815 for the Treatment of NSCLC .. 166

LUNG CANCER HEALTH EQUITY SU2C CATALYST® RESEARCH TEAM CT6332
- Technology-Enabled Immunotherapy Monitoring in NYC Minority NSCLC Patients 167

SU2C CATALYST® RESEARCH TEAM GRANT PROGRAM WITH SUPPORT FROM MIRATI THERAPEUTICS CT6331
- Targeting Adaptive and Acquired Resistance to Direct KRAS Inhibition 168

SU2C CATALYST® RESEARCH TEAM WITH SUPPORT FROM GENENTECH CT6181
- Atezolizumab, Androgen Receptor (AR) Targeted Therapy, and SBRT in Hormone Sensitive Prostate Cancer .. 169-170

SU2C CATALYST® RESEARCH TEAM WITH SUPPORT FROM GENENTECH CT6174
- Combination Sacituzumab and Atezolizumab to Prevent Recurrence in Triple Negative Breast Cancer (TNBC) .. 171

PEDIATRIC SU2C CATALYST® RESEARCH TEAM WITH SUPPORT FROM BRISTOL MYERS SQUIBB CT6148
- Clinical Translation of Novel Immune-Based Combination Therapies for Pediatric Hypermutant Cancers .. 172-173

PEDIATRIC SU2C CATALYST® RESEARCH TEAM WITH SUPPORT FROM BRISTOL MYERS SQUIBB CT6147
- Immunomodulation to Treat Poor-Prognosis Pediatric Brain Tumors 174

SU2C CATALYST® RESEARCH TEAM WITH SUPPORT FROM BRISTOL MYERS SQUIBB CT6143
- Targeting Epigenetic Dysregulation in Pediatric Cancers .. 175

SU2C CATALYST® RESEARCH TEAM WITH SUPPORT FROM GENENTECH CT6054
- Neoadjuvant Therapy for Patients with High-Risk Stage III Melanoma 176-177

SU2C CATALYST® RESEARCH TEAM WITH SUPPORT FROM GENENTECH CT6053
- Immunotherapy Combination Strategies in ER-Positive Metastatic Breast Cancer 178-179

SU2C CATALYST® RESEARCH TEAM WITH SUPPORT FROM GENENTECH CT6052
- Overcoming Urothelial Cancer Atezolizumab Resistance by Epigenetic Therapy 180-181

SU2C CATALYST® RESEARCH TEAM WITH SUPPORT FROM BRISTOL MYERS SQUIBB CT6048
- Tumor Infiltrating Lymphocyte Adoptive T-Cell Therapy for Non-Small Cell Lung Cancer (NSCLC) .. 182

SU2C CATALYST® RESEARCH TEAM WITH SUPPORT FROM BRISTOL MYERS SQUIBB CT6049
- Immunotherapy to Prevent Progression in Multiple Myeloma .. 183-184

SU2C CATALYST® RESEARCH TEAM WITH SUPPORT FROM MERCK CT6032
- Pembrolizumab and Radiation Therapy to Improve Outcome in High-Risk Sarcoma 185-186
Table of Contents

SU2C Catalyst® Research Team with Support from Bristol Myers Squibb CT6050
Reversing Primary Anti-PD-1 Resistance with IpiLumab and Nivolumab ... 187
SU2C Catalyst® Research Team with Support from Merck CT6031
Targeting VDR to Make Pancreatic Cancer Competent for Immunotherapy 188-189
SU2C Catalyst® Research Team with Support from Merck CT6030
Combined Epigenetic Therapy and Pembrolizumab for Advanced Non-Small Cell Lung Cancer (NSCLC) ... 190-191
SU2C Catalyst® Research Team with Support from Bristol Myers Squibb CT6051
Combined Approaches by Immune Checkpoint Inhibition for Hypermutant Cancers 192
SU2C Catalyst® Research Team with Support from Merck CT5978
DNA Repair Therapies for Ovarian Cancer ... 193

Innovative Research Grants ... 194-196
Class of 2017 ... 194
Class of 2016 ... 194-195
Class of 2011 ... 195
Allan H. (Bud) and Sue Selig Stand Up to Cancer Melanoma
Innovative Research Grant .. 195
Class of 2009 ... 196

Phillip A Sharp Innovation in Collaboration Awards 197-199
Class of 2023 ... 197
Phillip A. Sharp – Laura Ziskin Innovation in Collaboration Award .. 197
Class of 2020 ... 197
Class of 2019 ... 197
Class of 2018 ... 198
Class of 2017 ... 198
Class of 2016 ... 198
Class of 2015 ... 199
Class of 2014 ... 199

Additional Awards and Prizes .. 200-205
The Ziskin Prize ... 200
The Jim Toth Sr. Breakthrough Lunh Cancer Research Award 200
The Peggy Prescott Early Career Scientist Award 200
The Golden Arrow Early Career Scientist Award 200
SU2C Sharp Tank Early Career Scientist Award 201
Phillip A. Sharp Challenge Award ... 201
SU2C Maverick Award ... 201
Emperor Science Awards .. 201
SU2C Kimmel Scholars ... 202

Reviewers .. 203

Conference Map .. 204

Thank You ... 205

Appendix: Team Graphics ... 206-213
I stand up for myself...

and all those fighting cancer.
SCHEDULE

FRIDAY, JANUARY 26, 2024

<table>
<thead>
<tr>
<th>Time</th>
<th>Event</th>
<th>Location</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>11:30 A.M.</td>
<td>REGISTRATION</td>
<td>Constellation Foyer</td>
<td></td>
</tr>
<tr>
<td>12:30 P.M.</td>
<td>SU2C CONVERGENCE 3.1416 Review Meetings (Closed)</td>
<td>Constellation A</td>
<td></td>
</tr>
</tbody>
</table>

SATURDAY, JANUARY 27, 2024

<table>
<thead>
<tr>
<th>Time</th>
<th>Event</th>
<th>Location</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>9:30 A.M.</td>
<td>SU2C CONVERGENCE 3.1416 Review Meetings (Closed)</td>
<td>Constellation A</td>
<td></td>
</tr>
<tr>
<td>12:00 P.M.</td>
<td>REGISTRATION AND SPEAKER CHECK-IN</td>
<td>Commodore Ballroom Foyer</td>
<td></td>
</tr>
<tr>
<td>2:10 P.M.</td>
<td>PANCREATIC CANCER COLLECTIVE VITAMIN D RECEPTOR AGONIST TRIAL</td>
<td>Aurora</td>
<td>Update Meeting (Closed)</td>
</tr>
<tr>
<td>3:05 P.M.</td>
<td>SU2C HEALTH EQUITY BREAKTHROUGH TEAM</td>
<td>Sovereign</td>
<td>Review Meeting (Closed)</td>
</tr>
<tr>
<td>3:15 P.M.</td>
<td>PANCREATIC CANCER COLLECTIVE – NEW THERAPIES CHALLENGE:</td>
<td>Aurora</td>
<td>EXPLOITING DNA REPAIR GENE MUTATIONS IN PANCREATIC CANCER</td>
</tr>
</tbody>
</table>

3:55 P.M. - 4:45 P.M.

<table>
<thead>
<tr>
<th>Event</th>
<th>Location</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>SU2C CATALYST® RESEARCH TEAMS WITH SUPPORT FROM ZENTALIS PHARMACEUTICALS</td>
<td>Constellation B</td>
<td>Leader: Bruce E.Clurman, MD, PhD Review Meeting (Closed)</td>
</tr>
</tbody>
</table>

3:55 P.M. - 5:00 P.M.

<table>
<thead>
<tr>
<th>Event</th>
<th>Location</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>VAI - SU2C CANCER EPIGENETICS DREAM TEAM</td>
<td>Constellation A</td>
<td>Leader: Peter A. Jones, PhD, DSc (hon) Review Meeting (Closed)</td>
</tr>
</tbody>
</table>

4:15 P.M. - 5:00 P.M.

<table>
<thead>
<tr>
<th>Event</th>
<th>Location</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>PANCREATIC CANCER COLLECTIVE - NEW THERAPIES CHALLENGE:</td>
<td>Aurora</td>
<td>TARGETING SHP2 IN PANCREATIC CANCER Review Meeting (Closed)</td>
</tr>
</tbody>
</table>

4:25 P.M. - 5:10 P.M.

<table>
<thead>
<tr>
<th>Event</th>
<th>Location</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>SU2C LUNG CANCER HEALTH EQUITY RESEARCH TEAM</td>
<td>Sovereign</td>
<td>Leader: Robert A. Winn, MD Review Meeting (Closed)</td>
</tr>
</tbody>
</table>

5:00 P.M. - 5:45 P.M.

<table>
<thead>
<tr>
<th>Event</th>
<th>Location</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>SU2C - FARF – FFF HEAD AND NECK CANCER RESEARCH TEAM</td>
<td>Constellation B</td>
<td>Leader: Agata Smogorzewska, MD, PhD Review Meeting (Closed)</td>
</tr>
<tr>
<td>Time</td>
<td>Event Description</td>
<td>Location</td>
</tr>
<tr>
<td>--------------</td>
<td>---</td>
<td>-------------------</td>
</tr>
<tr>
<td>5:15 PM - 6:00 PM</td>
<td>SU2C CANADA - LUSTGARTEN FOUNDATION - PANCREATIC CANCER CANADA PASS</td>
<td>Convergence Dream Team</td>
</tr>
<tr>
<td></td>
<td>Leaders: Jennifer J. Knox, MD, and Elizabeth M. Jaffee, MD</td>
<td>Review Meeting (Closed)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Auroraa</td>
</tr>
<tr>
<td>5:15 PM - 6:00 PM</td>
<td>SU2C CATALYST® RESEARCH TEAM WITH SUPPORT FROM MERCK</td>
<td>Constellation A</td>
</tr>
<tr>
<td></td>
<td>Leaders: Kurt Weinhold, PhD, and David G. Kirsch, MD, PhD</td>
<td>Review Meeting (Closed)</td>
</tr>
<tr>
<td>5:25 PM - 6:10 PM</td>
<td>LUNG CANCER HEALTH EQUITY SU2C CATALYST® RESEARCH TEAM</td>
<td>Sovereign</td>
</tr>
<tr>
<td></td>
<td>Leader: Vamsidhar Velcheti, MD</td>
<td>Review Meeting (Closed)</td>
</tr>
<tr>
<td>5:25 PM - 6:30 PM</td>
<td>SU2C - CRUK PEDIATRIC NEW DISCOVERIES CHALLENGE ROUND 2 RESEARCH TEAMS</td>
<td>Britannia/Cambria</td>
</tr>
<tr>
<td></td>
<td>Leaders: John M. Anderson, MBBS, MRCP, PhD, and Martin McCabe, MB/BChir, PhD</td>
<td>Review Meeting (Closed)</td>
</tr>
<tr>
<td>6:00 PM - 8:00 PM</td>
<td>DINNER AVAILABLE</td>
<td>Commodore E</td>
</tr>
<tr>
<td>6:00 PM - 6:45 PM</td>
<td>SU2C CATALYST® RESEARCH TEAM WITH SUPPORT FROM MIRATI THERAPEUTICS</td>
<td>Constellation B</td>
</tr>
<tr>
<td></td>
<td>Leader: Ryan B. Corcoran, MD, PhD</td>
<td>Review Meeting (Closed)</td>
</tr>
<tr>
<td>6:15 PM - 7:00 PM</td>
<td>PANCREATIC CANCER COLLECTIVE - NEW THERAPIES CHALLENGE: IMMUNOTHERAPY TARGETING MUTANT KRAS</td>
<td>Aurora</td>
</tr>
<tr>
<td></td>
<td>Leader: Robert H. Vonderheide, MD, DPhil</td>
<td>Review Meeting (Closed)</td>
</tr>
<tr>
<td>6:15 PM - 7:45 PM</td>
<td>SU2C CATALYST® RESEARCH TEAM WITH SUPPORT FROM GENENTECH</td>
<td>Constellation A</td>
</tr>
<tr>
<td></td>
<td>Leaders: Sean M. McBride, MD, Elizabeth A. Mittendorf, MD, and Matthew S. Block, MD</td>
<td>Review Meeting (Closed)</td>
</tr>
<tr>
<td>6:25 PM - 7:45 PM</td>
<td>SU2C DIVERSITY IN EARLY DEVELOPMENT CLINICAL TRIALS RESEARCH GRANTS</td>
<td>Sovereign</td>
</tr>
<tr>
<td></td>
<td>Leaders: Walter M. Stadler, MD, David E. Gerber, MD, Anthony El-Khoueiry, MD, and Martin J. Edelman, MD</td>
<td>Review Meeting (Closed)</td>
</tr>
<tr>
<td>6:45 PM - 7:45 PM</td>
<td>SU2C CATALYST® RESEARCH TEAM WITH SUPPORT FROM JAZZ PHARMACEUTICALS</td>
<td>Britannia/Cambria</td>
</tr>
<tr>
<td></td>
<td>Leaders: Patrick J. Grohar, MD, PhD, and Fred R. Hirsch MD, PhD</td>
<td>Review Meeting (Closed)</td>
</tr>
<tr>
<td>Time</td>
<td>Event</td>
<td></td>
</tr>
<tr>
<td>---------------</td>
<td>--</td>
<td></td>
</tr>
</tbody>
</table>
| 7:00 P.M. – 9:00 P.M. | SU2C GASTROESOPHAGEAL DREAM TEAM COLLECTIVE
Leaders: Yelena Y. Janjigian, MD, Anil K. Rustgi, MD, and William R. Sellers, MD
Review Meeting (Closed)
Constellation B |
| 7:15 P.M. – 8:00 P.M. | PANCREATIC CANCER COLLECTIVE
— NEW THERAPIES CHALLENGE: MOLECULARLY TARGETED RADIONUCLIDE THERAPY VIA THE INTEGRIN AVSS6
Leader: Julie L. Sutcliffe, PhD
Review Meeting (Closed)
Aurora |
| 8:00 P.M. – 9:00 P.M. | PEDIATRIC SU2C CATALYST* RESEARCH TEAMS WITH SUPPORT FROM BRISTOL MYERS SQUIBB
Leaders: Kimberly Stegmaier, MD, and Uri Y. Tabori MD
Review Meeting (Closed)
Brittania/Cambria |
| 8:00 P.M. – 9:00 P.M. | SU2C COLORECTAL CANCER HEALTH EQUITY DREAM TEAM
Leader: Jennifer S. Haas, MD, MSPH
Review Meeting (Closed)
Sovereign |
| 8:00 P.M. – 9:00 P.M. | SU2C GASTRIC CANCER INTERCEPTION RESEARCH TEAM
Leader: Andrew T. Chan, MD, MPH
Review Meeting (Closed)
Constellation A |
| 8:15 P.M. – 9:00 P.M. | SU2C - LUSTGARTEN FOUNDATION PANCREATIC CANCER INTERCEPTION DREAM TEAM
Leader: Anirban Maitra, MBBS
Review Meeting (Closed)
Aurora |
| 7:00 A.M. – 6:30 P.M. | REGISTRATION AND SPEAKER CHECK-IN
Commodore Ballroom Foyer |
| 7:30 A.M. – 8:15 A.M. | BREAKFAST
Commodore E |
| 7:30 A.M. – 8:15 A.M. | SU2C HEALTH EQUITY COMMITTEE MEETING (CLOSED)
Brittania/Cambria |
| 8:15 A.M. – 8:30 A.M. | BREAK/TRANSFER |
| 8:30 A.M. – 8:55 A.M. | WELCOME AND INTRODUCTIONS
Sherry Lansing, Chair, Founders and Advisors Committee, Stand Up To Cancer
Julian Adams, PhD, CEO, Stand Up To Cancer
Margaret Foti, PhD, MD (hc), CEO, American Association for Cancer Research
Plenary Session
Commodore Ballroom ABCD |
| 8:55 A.M. – 9:10 A.M. | TARGETING EPIGENETIC DYSREGULATION IN PEDIATRIC CANCER
Speaker: Kimberly Stegmaier, MD
Pediatric SU2C Catalyst* Research Team With Support From Bristol Myers Squibb
Plenary Session
Commodore Ballroom ABCD |
| 9:10 A.M. – 9:15 A.M. | DISCUSSION
Plenary Session
Commodore Ballroom ABCD |
9:15 A.M. - 9:30 A.M.
TARGETING PAEDIATRIC SOLID CANCERS WITH DEGRON REGULATED CAR-T CELLS
Speaker: John M. Anderson, MBBS, MRCP, PhD
Plenary Session
Commodore Ballroom ABCD

9:30 A.M. - 9:35 A.M.
DISCUSSION
Plenary Session
Commodore Ballroom ABCD

9:35 A.M. - 9:50 A.M.
BRAINATOMY: MECHANISMS AND IMAGE-DEFINED LOCI OF COGNITIVE AND ENDOCRINE DAMAGE AFTER CHILDHOOD THERAPEUTIC BRAIN RADIATION
Speaker: Martin McCabe, MB/BChir, PhD
SU2C - CRUK Pediatric New Discoveries Challenge Round 2 Research Team
Plenary Session
Commodore Ballroom ABCD

9:50 A.M. - 9:55 A.M.
DISCUSSION
Plenary Session
Commodore Ballroom ABCD

9:55 A.M. - 10:15 A.M.
BREAK
Commodore Ballroom ABCD

10:15 A.M. - 10:30 A.M.
COLORECTAL CANCER DREAM TEAM PROGRESS INTO THE FUTURE
Speakers: Ryan B. Corcoran, MD, PhD, Andrea Cercek, MD, and Zsofia K. Stadler, MD
Plenary Session
Commodore Ballroom ABCD

10:30 A.M. - 10:35 A.M.
DISCUSSION
Plenary Session
Commodore Ballroom ABCD

10:35 A.M. - 10:50 A.M.
MOLECULARLY GUIDED IMAGING FOR EARLY INTERCEPTION OF GASTRIC CANCER
Speaker: David A. Drew, PhD
SU2C Gastric Cancer Interception Research Team: Early Detection and Interception of Diffuse and Intestinal Gastric Cancer
Plenary Session
Commodore Ballroom ABCD

10:50 A.M. - 10:55 A.M.
DISCUSSION
Plenary Session
Commodore Ballroom ABCD

10:55 A.M. - 11:10 A.M.
GASTROESOPHAGEAL CANCERS: UNVEILING CELL SURFACE TARGETS AND FUNCTIONAL GENOMIC INSIGHTS FOR THERAPEUTIC INTERVENTION
Speaker: William R. Sellers, PhD
SU2C-Torrey Coast Gastroesophageal Cancer Dream Team Collective Research Team: Therapeutics for Gastroesophageal Adenocarcinoma: Application, Translation and Discovery
Plenary Session
Commodore Ballroom ABCD

11:10 A.M. - 11:15 A.M.
DISCUSSION
Plenary Session
Commodore Ballroom ABCD
11:15 A.M. - 11:25 A.M.
NEOADJUVANT COMBINATION TARGETED AND IMMUNOTHERAPY FOR HIGH RISK STAGE III MELANOMA: NEOACTIVATE (NCT03554083)
Speaker: Matthew S. Block, MD, PhD, and Tina Hieken, MD
SU2C Catalyst® Research Team
With Support From Genentech: Neoadjuvant Therapy for Patients With High-Risk Stage III Melanoma
Plenary Session
Commodore Ballroom ABCD

11:25 A.M. - 11:30 A.M.
DISCUSSION
Plenary Session
Commodore Ballroom ABCD

11:30 A.M. - 11:40 A.M.
PEMBROLIZUMAB AND RADIATION THERAPY TO IMPROVE OUTCOME IN HIGH-RISK SARCOMA
Speaker: David G. Kirsch, MD, PhD
SU2C Catalyst® Research Team
With Support From Merck: Pembrolizumab and Radiation Therapy to Improve Outcome in High-Risk Sarcoma
Plenary Session
Commodore Ballroom ABCD

11:40 A.M. - 11:45 A.M.
DISCUSSION
Plenary Session
Commodore Ballroom ABCD

11:45 A.M. - 12:00 P.M.
GROUP PHOTO
Location to be announced and placards to be distributed in the Plenary Session

12:00 P.M. - 1:30 P.M.
LUNCH
Commodore E

1:30 P.M. - 1:45 P.M.
BREAK/TRANSFER
Commodore Ballroom ABCD

1:45 P.M. - 2:20 P.M.
KEYNOTE PRESENTATION AND DISCUSSION: THE MOLECULAR AND THE GENETIC DIFFERENCES IN MULTIPLE MYELOMAS FROM INDIVIDUALS OF AFRICAN AND EUROPEAN ANCESTRY
Introduction: John D. Carpten, PhD, City of Hope
Keynote Speaker: Arnold J. Levine, PhD, Institute for Advanced Study
Plenary Session
Commodore Ballroom ABCD

2:20 P.M. - 2:35 P.M.
REVERSE-TRANSLATION OF PATIENT-IDENTIFIED EPIGENETIC REGULATORS FOR DURABLE IMMUNOTHERAPY
Speaker: Ben Youngblood, PhD
VAI - SU2C Epigenetics Dream Team
Plenary Session
Commodore Ballroom ABCD

2:35 P.M. - 2:40 P.M.
DISCUSSION
Plenary Session
Commodore Ballroom ABCD

2:40 P.M. - 2:55 P.M.
LSD1 INHIBITION: AUGMENTING IMMUNOTHERAPY FOR PATIENTS WITH SMALL CELL LUNG CANCER
Speaker: Charles M. Rudin, MD, PhD
VAI - SU2C Epigenetics Dream Team
Plenary Session
Commodore Ballroom ABCD

2:55 P.M. - 3:00 P.M.
DISCUSSION
Plenary Session
Commodore Ballroom ABCD
MONDAY, JANUARY 29, 2024

7:00 A.M. - 3:00 P.M.
REGISTRATION AND
SPEAKER CHECK-IN
Commodore Ballroom Foyer

7:30 A.M. - 8:15 A.M.
BREAKFAST
Commodore E

8:15 A.M. - 8:30 A.M.
BREAK/TRANSFER

8:30 A.M. - 8:35 A.M.
INTRODUCTORY REMARKS
Julian Adams, PhD, CEO,
Stand Up To Cancer
Plenary Session
Commodore Ballroom ABCD

8:35 A.M. - 9:45 A.M.
PANEL AND DISCUSSION:
AI IN CANCER RESEARCH,
DIAGNOSIS, AND TREATMENT
Thomas J. Albert, PhD,
Roche Diagnostics
Christina Curtis, PhD,
Stanford University
Aviv Regev, PhD, Genentech
Peter K. Sorger, PhD, Harvard Medical School
Plenary Session
Commodore Ballroom ABCD

9:45 A.M. - 9:50 A.M.
2023 SU2C MAVERICK
AWARD PRESENTATION
ARTIFICIAL INTELLIGENCE FOR
TARGETING UNDEFINED MOLECULAR
SUBTYPES OF HEAD/NECK CANCER
Speaker: Alexander T. Pearson, MD, PHD
Plenary Session
Commodore Ballroom ABCD

9:50 A.M. - 9:55 A.M.
DISCUSSION
Plenary Session
Commodore Ballroom ABCD

3:00 P.M. - 3:15 P.M.
TRANSLATIONAL RESULTS FROM
THE GEMCITABINE/NAB-PACLITAXEL
PLUS OR MINUS VDR AGONIST
PARICALCITOL TRIAL IN PATIENTS WITH
METASTATIC PANCREATIC CANCER
Speaker: Brian M. Wolpin, MD, MPH
SU2C - Lustgarten Foundation
Vitamin D Receptor Agonist Team
Plenary Session
Commodore Ballroom ABCD

3:15 P.M. - 3:20 P.M.
DISCUSSION
Plenary Session
Commodore Ballroom ABCD

3:20 P.M. - 3:30 P.M.
ZISKIN PRIZE ANNOUNCEMENT
Plenary Session
Commodore Ballroom ABCD

3:30 P.M. - 3:40 P.M.
MLB RECOGNITION
Plenary Session
Commodore Ballroom ABCD

3:40 P.M. - 4:00 P.M.
BREAK

4:00 P.M. - 6:30 P.M.
POSTER SESSION AND RECEPTION
Constellation

5:00 P.M.
SHARP AWARD APPLICATION
SUBMISSION DEADLINE

6:30 P.M. - 7:00 P.M.
BREAK

7:00 P.M. - 9:00 P.M.
CALIFORNIA DREAMIN’ EVENT
The Pavilion
9:55 A.M. - 10:15 A.M.
BREAK

10:15 A.M. - 10:30 A.M.
TITLE: TO mRNA VACCINES FOR PANCREATIC CANCER
Speaker: Vinod P. Balachandran, MD
SU2C-Lustgarten Foundation
Convergence Research Team:
Computational Deconstruction of Neoantigen-TCR Degeneracy for Cancer Immunotherapy
Plenary Session
Commodore Ballroom ABCD

10:30 A.M. - 10:35 A.M.
DISCUSSION
Plenary Session
Commodore Ballroom ABCD

10:35 A.M. - 10:50 A.M.
ENGINEERING TCR-T CELLS TO BE AN EFFECTIVE THERAPY FOR PANCREATIC CANCER
Speaker: Phil Greenberg, MD
SU2C-Lustgarten Foundation Pancreatic Cancer Team: Transforming Pancreatic Cancer to Treatable Disease
Plenary Session
Commodore Ballroom ABCD

10:50 A.M. - 10:55 A.M.
DISCUSSION
Plenary Session
Commodore Ballroom ABCD

10:55 A.M. - 11:00 A.M.
SU2C MAVERICK AWARD: FINALIST #1
Plenary Session
Commodore Ballroom ABCD

11:00 A.M. - 11:05 A.M.
DISCUSSION
Plenary Session
Commodore Ballroom ABCD

11:05 A.M. - 11:10 A.M.
SU2C MAVERICK AWARD: FINALIST #2
Plenary Session
Commodore Ballroom ABCD

11:10 A.M. - 11:15 A.M.
DISCUSSION
Plenary Session
Commodore Ballroom ABCD

11:15 A.M. - 11:20 A.M.
POSTER AWARD PRESENTATION
Plenary Session
Commodore Ballroom ABCD

11:20 A.M. - 11:25 A.M.
DISCUSSION
Plenary Session
Commodore Ballroom ABCD

11:25 A.M. - 11:30 A.M.
HEALTH EQUITY POSTER PRESENTATION
Plenary Session
Commodore Ballroom ABCD

11:30 A.M. - 11:35 A.M.
DISCUSSION
Plenary Session
Commodore Ballroom ABCD

11:35 A.M. - 11:50 A.M.
BREAK/TRANSFER

11:50 A.M. - 1:20 P.M.
LUNCH
Commodore E

11:50 A.M. - 1:20 P.M.
PHILLIP A. SHARP INNOVATION IN COLLABORATION AWARDS,
GERHARD CLESS GASTRIC CANCER INNOVATION IN COLLABORATION AWARD, AND NINA NICOLAI PANCREATIC CANCER INNOVATION IN COLLABORATION AWARD
Brittania/Cambria

THE SU2C SCIENTIFIC SUMMIT
CORONADO, CALIFORNIA JANUARY 26-29 2024

17
<table>
<thead>
<tr>
<th>Time</th>
<th>Event</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:20 P.M. - 1:35 P.M.</td>
<td>BREAK/TRANSFER</td>
<td>Commodore Ballroom ABCD</td>
</tr>
<tr>
<td>1:35 P.M. - 1:45 P.M.</td>
<td>MICROFLUIDIC APPROACHES FOR STUDYING TUMOR-HOST INTERACTIONS IN VIVO AND IN VITRO</td>
<td>Commodore Ballroom ABCD</td>
</tr>
<tr>
<td>Speaker: Scott Manalis, PhD SU2C Convergence 3.1416 Research Team: Molecular and Biophysical Definition of Tumor-Host Interactions and Impact on Tumorigenesis and Therapeutic Response</td>
<td>Plenary Session</td>
<td></td>
</tr>
<tr>
<td>1:45 P.M. - 2:00 P.M.</td>
<td>DISCUSSION</td>
<td>Commodore Ballroom ABCD</td>
</tr>
<tr>
<td>1:50 P.M. - 2:00 P.M.</td>
<td>TITLE: HITTING A MOVING TARGET: TREATING EVOLVING TUMORS</td>
<td>Commodore Ballroom ABCD</td>
</tr>
<tr>
<td>Speaker: Karuna Ganesh, MD, PhD SU2C Convergence 3.1416 Research Team: Multi-omic Analysis of Immune System and Microbiota Influence on Temporal and Spatial Evolution of Tumor Microenvironments</td>
<td>Plenary Session</td>
<td></td>
</tr>
<tr>
<td>2:00 P.M. - 2:05 P.M.</td>
<td>DISCUSSION</td>
<td>Commodore Ballroom ABCD</td>
</tr>
<tr>
<td>2:05 P.M. - 2:40 P.M.</td>
<td>KEYNOTE PRESENTATION AND DISCUSSION: WHICH IS VACCINE BOOSTING NATURAL AND SYNTHETIC T CELLS Darrell Irvine, PhD, Massachusetts Institute of Technology</td>
<td>Plenary Session</td>
</tr>
<tr>
<td>2:40 P.M. - 2:50 P.M.</td>
<td>AWARD PRESENTATION PHILLIP A. SHARP INNOVATION IN COLLABORATION AWARDS, GERHARD CLESS GASTRIC CANCER INNOVATION IN COLLABORATION AWARD, NINA NICOLAI PANCREATIC CANCER INNOVATION IN COLLABORATION AWARD, AND SU2C MAVERICK AWARD</td>
<td>Commodore Ballroom ABCD</td>
</tr>
<tr>
<td>2:50 P.M. - 3:00 P.M.</td>
<td>SCIENTIFIC ADVISORY COMMITTEE CONFERENCE SUMMARY William Nelson, MD, PhD, Johns Hopkins University</td>
<td>Plenary Session</td>
</tr>
<tr>
<td>3:00 P.M. - 3:20 P.M.</td>
<td>BREAK</td>
<td></td>
</tr>
<tr>
<td>3:20 P.M. - 4:20 P.M.</td>
<td>SU2C SCIENTIFIC ADVISORY COMMITTEE DEBRIEF MEETING (CLOSED) Brittanica/Cambria</td>
<td></td>
</tr>
<tr>
<td>4:20 P.M. - 4:30 P.M.</td>
<td>BREAK</td>
<td></td>
</tr>
<tr>
<td>4:30 P.M. - 5:45 P.M.</td>
<td>SU2C FAC/SAC EXECUTIVE COMMITTEE MEETING (CLOSED) Brittanica/Cambria</td>
<td></td>
</tr>
<tr>
<td>5:15 P.M. - 5:30 P.M.</td>
<td>BREAK/TRANSFER</td>
<td></td>
</tr>
<tr>
<td>5:30 P.M. - 6:15 P.M.</td>
<td>SU2C SAC EXECUTIVE COMMITTEE MEETING (CLOSED) Brittanica/Cambria</td>
<td></td>
</tr>
<tr>
<td>6:15 P.M. - 6:30 P.M.</td>
<td>BREAK/TRANSFER</td>
<td></td>
</tr>
<tr>
<td>6:30 P.M. - 8:30 P.M.</td>
<td>DINNER FOR SU2C SCIENTIFIC ADVISORY COMMITTEE Avalon</td>
<td></td>
</tr>
</tbody>
</table>
THE S2C SCIENTIFIC SUMMIT
CORONADO, CALIFORNIA JANUARY 26-29 2024

ADVISORY COMMITTEES

SU2C SCIENTIFIC ADVISORY COMMITTEE
EXECUTIVE COMMITTEE
Phillip A. Sharp, PhD
Chairperson
Institute Professor
Koch Institute for Integrative Cancer Research
Massachusetts Institute of Technology
Cambridge, MA

John D. Carpenten, PhD
Vice Chairperson
Chief Scientific Officer
Irell & Manella Cancer Center
Director’s Distinguished Chair
Morgan & Helen Chu Director’s Chair
Beckman Research Institute
Professor, Integrative Translational Sciences
City of Hope
Duarte, CA

Arnold J. Levine, PhD
Vice Chairperson
Professor Emeritus
Institute for Advanced Study
and Cancer Institute of New Jersey
Princeton, NJ

William G. Nelson, MD, PhD
Vice Chairperson
Director
Sidney Kimmel Comprehensive Cancer Center
Johns Hopkins University
Baltimore, MD

MEMBERS
Carlos L. Arteaga, MD
Lisa K. Simmons Distinguished Chair in Comprehensive Oncology
Director
UTSW Harold C. Simmons Cancer Center
Professor of Medicine
Associate Dean of Oncology Programs
Dallas, TX

Michael A. Caligiuri, MD
President
Deana and Steve Campbell Physician-in-Chief Distinguished Chair
City of Hope National Medical Center
Duarte, CA

Steven Carr, PhD
Senior Director of Proteomics and Institute Scientist
Broad Institute
Cambridge, MA

Jenny C. Chang, MD
Emily Herrmann Chair in Cancer Research and Director
Methodist Cancer Center at Houston Methodist Hospital
Houston, TX

Alan D. D’Andrea, MD
Director
Susan F. Smith Center for Women’s Cancers
Dana-Farber Cancer Institute
Cambridge, MA

Luis A. Diaz, Jr., MD
Head
Division of Solid Tumor Oncology
Grayer Family Chair
Memorial Sloan Kettering Cancer Center
New York, NY

S. Gail Eckhardt, MD
Associate Dean of Experimental Therapeutics
Baylor College of Medicine
Associate Director of Translational Research
Dan L Duncan Comprehensive Cancer Center
Houston, TX

Michael Fischbach, PhD
Liu (Liao) Family Professor of Bioengineering
Stanford University
Stanford, CA
ADVISORY COMMITTEES

Judy Garber, MD, MPH
Chief, Division for Cancer Genetics and Prevention
Dana-Farber Cancer Institute
Harvard Medical School
Cambridge, MA

Richard B. Gaynor, MD
President of Research and Development
BioNTech
Cambridge, MA

Laurie H. Glimcher, MD
President and CEO
Principal Investigator, Cancer Immunology and Virology
Richard and Susan Smith Professor of Medicine
Dana-Farber Cancer Institute
Harvard Medical School
Boston, MA

Nancy F. Goodman, JD
Executive Director and Founder
Kids v Cancer
Washington, DC

James L. Gulley, MD, PhD
Co-Director, Center for immuno-Oncology
Clinical Director
Center for Cancer Research
National Cancer Institute
Bethesda, MD

Michael B. Kastan, MD, PhD
Director
Duke Cancer Institute
Durham, NC

David Kaufman, MD, PhD
Partner
Third Rock Ventures
Boston, MA

David Kirsch, MD, PhD
Senior Scientist
Peter and Shelagh Godsoe Chair in Radiation Medicine
Princess Margaret Cancer Centre
Toronto, Ontario Canada

Guillermina (Gigi) Lozano, PhD
Chairman and Professor
University of Texas MD Anderson Cancer Center
Houston, TX

Lecia Sequist, MD, MPH
Landry Family Professor of Medicine
Harvard Medical School
Program Director, Cancer Early Detection and Diagnostics Clinic
Massachusetts General Cancer Center
Cambridge, MA

Arlene Sharpe, MD, PhD
George Fabyan Professor of Comparative Pathology
Co-Director, Harvard Institute of Translational Immunology
Co-Director, Evergrande Center for Immunologic Diseases
Harvard Medical School
Boston, MA

Laura K. Shawver, PhD
President and Chief Executive Officer
Capstan Therapeutics
San Diego, CA

Peter Sorger, PhD
Otto Krayer Professor
Department of Systems Biology
Head of the Harvard Program in Therapeutic Sciences - HiTS
Harvard Medical School
Cambridge, MA

David A. Tuveson, MD, PhD
Professor and Director
Cold Spring Harbor Laboratory Cancer Center
Cold Spring Harbor, NY
ADVISORY COMMITTEES

EMERITUS MEMBERS
Elizabeth H. Blackburn, PhD
Professor Emerita
The University of California, San Francisco
San Francisco, CA

Lisa Diller, MD
Chief Medical Officer
Dana-Farber Cancer Institute/ Boston Children’s Cancer and Blood Disorders Center
Cambridge, MA

William N. Hait, MD, PhD
Global Head of External Innovation
Janssen, Pharmaceutical Companies
of Johnson & Johnson
Raritan, NJ

William G. Kaelin, Jr., MD
Sydney Farber Professor of Medicine
Dana-Farber Cancer Institute,
Harvard Medical School
Boston, MA

Tak W. Mak, PhD
Chief Scientific Officer
Campbell Faily Institute
University of Toronto
Toronto, Ontario Canada

Andre Nussenzweig, PhD
Chief, Laboratory of Genome Integrity
NIH Distinguished Investigator
Center for Cancer Research
National Cancer Institute
Bethesda, MD

Roderic I. Pettigrew, PhD, MD
CEO of engineering Health (enHealth)
Robert A. Welch Professor and Executive Dean
School of Engineering Medicine
Texas A&M University and Houston
Methodist Hospital
Houston, TX

Cecil B. Pickett, PhD
President, R&D (retired)
Biogen Inc.
Sarasota, FL

Carol L. Prives, PhD
Da Costa Professor
Columbia University
New York, NY

HEALTH EQUITY COMMITTEE
John D. Carpten, PhD
Chairperson
Chief Scientific Officer
Irell & Manella Cancer Center
Director’s Distinguished Chair
Morgan & Helen Chu Director’s Chair
Beckman Research Institute
Professor, Integrative Translational Sciences
City of Hope
Duarte, CA

Andrew T. Chan, MD, MPH
Professor of Medicine
Harvard Medical School
Cambridge, MA

Margaret Foti, PhD, MD (hc)
Chief Executive Officer
American Association for Cancer Research
Philadelphia, PA

Shawna Hudson, PhD
Professor and Research Division Chief,
Department of Family Medicine
and Community Health
Rutgers Robert Wood Johnson Medical School
New Brunswick, NJ
Chanita Hughes-Halbert, PhD
Vice Chair for Research and Professor,
Department of Population and Public Health Sciences
Associate Director for Cancer Equity
Norris Comprehensive Cancer Center
University of Southern California
Los Angeles, CA

Elizabeth M. Jaffee, MD
Deputy Director
Sidney Kimmel Comprehensive Cancer Center
Johns Hopkins University
Baltimore, MD

Guillermina (Gigi) Lozano, PhD
Chairman and Professor
University of Texas MD Anderson Cancer Center
Houston, TX

William G. Nelson, MD, PhD
Director
Sidney Kimmel Comprehensive Cancer Center
Johns Hopkins University
Baltimore, MD

John Whyte, MD, MPH
Chief Medical Officer
WebMD
New York, NY

Raymond M. Williams, JD
Senior Counsel
DLA Piper
Philadelphia, PA

David R. Wilson, PhD
Associate Vice President Health Research Chair
Department of Indigenous Health
School of Medicine and Health Sciences
University of North Dakota
Grand Forks, ND

Karen M. Winkfield, MD, PhD
Executive Director
Meharry-Vanderbilt Alliance
Nashville, TN

Robert A. Winn, MD
Director
Massey Cancer Center
Virginia Commonwealth University
Richmond, VA
THOMAS J. ALBERT
V.P. Global Head of Research and Early Development
Roche Diagnostics

Tom received his BS in Chemistry from the University of Michigan and a PhD in Molecular Toxicology from the University of Wisconsin. Tom was an early employee of NimbleGen Systems, which was acquired by Roche in 2007. Since then, Tom has held various R&D leadership positions in Roche Diagnostics. He has led teams that have developed and commercialized several important novel genomics technologies, including whole genome sequencing methods, hybrid capture for targeted sequencing, whole exome sequencing, and whole proteome peptide arrays. Tom is currently Global Head of Research and Early Development for Roche Diagnostics, leading the development of next generation clinical diagnostic technologies, workflows, and assays.
JOHN D. CARPTEN, PHD
Chief Scientific Officer
Irell & Manella Cancer Center

Director’s Distinguished Chair
Morgan & Helen Chu Director’s Chair
of the Beckman Research Institute

Professor, Department of Integrative Translational Sciences
City of Hope

Dr. John D. Carpten currently serves as Chief Scientific Officer for the City of Hope, where he also serves as Director of the Comprehensive Cancer Center and Director of Beckman Research Institute. Prior to his current appointment, he served as Professor and Chair for the Department of Translational Genomics, Keck School of Medicine, University of Southern California (USC), Los Angeles, CA. From 2003-2015, he served as Professor and Deputy Director of Basic Sciences at the Translational Genomics Research Institute (TGen), Phoenix, AZ. Dr. Carpten attended Lane College, a Historically Black College, in Jackson, TN where he completed his BS. degree in Biology in 1988. He received his PhD in Molecular, Cellular and Developmental Biology from the Ohio State University in 1994. After completing his postdoctoral fellowship at the National Human Genome Research Institute (NHGRI) at the NIH, Bethesda, MD in 1999, he was promoted to the tenure track at NHGRI in 1999.

Dr. Carpten’s expertise spans a very broad range of research disciplines including genome science, tumor profiling, cancer cell biology, functional genomics, health disparities, and precision medicine. The primary goal of Dr. Carpten’s research program is to discover molecular alterations in cancer and to translate these findings into new approaches for prevention, diagnosis, and treatment. In support of this goal, his program is actively involved in the development and application of cutting edge technologies and novel bioinformatics approaches for discovery research. His work has impacted our understanding of a variety of cancer types particularly those that disproportionately affect underrepresented minorities including prostate cancer, breast cancer, colorectal cancer, multiple myeloma, and pediatric cancers. Dr. Carpten has co-authored over 200 peer reviewed publications in scientific journals that include Science, Nature, Nature Genetics, Cancer Cell, Cancer Research, Molecular Cancer Therapeutics, and the New England Journal of Medicine.

Dr. Carpten has been honored with numerous awards. He was named a Science Trailblazer by Spectrum Magazine in 2006, and was awarded Susan G. Komen Distinguished Lectureship on the Science of Cancer Health Disparities in 2014 for his untiring work in ensuring that all people are equally represented in science and innovative healthcare. Dr. Carpten was also awarded the 2018 AACR MICR Jane Cooke Wright Lectureship for his outstanding research in cancer disparities and his efforts in developing the careers of minority scientists. In 2019, he serves as Program Committee Chair for the AACR Annual Conference in Atlanta, GA, which included over 21,500 international participants. In 2021 he was inducted into the AACR Fellows of the Academy, and also became a member of the AACR Board of Directors. He also currently serves as a member of the National Cancer Institute Board of Scientific Counselors, a member of the Scientific Advisory Committee for Stand Up To Cancer, a member of the Board of Directors for Tower Cancer Research Foundation, and as a member of the Scientific Advisory Board for Break Through Cancer Foundation. In 2021, Dr. Carpten received a presidential appointment to serve as Chair for the National Cancer Advisory Board.
Christina Curtis, PhD is the RZ Cao Professor of Medicine, Genetics, and Biomedical Data Science and Director of AI and Cancer Genomics at Stanford University. Her research has led to new paradigms in understanding how human tumors evolve and metastasize and has redefined the molecular map of breast cancer.

Dr. Curtis has been the recipient of multiple awards, including the NIH Director’s Pioneer Award and the AACR Award for Outstanding Achievement in Basic Science. She is a Kavli Fellow of the National Academy of Sciences, a Susan G. Komen Scholar, and a Chan Zuckerberg Biohub Investigator.

Dr. Curtis serves on the editorial boards of numerous journals, including Science and Cancer Discovery, as an advisor to biotech and biopharma, and as a member of the AACR Board of Directors.
Darrell Irvine, PhD, is a Professor at the Massachusetts Institute of Technology and an Investigator of the Howard Hughes Medical Institute. He also serves on the steering committee of the Ragon Institute of Massachusetts General Hospital, MIT, and Harvard. His research is focused on the application of engineering tools to problems in cellular immunology and the development of new materials for vaccine and drug delivery. Major efforts of the laboratory are directed toward vaccine development for HIV and cancer immunotherapy.

Dr. Irvine’s work has been recognized by numerous awards, including election as a Member of the National Academy of Medicine, Fellow of the Biomedical Engineering Society, Fellow of the American Institute for Medical and Biological Engineering, and appointment as an investigator of the Howard Hughes Medical Institute. He is the author of over 200 publications, reviews, and book chapters, and an inventor on numerous patents.
Arnold J. Levine, PhD, Professor Emeritus at the Institute for Advanced Study in Princeton, N.J., received his BA in Biology from Harpur College, SUNY, his PhD from the University of Pennsylvania, and trained as a Postdoctoral Fellow at the California Institute of Technology in the laboratory of Robert Sinsheimer. In 1968, Dr. Levine joined Princeton University as an Assistant Professor, becoming a Professor of biochemistry in 1976. In 1979, he moved to the SUNY Stony Brook School of Medicine to Chair the Department of Microbiology, the same year he and others discovered the p53 tumor suppressor protein, a molecule that inhibits tumor development. He returned to Princeton in 1984. Between 1984 and 1996, he presided over a major expansion of Princeton’s life sciences programs as Chairman of the Department of Molecular Biology. From 1998 to 2002, Dr. Levine was President of The Rockefeller University.

Professor Levine established the Simons Center for Systems Biology at the Institute for Advanced Study, concentrating on research at the interface of molecular biology and the physical sciences. He helped shape U.S. science priorities as chairman of an influential 1996 review panel on federal AIDS research funding. He also chaired the National Cancer Advisory Board, which advises the National Academy of Sciences and its Institute of Medicine on cancer policy. Levine’s work has been recognized with numerous honors and awards. He was elected to the National Academy of Sciences in 1991, and to its Institute of Medicine in 1995. In April 2001, Levine received the first Albany Medical Center Prize in Medicine and Biomedical Research, then the largest annual prize in science or medicine offered in the United States.

The research paths of the Levine group have provided clear evidence that the p53 pathway plays a central role in the prevention of human cancers and that polymorphic variations in components of the pathway can influence individual responses to environmental mutagens, age of cancer onset, sexual dimorphisms in cancers, response to therapy and survival times. This research has helped to uncover the genetic origins of cancer and focus drug discovery on a rational path to treat cancers.
Aviv Regev is the head of Genentech Research and Early Development. Prior to Genentech, Regev served as Chair of the Faculty and Core Member at the Broad Institute of MIT and Harvard, and as Professor of Biology at MIT and Investigator at the Howard Hughes Medical Institute. She is a founding co-chair of the Human Cell Atlas.

Regev is a leader in deciphering molecular circuits that govern cells, tissues and organs in health and their malfunction in disease. Her lab has pioneered foundational experimental and computational methods in single-cell genomics, working toward greater understanding of the function of cells and tissues in health and disease, including autoimmune disease, inflammation and cancer.

She is a member of the National Academy of Sciences and National Academy of Medicine, and a Fellow of the International Society of Computational Biology. She is a recipient of multiple prizes and honors, including most recently the 2023 L’Oreal Women In Science award.
Peter Sorger is a Professor of Systems Biology at Harvard Medical School and Head of the Harvard Program in Therapeutic Sciences, an interinstitutional effort to advance the fundamental science used to develop and test therapeutic hypotheses, identify and prioritize active molecules, and evaluate new drugs via precision clinical trials. He received his PhD from Trinity College, Cambridge U.K. for research on heat shock genes under the supervision of Hugh Pelham and trained as postdoctoral fellow at the University of California, San Francisco with Harold Varmus. Sorger has co-founded software and biopharmaceutical companies and is an advisor to multiple public and private corporations and research institutes in the US and Europe. Prior to joining HMS, Peter served as a Professor of Biology and Biological Engineering at MIT.

Peter’s research focuses on the signal transduction networks controlling cell proliferation and death, dysregulation of these networks in cancer and inflammatory diseases, and the interplay between tumor cell intrinsic mechanisms and immune surveillance in response to therapy. This involves the use of both classical algorithms and machine-learning/AI to create quantitative models of disease processes in cell lines, mouse models, and human specimens. The Sorger group also develops open-source software for analyzing biological networks and drug mechanism of action and it participates in multiple collaborative programs working to improve data access and reproducibility. Recent research extends the groups measure-model approach to the development of drug response biomarkers using highly multiplexed tissue imaging and digital pathology.
ABOUT SU2C

STAND UP TO CANCER: A GROUNDBREAKING MOVEMENT TRANSFORMING CANCER RESEARCH

Founded in 2008 by women leaders in the entertainment and media industries, Stand Up To Cancer is a groundbreaking movement that accelerates cancer research and gets new therapies to patients quickly to save lives now.

Since our founding, Stand Up To Cancer has supported more than 236 science projects with nearly $800 million pledged for these efforts. We have funded 142 team science projects, as well as 94 individuals through our Innovative Research Grants for early-career researchers and other grants. And more than 270 clinical trials enrolling more than 292,350 patients have been launched.

SU2C’s research projects bring together top investigators from different institutions to accelerate the discovery and delivery of new therapies, and they have evolved to include an array of industry collaborations, as well.

Focusing on accelerating the development of new therapies, new methods of cancer interception, and new approaches to making these treatments and screening available to all, we have created grant mechanisms that fund meaningful team-based research projects. Collectively, they offer opportunities for cancer science and cancer treatment questions to be answered using a variety of techniques.

• Our flagship Dream Team grants fund multidisciplinary, multi-institutional, collaborative teams to take innovative ideas from concept to patient.

• Research Teams bring together scientists from different institutions answering important questions about cancer research and treatment.

• SU2C Convergence™ Grants unite physical and computational scientists with oncologists to ask fundamental questions about cancer biology, producing insights that can be rapidly applied for patient benefits.

• SU2C Catalyst® teams use funding, compounds, and other materials from the pharmaceutical and biotechnology industries to rapidly assess new treatment combinations.

• Innovative Research Grants support cutting-edge cancer research that might not receive funding through traditional channels.

• And the Phillip A. Sharp Innovation in Collaboration Award, the Ziskin Prize, the Jim Toth Sr. Breakthrough Lung Cancer Research Award, the Peggy Prescott Early Career Award, and the Golden Arrow Award provide support for smaller projects to rapidly explore the newest and most exciting ideas emerging from the cancer research community.

To further support development of cancer treatments that are effective across all communities, the SU2C Health Equity Committee continues to help us find ways to lower the barriers of access to new treatments for all cancer patients.

With mounting evidence for the need to develop precision medical treatments and interventions to serve diverse patient populations, we are supporting the inclusion of historically under-represented racial and ethnic minority populations in clinical trials that we fund. SU2C staff continue to produce educational materials for the public to drive awareness of clinical trials and participation, as well.
STAND UP TO CANCER

DREAM TEAMS
SU2C DREAM TEAMS

SU2C COLORECTAL CANCER HEALTH EQUITY DREAM TEAM DT6214
Community Collaboration to Advance Racial/Ethnic Equity in CRC Screening
GRANT TERM: September 2021– August 2024

KEY PERSONNEL
Team Leader: Jennifer Haas, MD, MSc
Massachusetts General Hospital

Co-Leader: Anton Bilchik, MD, PhD, MBA
Providence Saint John’s Cancer Institute Saint John’s Cancer Institute

Co-Leader: Folasade P. May, MD, PhD
University of California, Los Angeles

Principal: Sapna Syngal, MD, MPH
Dana-Farber Cancer Institute

Principal: Staci J. Wendt, PhD
Providence Research Network

Principal: Bill Wright, PhD
Providence Research Network

Principal: Kelley Le Beaux, MS
Great Plains Tribal Leaders Health Board

Project Manager: Suzanne Brodney, PhD
Massachusetts General Hospital
Sbrodney@mgh.harvard.edu

Project Manager: Gina Johnson
Great Plains Tribal Leaders Health Board

Project Manager: Jennifer Rountree, PhD
Providence Research Network

Project Manager: Jessica Tuan, MPH
University of California, Los Angeles

Advocate: Marsha Baker
Fight CRC

Advocate: Anjee Davis
Fight CRC

Advocate: Cathy Jeffries
Great Plains Tribal Leaders Health Board

Advocate: Kimberly Schoolcraft
Fight CRC

Advocate: Helena L Williams, RN, BSN
Board Chair, Gailen and Cathy Reevers Center for Community Empowerment
PURPOSE
This project is identifying communities near anchor medical institutions that serve minority and medically underserved communities to pinpoint unique local needs and turn at-risk communities into Stand Up To Cancer Zones® with high rates of colorectal cancer screening. The Team will provide free colorectal cancer testing in the zones and develop better approaches to colorectal cancer interception.

SPECIFIC AIMS
Aim 1. Develop and conduct a two-arm, multi-level, multicomponent, pragmatic trial randomized at the level of the community health center to compare two population outreach approaches, Cologuard or fecal immunochemical test (FIT), to increase CRC screening.

Aim 2. Conduct patient follow-up after an abnormal Cologuard or FIT screening test result.

Aim 3. Mentor a new generation of underrepresented researchers in medicine and public health focused on CRC prevention and control.

Aim 4. Design and deploy a community-based campaign to increase CRC screening rates in a demographically diverse impact zone within Los Angeles County.

KEY PROGRESS
The Team has successfully launched the CARES trial. Patients will receive a FIT or Cologuard kit in the mail. Any patient who returns a positive screening test (FIT or Cologuard) will be offered patient navigation to help them complete a diagnostic colonoscopy and the opportunity to complete a family cancer risk assessment. In March 2023, the CHATs launched their community outreach campaign to increase CRC screening rates in the South LA and Santa Monica impact zones, targeting community members of color who may be eligible for CRC screening.

CLINICAL TRIALS
Community Collaboration to Advance Racial/Ethnic Equity in CRC Screening; NCT05714644; Enrolling by invitation

A larger version of this graphic is available in the appendix.

ADDITIONAL FUNDERS

THE S2C SCIENTIFIC SUMMIT
CORONADO, CALIFORNIA JANUARY 26–29 2024
SU2C HEALTH EQUITY BREAKTHROUGH TEAM BT6209
DISRUPT: Diversity and Inclusion in Research Underpinning Prevention and Therapy Trials
Grant Term: May 2021 – April 2025

KEY PERSONNEL
Team Leader: Nina A. Bickell, MD, MPH
Icahn School of Medicine at Mount Sinai

Co-Leader: Karen Hubbard, PhD
The City College of New York

Principal: Bruce Rapkin, PhD
Albert Einstein College of Medicine

Principal: Mary Beth Terry, PhD
Columbia University

Project Manager: Kimberly Burke
Columbia University
krb2160@cumc.columbia.edu

Project Manager: Kelly Smith Elgart
The City College of New York
kelgart@ccny.cuny.edu

Project Manager: Rita Ravichandar
Albert Einstein College of Medicine
rita.ravichandar@einsteinmed.edu

Project Manager: Radhi M. Yagnik, MS
Icahn School of Medicine at Mount Sinai
Radhi.Yagnik@mountsinai.org

PURPOSE
The Breakthrough Team is working to combat low BIPOC (Black Indigenous People of Color) participation in clinical trials in the US caused by the healthcare system, availability and knowledge of clinical trials, among many other reasons. Multidisciplinary teams from four New York City institutions are working together to improve diversity and inclusion in clinical trials through disruptive approaches at the community, provider, system and patient levels, and basic and translational scientist levels.

SPECIFIC AIMS
Aim 1. Disrupt and address community norms regarding participation in cancer research.

Aim 2. Disrupt current clinical trial recruitment making cancer clinical trials an easy and accessible choice for patients.

Aim 3. Disrupt norms in clinical trial design and methods by supporting basic science discovery that will increase its relevance to questions essential to reducing cancer health inequities.
KEY PROGRESS
The Team’s Community, Care Delivery and Research Community Work Groups (WG) are establishing inter-institutional and community collaborations to: integrate community perspectives and approaches to message about clinical trials and medical research, develop a robust website for outreach and public information about clinical trials; create a generalizable IT approach to identify patients at times when trials are most relevant and find trials that may be most relevant for patients; and, implement a pilot award program incorporating community scientists into the research question development. In the past 6 months, in addition to the 25+ educational outreach sessions on messaging about clinical trials our community members, researchers and oncologists have conducted, community members across a broad sweep of our catchment areas are preparing a video for expanded wide-scale outreach that will further enhance our impact on community norms regarding cancer clinical trials. In April 2023, the Care Delivery WG began a trial using algorithms to identify patients at treatment decision points and recruit breast cancer patients. We started at Mount Sinai and have recruited 24 patients to date of whom 2 enrolled in a clinical trial. The Research Community team completed the inaugural Community Scientist Certificate course and launched a health equity seminar series for undergraduate, graduate, and postdoctoral trainees. They have awarded and funded two pilot awards (Cohort 1) and have recently announced 3 new pilots (Cohort 2) to be funded.

CLINICAL TRIALS
SU2C DREAM TEAMS

SU2C CANADA-LUSTGARTEN FOUNDATION-PANCREATIC CANCER CANADA PASS CONVERGENCE DREAM TEAM CV6179, CV6185
PASS-01 - Pancreatic Adenocarcinoma Signature Stratification for Treatment-01
Grant Term: August 2020 - October 2024

KEY PERSONNEL
Team Leader: Jennifer Knox, MD
University Health Network

Co-Leader: Elizabeth Jaffee, MD
John Hopkins University

Principal: Andrew Aquirre, MD, PhD
Dana-Farber Cancer Institute

Principal: Steven Gallinger, MD
Ontario Institute for Cancer Research

Principal: Daniel King, MD
Northwell Health Center for Advanced Medicine

Principal: Daniel Laheru, MD
Johns Hopkins University

Principal: Eileen O’Reilly, MD
Memorial Sloan Kettering Cancer Center

Principal: Kimberley Perez, MD
Dana-Farber Cancer Institute

Principal: Michael Pishvaian, MD, PhD
Johns Hopkins University

Principal: Daniel Renouf, MD, MPH
British Columbia Cancer Agency

Principal: Kenneth Yu, MD
Memorial Sloan Kettering Cancer Center

Collaborator: David Tuveson, MD, PhD
Cold Spring Harbor Laboratory

Project Manager: Anna Dodd
University Health Network
Anna.Dodd@uhn.ca

PURPOSE
The PASS-01 team is working to identify patient-specific biomarkers predictive of greater benefit with modified FOLFIRINOX (mFFX) versus gemcitabine/nab-paclitaxel (GA), the two first-line combination chemotherapy regimens given to patients with advanced pancreatic cancer with good performance status. Using a suite of correlative studies including WGTS and PDO drug sensitivity and immune markers, the team is not only using information gathered for each patient’s clinical trajectory but is also building a rich discovery set for future analysis. While patients move through first-line therapy, the team turns around WGTS and PDO data quickly in order to provide useful information to clinicians at time of progression. This is followed by second-line therapy that is potentially directed to match the molecular or PDO profile if targetable vulnerabilities are identified.
SPECIFIC AIMS

Aim 1. Determine the PFS benefit of modified FOLFIRINOX (mFFX) compared with gemcitabine/nab-paclitaxel (GA) as first-line treatment in metastatic pancreatic ductal adenocarcinoma (PDAC) in a randomized phase II trial.

Aim 2. Explore biomarker correlation to treatment response and patient outcomes.

Aim 3. Evaluate concordance between patient response and outcomes with model (PDO) profiles, signatures, and pharmacotyping.

Aim 4. Compile a detailed genomic annotation of advanced PDAC patients on first-line chemotherapy.

KEY PROGRESS

For the clinical trial, all PASS-01 subsites have been activated; over 110 patients have been enrolled. This is a complex study requiring significant and timely coordination between centers to perform analyses on patient samples within the planned time frames. To maximize learnings and clinical impact, all patient results are presented and discussed at molecular rounds. This provides clinicians with a consensus opinion as to how best to move forward with precision treatment when possible. For these patients, as targetable vulnerabilities are identified, treatment is followed by second-line therapy that is potentially directed to match the molecular profile and/or drug sensitivity shown in the PDO models.

CLINICAL TRIALS

A Randomized Multicentre Phase II Trial to Evaluate the Two Standard Chemotherapy Regimens, Modified FOLFIRINOX (mFFX) and Gemcitabine/ Nab-Paclitaxel (GA), in Patients With Untreated Metastatic Pancreatic Ductal Adenocarcinoma; NCT04469556; Recruiting

SU2C DREAM TEAMS

THE SU2C SCIENTIFIC SUMMIT

CORONADO, CALIFORNIA JANUARY 26-29 2024
SU2C CANADA METASTATIC BREAST CANCER DREAM TEAM DT5745
Targeting mRNA Translation to Effectively Treat Metastatic Breast Cancer
Grant Term: July 2019 - September 2022, administered by the American Association for Cancer Research

KEY PERSONNEL
Team Leader: Nahum Sonenberg, PhD
McGill University

Co-Leader: Michael N. Pollak, MD
Lady Davis Institute for Medical Research

Principal: Lynne-Marie Postovit, PhD
Queens University

Principal: Poul H. B. Sorenson, MD, PhD
BC Cancer Research Institute

Project Manager: Harvey W. Smith, PhD
McGill University
harvey.smith2@mcgill.ca

Advocate: Candace Cook

Advocate: Lynn Gentile
Lynn and Joe Gentile Hope Fund

PURPOSE
The SU2C Canada Metastatic Breast Cancer Dream Team focused on a novel drug candidate that blocks abnormal translation: the dual MNK1/2 inhibitor eFT508 (tomivosertib). A Phase Ib trial of eFT508 in eligible patients with metastatic breast cancer (any subtype) not responsive to standard-of-care therapies was completed.

SPECIFIC AIMS
Aim 1. Run clinical trial of the MNK inhibitor EFT508 in patients with metastatic breast cancer.

Aim 2. Conduct pharmacodynamic studies of the MNK inhibitor EFT508 in patients with metastatic breast cancer.

KEY PROGRESS
The Team established the safety and tolerability of the tomivosertib/paclitaxel combination, in the first clinical trial that tested the combination of a MNK inhibitor with a cytotoxic agent. Preliminary correlative analyses showed that cytotoxic immune cells were recruited to metastatic tumors in tomivosertib-treated patients.

CLINICAL TRIALS
Trial to Assess the Safety, Pharmacodynamic Effects, Pharmacokinetics, and Efficacy of the MNK Inhibitor Tomivosertib (eFT508) in Combination With Paclitaxel, Following a Run-In Period of Tomivosertib Monotherapy, in Patients With Advanced Breast Cancer; NCT04261218; Completed

FUNDERS
SU2C MEG VOSBURG T-CELL LYMPHOMA DREAM TEAM DT6164
Tailoring CAR-based Immunotherapy Strategies to T-Cell Lymphoma
Grant Term: March 2019 – August 2023, administered by the American Association for Cancer Research

KEY PERSONNEL
Team Leader: Helen E. Heslop, MD
Baylor College of Medicine

Co-Leader: Gianpietro Dotti, MD
University of North Carolina at Chapel Hill

Principal: Bayard L. Powell, MD
Wake Forest University Health Sciences

Principal: Katy Rezvani, MD, PhD
The University of Texas MD Anderson Cancer Center

Project Manager: Reynaldo Herrera
Baylor College of Medicine
Reynaldo.Herrera@bcm.edu

Advocate: Bambi Grilley
Baylor College of Medicine

Advocate: Ruth Sorelle
Baylor College of Medicine

Advocate: Patty Spears
University of North Carolina at Chapel Hill

PURPOSE
The T-Cell Lymphoma Dream Team is testing the safety and potency of different types of CAR-engineered immune cells directed to different target molecules on the lymphoma cells. In addition to CAR-engineered immune cell-based therapies, they are also working to determine whether such therapies can be made available as a banked “off-the-shelf” product.

SPECIFIC AIMS
Aim 1. Conduct a series of phase I clinical trials of CAR-ACT targeting different T-cell antigens in patients with resistant TCLs.

Aim 2. Identify factors that shape responses to CAR-ACT and thus inform the next generation of immune cell engineering.

Aim 3. Test additional modifications of CAR-ACT to improve their function against resistant TCLs.
KEY PROGRESS
The Team continues to enroll patients in their clinical trial testing the sequential administration of CART cells targeted to a protein called CD30. This sequential administration is being explored to prolong the therapeutic benefit of CAR T-cells. They developed an alternative clinically applicable method to manufacture functional CD7 CAR T cells which can resist CAR-directed fratricide. After confirming that the CD7 CAR T cells manufactured using this method can expand, persist and lead to tumor responses without evidence of fratricide, the Team has moved forward with this approach in a clinical trial called CRIMSON-NE. In addition, the team has developed a novel strategy to genetically modify cord blood (CB)-derived natural killer (NK) cells to express a CAR. In light of promising laboratory results, they are designing a phase I trial to study the safety and efficacy of these CAR-NK cells.

CLINICAL TRIALS
Phase I Study of Relapsed CD30 Expressing Lymphoma Treated With CD30 CAR T Cells (RELY-30); NCT02917083; Recruiting

Phase I Study of the Administration of T Lymphocytes Co-expressing the CD30 Chimeric Antigen Receptor (CAR) and CCR4 for Relapsed/Refractory CD30+ Hodgkin Lymphoma and CD30+ Non-Hodgkin Lymphoma; NCT03602157; Recruiting

Phase II Study of the Administration of T Lymphocytes Expressing the CD30 Chimeric Antigen Receptor (CAR) for Relapsed/Refractory CD30+ Peripheral T-Cell Lymphoma; NCT04083495; Recruiting

Phase I Study Evaluating the Safety and Activity of Allogeneic Chimeric Antigen Receptor Epstein-Barr Virus-Specific T Lymphocytes (CD30.CAR-EBVSTs) in Patients With Relapsed or Refractory CD30-Positive Lymphomas; NCT04288726; Recruiting

Cell Therapy for High Risk T-cell Malignancies Using CD7-Specific CAR Expressed on Non-Edited T Cells (CRIMSON-NE); NCT03690011; Recruiting
SU2C DREAM TEAMS

SU2C MULTIPLE MYELOMA DREAM TEAM DT6046
Screening and Interception of Precursor Myeloma
Grant Term: September 2018 – August 2022, administered by the American Association for Cancer Research

KEY PERSONNEL
Team Leader: Irene M. Ghobrial, MD
Dana-Farber Cancer Institute

Co-Leader: Ivan M. Borrello, MD
Johns Hopkins University School of Medicine

Principal: Gad A. Getz, PhD
Broad Institute

Principal: Jeremiah A. Johnson, PhD
Massachusetts Institute of Technology

Principal: Prashant Kapoor, MBBS
Mayo Clinic

Principal: Timothy R. Rebbeck, PhD
Harvard T. H. Chan School of Public Health

Project Manager: Julia Colchie
Dana-Farber Cancer Institute
julia_colchie@dfci.harvard.edu

Advocate: Jenny M. Ahlstrom
Crowd Care Foundation

Advocate: Cheryl A. Boyce (deceased)

Advocate: Marie Cherisol

Advocate: Rebecca A. Nutley

Advocate: Kelly Smith

Advocate: Yaphet Smith

PURPOSE
The SU2C Multiple Myeloma Dream Team’s overarching hypothesis is that early detection of precursor myeloma conditions (MGUS/SM) in a high-risk population, along with a good understanding of the molecular and immune factors that lead to disease progression, will lead to effective strategies that intercept disease progression and improve survival.

SPECIFIC AIMS
Aim 1. Establish a screen-detected prospective cohort study of monoclonal gammopathy of undetermined significance (MGUS)/smoldering multiple myeloma (SMM) patients at risk for multiple myeloma (MM) (Predicting Progression of Developing Myeloma in a High-Risk Screened Population, PROMISE).

Aim 2. Dissect genomic characteristics of clonal evolution from MGUS/SMM to MM and germline variants of high-risk individuals at risk of developing MGUS/SMM.
Aim 3. Evaluate the role of race, obesity, and health-related comorbidities on progression from pre-MM states to MM.

Aim 4. Define the permissive tumor microenvironment in MGUS/SMM.

Aim 5. Develop novel imaging and therapeutic approaches to detect and intercept disease progression at the precursor stages of the disease.

KEY ACCOMPLISHMENTS
The Team’s PROMISE Study is the largest US screening study, screening individuals over age 30 who are at higher risk for myeloma and its precursors, such as individuals of African descent and individuals who have a first degree relative with a blood cancer. The Team observed a prevalence of 36% monoclonal gammopathies in the high-risk population screened age 50 and older and identified a new category of monoclonal gammopathy termed monoclonal gammopathy of indeterminant potential, or MGIP, in 29% of high-risk individuals age 50 and older. The Team used single-cell RNA sequencing, whole-genome sequencing, ATAC sequencing, plasma proteomic profiling, and MALDI-TOF mass spectrometry to analyze the molecular underpinnings of disease in tumor and immune cells. They differentiated malignant from normal plasma cells, uncovered novel associations between tumor immunophenotype and cytogenetics, developed a framework to prioritize novel targets for therapeutics development, described differences between marrow-resident and circulating plasma cells, and discovered abnormal proliferation in the marrow-resident normal plasma cells of patients.

CLINICAL TRIALS
Predicting Progression of Developing Myeloma in a High-Risk Screened Population (PROMISE); NCT03689595; Recruiting

FUNDER
Optum
SU2C DREAM TEAMS

SU2C-LUNGEVITY FOUNDATION-AMERICAN LUNG ASSOCIATION LUNG CANCER INTERCEPTION DREAM TEAM DT6045

Intercept Lung Cancer Through Immune, Imaging, and Molecular Evaluation (InTIME)

Grant Term: March 2018 - February 2023, administered by the American Association for Cancer Research

KEY PERSONNEL

Team Leader: Avrum E. Spira, MD
Boston University

Co-Leader: Steven M. Dubinett, MD
University of California, Los Angeles

Principal: Charles Swanton, MD, PhD
Francis Crick Institute

Principal: Carina Mari Aparici, MD
Stanford University

Principal: Julie R. Brahmer, MD
Johns Hopkins University

Principal: Matthew L. Meyerson, MD, PhD
Dana-Farber Cancer Institute

Project Manager: Erin E. Kane, PhD
Boston University
erinkane@bu.edu

Advocate: Marcia Horn, JD
International Cancer Advocacy Network

Advocate: Kim Norris
Lung Cancer Foundation of America

PURPOSE

The Lung Cancer Interception Dream Team is applying novel molecular, imaging, and immunological approaches prospectively collected biospecimens to understand the biology of lung cancer precursor lesions, early-stage tumors, and the associated airway field to develop non-invasive biomarkers that predict progression, recurrence or response to therapy. The hypothesis is that premalignant lesions bear specific genomic and transcriptomic aberrations, and a subset of these lesions escape immune surveillance and progress to invasive cancer.

SPECIFIC AIMS

Aim 1. Establish a Pre-Cancer Genome Atlas (PCGA) to identify genomic, transcriptomic, and immune determinants of lung squamous and adenomatous premalignancy.

Aim 2. Identify molecular and imaging markers that distinguish malignant from benign indeterminate pulmonary nodules and circulating DNA markers that predict tumor recurrence.

Aim 3a. Develop molecular biomarkers to enable precision interception approaches in ongoing clinical trials of lung cancer interception.

Aim 3b. Discover baseline biomarkers predictive of therapeutic response to neoadjuvant therapy with immune checkpoint inhibitors and temporal markers of therapeutic efficacy.

Aim 3c. Assess therapeutic efficacy of adjuvant chemotherapy and immunotherapy among patients with subclinical evidence of lung cancer recurrence using ctDNA.
KEY ACCOMPLISHMENTS
The Team assembled unique cohorts of premalignant lung squamous and adenocarcinoma lesions. Analyses of these samples indicated that the immune microenvironment is an important determinant of premalignant progression for both lung squamous and adenocarcinoma. As part of the Team’s effort to develop diagnostic tools to detect lung cancer early, they have been analyzing nasal swabs. Preliminary results showed that nasal gene expression was similar in lung cancer patients regardless of whether they smoked or not. The Team developed an assay for detecting circulating DNA called the Archer Diagnostics MRD assay. This assay has been used in two international phase III trials (MERMAID-01 and MERMAID-02) where the presence of ctDNA was used to determine whether the patient will be given additional treatment (combination chemotherapy and immunotherapy, immunotherapy or chemotherapy alone).

CLINICAL TRIALS
Neoadjuvant Nivolumab, or Nivolumab in Combination with Ipilimumab, in Resectable Non-small Cell Lung Cancer; NCT02259621; Active, not recruiting

18F-FSPG PET/CT and Integrated Biomarkers for Early Lung Cancer Detection in Patients With Indeterminate Pulmonary Nodules; NCT03824535; Recruiting

Phase III, Randomized, Multicenter, Double-Blind, Placebo-Controlled Study to Determine the Efficacy of Adjuvant Durvalumab in Combination With Platinum-Based Chemotherapy in Completely Resected Stage 2-3 NSCLC (MERMAID-1); NCT04385368; Completed

FUNDERS

SU2C DREAM TEAMS
SU2C-LUSTGARTEN FOUNDATION PANCREATIC CANCER INTERCEPTION DREAM TEAM DT6047

Intercepting Pancreatic Cancer in High-Risk Cohorts
Grant Term: February 2018 – July 2023, administered by the American Association for Cancer Research

KEY PERSONNEL

Team Leader: Anirban Maitra, MBBS
The University of Texas MD Anderson Cancer Center

Co-Leader: Michael G. Goggins, MD
Johns Hopkins University

Co-Leader: Scott M. Lippman, MD
University of California, San Diego

Principal: Tyler Jacks, PhD
Massachusetts Institute of Technology

Principal: Gloria M. Petersen, PhD (deceased)
Mayo Clinic

Principal: Sapna Syngal, MD
Dana-Farber Cancer Institute

Project Manager: Pamela Constantinou Papadopoulos, PhD
The University of Texas MD Anderson Cancer Center
pcpapadopoulos@mdanderson.org

Advocate: Barbara J. Kenner, PhD
Kenner Family Research Fund

Advocate: Scott Nelson

PURPOSE

The SU2C-Lustgarten Foundation Pancreatic Cancer Interception Dream Team’s goal is to intercept pancreatic cancer in high-risk patients through early detection and targeted immune prevention. Working first with relatives of people with pancreatic cancer, this team seeks to create a test to screen people at risk for pancreatic cancer to potentially detect cancer earlier and offer the most effective treatment options.
SPECIFIC AIMS

Aim 1. Enhance access to germline testing and screening protocols for cancer interception in high-risk cohorts and combine this with novel imaging algorithms to diagnose early PDAC lesions that are currently undetectable.

Aim 2. Intercept pancreatic cancer in high-risk cohorts using targeted immune prevention.

Aim 3. Develop a blood test for identifying individuals at risk for PDAC who would be candidates for early detection using imaging.

KEY PROGRESS

The Team embarked on the GENetic Education Risk Assessment and Testing (GENERATE) study, designed to increase early PDAC diagnosis by enhancing access to germline testing and screening in high-risk cohorts. Close to 90% of the 601 participants assigned to one of two study arms opted to undergo genetic screening. In addition, the Team is testing the potential of a peptide vaccine in individuals who have a higher risk of developing pancreatic cancer. Preliminary results confirmed that the immune system of these vaccinated individuals was activated against KRAS mutations. The Team continues to develop a blood-based test to predict whether or not an individual will develop pancreatic cancer. The sensitivity of the test is improving as more biomarkers are analyzed.

CLINICAL TRIALS

- Pooled Mutant KRAS-Targeted Long Peptide Vaccine Combined with Nivolumab and Ipilimumab for Patients with Resected MMR-p Colorectal and Pancreatic Cancer; NCT04117087; Recruiting
- Mutant KRAS-Targeted Long Peptide Vaccine for Patients at High Risk of Developing Pancreatic Cancer; NCT05013216; Recruiting
- GENetic Education Risk Assessment and Testing Study (GENERATE); NCT03762590; Active, not recruiting

FUNDERS

SU2C DREAM TEAMS

[Optum]
ST. BALDRICK’S FOUNDATION-SU2C PEDIATRIC CANCER DREAM TEAM DT6065
Immunogenomics to Create New Therapies for High-Risk Childhood Cancers
Grant Term: December 2017 - May 2022, administered by the American Association for Cancer Research

KEY PERSONNEL
Team Leader: John M. Maris, MD
Children’s Hospital of Philadelphia

Co-Leader: Crystal L. Mackall, MD
Stanford University

Investigator: Kenneth B. DeSantes, MD
University of Wisconsin, Madison

Investigator: Dimiter Dimitrov, PhD
University of Pittsburgh

Investigator: Terry J. Fry, MD
University of Colorado

Investigator: Stephan Grupp, MD, PhD
Children’s Hospital of Philadelphia

Investigator: Rosandra N. Kaplan, MD
National Cancer Institute

Investigator: Michelle Monje, MD
Stanford University

Investigator: Daniel Morgenstern, MA, MBBChir, PhD
The Hospital for Sick Children

Investigator: Julie R. Park, MD
Seattle Children’s Hospital

Investigator: D. William Parsons, MD, PhD
Texas Children’s Hospital

Investigator: Kirk R. Schultz, MD
BC Cancer Research Institute

Investigator: Nirali N. Shah, MD, MHS
National Cancer Institute

Principal: Nabil M. Ahmed, MD
Baylor College of Medicine

Principal: Lia Gore, MD
University of Colorado

Principal: Rimas Orentas, PhD
Seattle Children’s Hospital

Principal: Paul M. Sondel, MD, PhD
University of Wisconsin, Madison

Principal: Poul H. B. Sorenson, MD, PhD
BC Cancer Research Institute

Principal: Michael D. Taylor, MD, PhD
The Hospital for Sick Children

MARIS

MACKALL
Purpose
The St. Baldrick’s Foundation-SU2C Pediatric Cancer Dream Team brought together pediatric cancer researchers in cancer genomics and immunotherapeutics. The overall focus was to identify lineage restricted cell surface molecules not present on normal tissues which may be targeted with synthetic immunotherapeutics. The objective of this multi-institutional team from ten institutions was to develop and conduct paradigm changing early phase clinical trials of immunotherapies.

Specific Aims

Aim 1. Discover and validate cell surface proteins as immunotherapeutic targets for high-risk pediatric cancers.

Aim 2. Perform preclinical optimization of candidate immunotherapeutics and IND-enabling studies to support the development of clinical trials for pediatric cancers with few therapeutic options.

Aim 3. Conduct pivotal pediatric cancer immunotherapy trials.

Key Accomplishments
The Team set out to develop and conduct early phase clinical trials of immunotherapies directed toward prioritized targets emerging from the first phase of their Dream Team project. In addition to continued support from St. Baldrick’s and matching funds from their home institutions, the Team has leveraged two recent NCI initiatives emerging from the Biden Moonshot Initiative to accelerate efforts by creating two research networks: 1) Pediatric Cancer Immunotherapy Discovery and Development network (PI-DDN) and 2) the Pediatric Cancer Immunotherapy Trials Network (PedCITN). The Team has 45 early phase clinical trials in its Dream Team portfolio and has enrolled 1,371 children. They continue to design novel CAR T cells for a number of pediatric cancers plus a variety of tumor cell targets. The Team is generating and evaluating antibody-drug conjugates and antibody-radioconjugates with multiple payloads.

Clinical Trials
Phase I Study of HER2-Specific CAR T Cell Locoregional Immunotherapy for HER2-Positive Recurrent/ Refractory Pediatric Central Nervous System Tumors; NCT03500991; Recruiting

Phase I Dose-Escalation Study of CD19/CD22 Chimeric Antigen Receptor T Cells in Children and Young Adults With Recurrent or Refractory CD19/CD22-Expressing B-Cell Malignancies; NCT03448393; Recruiting
Pediatric and Young Adult Leukemia Adoptive Therapy (PLAT)-06: Phase I/II Study of CD19-Specific CAR T Cells With a Fully Human Binding Domain for CD19+ Leukemia or Lymphoma; NCT03684889; Active, not recruiting

Phase 1 Study of EGFR806-Specific CAR T Cell Locoregional Immunotherapy for EGFR-Positive Recurrent or Refractory Pediatric Central Nervous System Tumors; NCT03638167; Active, not recruiting

Phase I Study of EGFR806 CAR T Cell Immunotherapy for Recurrent/Refractory Solid Tumors in Children and Young Adults; NCT03618381; Recruiting

Phase II Study of Humanized CD19-Directed Chimeric Antigen Receptor-Modified T Cells (huCART19) for Very High Risk Subsets of B-Cell Acute Lymphoblastic Leukemia (B-ALL); NCT03792633; Active, not recruiting

Treatment of CMV Infections With Viral-Specific T Cells Against CMV in Pediatric and Adult Immunocompromised Patients or Recipients of Allogeneic Stem Cell Transplantation; NCT03798301; Recruiting

Phase I Dose-Escalation Study Evaluating Safety and Tolerability of Viral-Specific T Cells Against CMV in Adult Solid Organ Transplant Recipients; NCT03950414; Recruiting

GD2-CAR PERSIST: Production and Engineering of GD2-Targeted, Receptor-Modified T Cells (GD2CART) for Sarcoma and Neuroblastoma to Increase Systemic Tumor Exposure; NCT04539366; Suspended

An Open-Label Dose-Escalation, Efficacy, and Safety Study of CLR 131 in Children, Adolescents, and Young Adults With Select Solid Tumors, Lymphoma, and Malignant Brain Tumors; NCT03478462; Active, not recruiting

Phase I Study of B7-H3-Specific CAR T Cell Locoregional Immunotherapy for Diffuse Intrinsic Pontine Glioma/Diffuse Midline Glioma and Recurrent or Refractory Pediatric Central Nervous System Tumors; NCT04185038; Recruiting

Phase I/II Study of Anti-CD33 Chimeric Antigen Receptor-Expressing T Cells (CD33CART) in Children and Young Adults With Relapsed/Refractory Acute Myeloid Leukemia; NCT03971799; Active, not recruiting

Phase I Study of B7H3 CAR T Cell Immunotherapy for Recurrent/Refractory Solid Tumors in Children and Young Adults; NCT04483778; Active, not recruiting

Phase Ib Clinical Trial of Autologous CD22 Chimeric Antigen Receptor (CAR) T Cells in Children and Young Adults With Recurrent or Refractory B-Cell Malignancies; NCT04088864; Suspended

Phase I Clinical Trial of Autologous GD2 Chimeric Antigen Receptor (CAR) T Cells (GD2CART) for Diffuse Intrinsic Pontine Gliomas (DIPG) and Spinal Diffuse Midline Gliomas (DMG); NCT04196413; Recruiting

Phase I Trial of Autologous HER2-Specific CAR T Cells in Pediatric Patients With Refractory or Recurrent Ependymoma; NCT04903080; Active, not recruiting

FUNDERS
SU2C DREAM TEAMS

SU2C COLORECTAL CANCER DREAM TEAM DT6044
Targeting Genomic, Metabolic, and Immunological Vulnerabilities of Colorectal Cancer
Grant Term: August 2017 - January 2024, administered by the American Association for Cancer Research

KEY PERSONNEL
Team Leader: Luis A. Diaz Jr., MD
Memorial Sloan Kettering Cancer Center

Co-Leader: Lewis C. Cantley, PhD
Harvard Medical School

Co-Leader: Zhenghe J. Wang, PhD
Case Western Reserve University

Advocate: Anjee Q. Davis
Fight Colorectal Cancer

Advocate: Joanna R. Fuchs, MD
Dana-Farber/ Harvard SPORE

Advocate: Manju George
Paltown Development Foundation

Advocate: Ivelisse Page
Believe Big

Advocate: Martha Raymond
Michael’s Mission

Advocate: Nancy Roach
Fight Colorectal Cancer

Advocate: Steven Schwarze
Paltown Development Foundation

PURPOSE
The SU2C Colorectal Cancer Treatment Dream Team is working to integrate molecular science, cancer genomics, and metabolomics with targeted and immune approaches for more effective treatments, investigating new approaches, and “precision prevention” strategies for colorectal cancer, thereby preventing cancer recurrence after initial treatments.

SPECIFIC AIMS
Aim 1. Harness the immune system to treat colorectal cancer.

Aim 2. High impacted targeted pathway blockade in colorectal cancer.

Aim 3. Develop high-dose vitamin C as a therapy for KRAS/BRAF mutant colorectal cancer.

Aim 4. Target the glutamine dependence of PIK3CA mutant CRC in combination therapy with novel glutaminase inhibitor CB-839 plus capecitabine.
Aim 5. “Precision prevention” for colorectal cancer.

KEY PROGRESS
The team tested an approach to increase tumor mutation burden and augment anti-tumor immune responses which could be intensified by administration of immune checkpoint inhibitors. The Team also launched a prospective study of the clinical utility of minimal residual disease (MRD) detection using circulating tumor DNA (ctDNA) assays for stage 3 colorectal cancer. The Team is also running a single-arm, Phase 2 study to evaluate the effect of 6 months of neoadjuvant dostarlimab-gxly treatment in patients with dMMR/MSI-H locally advanced rectal cancer. At the 2022 ASCO Annual Meeting and in the NEJM, the Team reported clinical complete responses in all of the first 14 patients. During its tenure, the Team accrued 736 subjects to therapeutic trials, authored more than 300 manuscripts, and secured one patent. This team’s work contributed to 2020 FDA approval of pembrolizumab (Merck) for microsatellite instability-high or mismatch repair deficient metastatic colorectal cancer.

CLINICAL TRIALS
Phase II Study of MK-3475 in Patients With Microsatellite Unstable (MSI) Tumors; NCT01876511; Completed

Phase III Study of Pembrolizumab (MK-3475) Versus Chemotherapy in Microsatellite Instability-High (MSI-H) or Mismatch Repair Deficient (dMMR) Stage 4 Colorectal Carcinoma (KEY-NOTE-177); NCT02563002; Completed

Phase I/II Study of CB-839 and Capecitabine in Patients With Advanced Solid Tumors and Fluoropyrimidine Resistant PIK3CA Mutant Colorectal Cancer; NCT02861300; Active, not recruiting

Nivolumab and Ipilimumab and Radiation Therapy in Microsatellite Stable (MSS) and Microsatellite Instability (MSI) High Colorectal and Pancreatic Cancer; NCT03104439; Recruiting

Phase II Study of High-Dose Vitamin C Intravenous Infusion in Patients With Resectable or Metastatic Solid Tumor Malignancies; NCT03146962; Completed

Phase II Study of Dabrafenib and Trametinib in Combination With PDR001 in Patients With BRAFV600E Metastatic Colorectal Cancer; NCT03668431; Recruiting

Phase Ib/II Open-Label Dose Escalation Study of Entinostat in Combination With Pembrolizumab in Patients With Non-small Cell Lung Cancer, With Expansion Cohorts in Patients With Non-small Cell Lung Cancer, Melanoma, and Mismatch Repair-Proficient Colorectal Cancer; NCT02437136; Active, not recruiting

Phase I/II Study of PI3Kinase Inhibition (Copanlisib) and Anti-PD-1 Antibody Nivolumab in Relapsed/Refractory Solid Tumors With Expansions in Mismatch Repair-Proficient (MSS) Colorectal Cancer; NCT03711058; Active not recruiting

Early Identification and Treatment of Occult Metastatic Disease in Stage 3 Colon Cancer; NCT03803553; Recruiting

Phase II Study of Induction PD-1 Blockade in Subjects With Locally Advanced Mismatch Repair-Deficient Solid Tumors; NCT04165772; Recruiting

Phase II Study of Temozolomide, Cisplatin, and Nivolumab in MMR-Proficient Colorectal Cancer; NCT04457284; Active, not recruiting

THE SUSTAINABLE SCIENTIFIC SUMMIT
CORONADO, CALIFORNIA JANUARY 26-29 2024
SU2C DREAM TEAMS

SU2C CANADA–CANADIAN CANCER SOCIETY BREAST CANCER DREAM TEAM DT6144

Translational Development of Novel Drugs Targeting Tumor Vulnerabilities

Grant Term: January 2016 - June 2022, administered by the American Association for Cancer Research

KEY PERSONNEL

Team Leader: Tak W. Mak, PhD
Campbell Family Institute for Breast Cancer Research at Princess Margaret Cancer Centre

Co-Leader: Samuel Aparicio, BM, BCh, PhD
University of British Columbia

Principal: Karen A. Gelmon, MD
British Columbia Cancer Agency

Principal: Morag Park, PhD
Goodman Cancer Research Centre and McGill University

Principal: Kathleen I. Pritchard, MD
University of Toronto, Sunnybrook Health Sciences Centre of Toronto

Project Manager: Thorsten Berger, PhD
University Health Network
Thorsten.Berger@uhnresearch.ca

Advocate: Wendie den Brok, MD
BC Cancer Agency Research Centre

Advocate: Randy Mellon
Think Pink Direct

Advocate: Zuri Scrivens
The Beautiful Gift

PURPOSE

The goal of the SU2C Canada–Canadian Cancer Society Breast Cancer Dream Team was to develop new treatments for triple-negative/basal-like breast cancer (TNBC) and other aggressive breast cancers which currently need more efficacious targeted therapies. The Team developed three biomarker-driven drugs: CFI-400945 (PLK4 inhibitor), CFI-402257 (TTK inhibitor), and CX5461 (G-quadruplex binder).

SPECIFIC AIMS

Aim 1. Pursue basic and translational development of CFI-400945, CX5461, and CFI-402257.

Aim 2. Conduct proof-of-concept clinical trials of CFI-400945, CX5461, and CFI-402257.

KEY ACCOMPLISHMENTS

Discoveries made in the laboratory component of the project identified new opportunities to expand the use of CFI-400945 and CFI-402257 into the large group of patients with metastatic breast cancer resistant to current standard first line treatment (CDK4/6 inhibitors). The Team completed accrual to their clinical trials which were carried out in collaboration with the Canadian Cancer Trials Group. They identified safe and tolerable recommended Phase 2 doses of each agent, as well as combinations of CFI-400945 and durvalumab, and CFI-402257 and paclitaxel. Promising clinical activity, including durable responses were observed with all agents in patients with metastatic breast cancer. These results have supported the further development of these agents in ongoing and planned biomarker-directed trials.
SU2C DREAM TEAMS

CLINICAL TRIALS

- Phase I Study of CX5461; NCT02719977; Completed

- Open-Label Dose-Escalation, Safety, and Pharmacokinetic Study of CFI-400945 Fumarate Administered Orally to Patients With Advanced Cancer; NCT01954316; Completed

- Open-Label Dose-Escalation, Safety, and Pharmacokinetic Study of CFI-402257 Administered Orally to Patients With Advanced Solid Tumors; NCT02792465; Active, not recruiting

- Phase Ib and Open-Label Phase II Study of CFI-402257 in Combination With Weekly Paclitaxel in Patients With Advanced/Metastatic HER2-Negative Breast Cancer; NCT03568422; Completed

- Phase II Study of CFI-400945 in Patients With Advanced/Metastatic Breast Cancer; NCT03624543; Active, not recruiting

- Phase II Study of CFI-400945 and Durvalumab in Patients With Advanced/Metastatic Triple-Negative Breast Cancer (TNBC); NCT04176848; Completed

FUNDERS

- Stand Up To Cancer
- Canadian Cancer Society
- OICR (Ontario Institute for Cancer Research)
SU2C DREAM TEAMS

SU2C-CANCER RESEARCH UK-LUSTGARTEN FOUNDATION
PANCREATIC CANCER DREAM TEAM DT6014
Reprogramming of Transcriptional Circuitry to Control Pancreatic Cancer
Grant Term: January 2016 - June 2020, administered by the American Association for Cancer Research

KEY PERSONNEL

Team Leader: Daniel D. Von Hoff, MD
Translational Genomics Research Institute (TGEN)

Co-Leader: Gerard I. Evan, PhD
University of Cambridge

Co-Leader: Ronald M. Evans, PhD
Salk Research Institute for Biological Studies

Project Manager: Jatan Clark
TGEN
jclark@tgen.org

Project Manager: Stacie Smith
TGEN
srsmith@tgen.org

Advocate: Suzanne Berenger
Bain & Company, Inc.

Advocate: Devah Pager, PhD, (deceased)
Harvard University

Advocate: Jill E. Pechacek, MD (deceased)

Advocate: Howard Young
General Wholesale Beer Company

PURPOSE
The Dream Team’s goal was to significantly improve pancreatic cancer patient survival by targeting super-enhancer (SE) regulated regenerative programs in the pancreas, including cellular communication between the epithelial compartment (including cancer stem cells), stromal compartment, and immune compartment.

SPECIFIC AIMS

Aim 2. Determine the mechanisms that mediate crosstalk between super-enhancer networks both within cells and between them, including metabolic dependencies.

Aim 3. Determine the utility of super-enhancer disruption in treating pancreatic cancer. (Work on this Aim is continuing as an SU2C subproject.)
KEY ACCOMPLISHMENTS

The Team showed how super-enhancer networks control tumor behavior and the behavior of individual cell types within the tumor microenvironment. These findings support the team’s model of pancreatic cancer as a normal regenerative program that has been “hacked” into, suggesting the possibility of reversing the program. Therapeutic targets identified include LIF [stromal compartment], MICAL2 [tumor compartment], ROR gamma, and Musashi [stem cell compartment]. Building on these findings, the investigators developed therapeutic strategies. Studies on metabolism have begun to reveal pancreatic cancer sensitivity to metabolic perturbations (“electron overloading,” ketogenic diet). A continuing clinical trial led by Dr. Wolpin is evaluating the therapeutic potential of targeting the Vitamin D receptor with paricalcitol.

CLINICAL TRIALS

A Phase II Pilot Trial of Nivolumab + Albumin-Bound Paclitaxel + Paricalcitol + Cisplatin + Gemcitabine (NAPPCG) in Patients With Previously Untreated Metastatic Pancreatic Ductal Adenocarcinoma; NCT02754726; Active, not recruiting

A Phase II Study of Cabiralizumab (BMS-986227, FPA008) Administered in Combination With Nivolumab (BMS-936558) With and Without Chemotherapy in Patients With Advanced Pancreatic Cancer; NCT03336216; Completed

Phase Ib/II Trial of High-Dose Ascorbic Acid (AA) + Nanoparticle Paclitaxel Protein Band + Cisplatin + Gemcitabine (AA NABPLAGEM) in Patients Who Have Received No Prior Therapy for Their Metastatic Pancreatic Cancer; NCT03410030; Completed

Phase II Pilot Trial of Paclitaxel Protein Bound Plus Cisplatin Plus Gemcitabine and the Addition of Paricalcitol Upon Disease Progression in Patients With Previously Untreated Metastatic Pancreatic Ductal Adenocarcinoma (NABPLAGEMD); NCT03415854; Active, not recruiting

Vitamin D Receptor Agonist Paricalcitol Plus Gemcitabine and Nab-Paclitaxel in Patients With Metastatic Pancreatic Cancer; NCT03520790; Active, not recruiting

A Phase Ib/II Randomized Clinical Trial of Chemotherapy With Nab-Paclitaxel/Gemcitabine/ Cisplatin +/- the AXL Inhibitor Bemcentinib for Patients With Metastatic Pancreatic Cancer; NCT03649321; Terminated

A Phase I Multicenter, Open-Label, Dose-Escalation and Dose-Expansion Study to Evaluate the Safety, Pharmacokinetics, Pharmacodynamics, Immunogenicity, and Antitumor Activity of MSC-1 in Patients With Advanced Solid Tumors; NCT03490669; Completed

MinPAC: Phase II, International, Open-Label Trial of Minnelide™ in Patients With Refractory Pancreatic Cancer; NCT03117920; Completed

FUNDERS
SU2C DREAM TEAMS

SU2C CANADA CANCER STEM CELL DREAM TEAM DT6145
Targeting Brain Tumor Stem Cell Epigenetic and Molecular Networks
Grant Term: October 2015 - March 2021, administered by the American Association for Cancer Research

KEY PERSONNEL
Team Leader: Peter B. Dirks, MD, PhD
The Hospital for Sick Children

Co-Leader: Samuel Weiss, PhD
University of Calgary

Principal: Cheryl H. Arrowsmith, PhD
University of Toronto

Principal: Gary D. Bader, PhD
University of Toronto

Principal: Nada Jabado, MD, PhD
McGill University

Principal: Mathieu Lupien, PhD
University Health Network

Principal: Marco A. Marra, PhD
University of British Columbia

Principal: Michael W. Salter, MD, PhD
The Hospital for Sick Children

Principal: Michael D. Taylor, MD, PhD
The Hospital for Sick Children

Principal: Michael Tyers, PhD
Université de Montreal

Project Manager: Tracey Richards
The Hospital for Sick Children
tracey.richards@sickkids.ca

Advocate: Wendy M. Durigon
Jessica’s Footprint Foundation

Advocate: Patrick J. Sullivan, LLB
Team Finn Foundation

PURPOSE
The Team sought to understand the basic biology of brain tumor stem cells and expose their vulnerabilities, with the ultimate goal of developing new therapies.

SPECIFIC AIMS
Aim 1. Conduct a comprehensive investigation of genomic, epigenomic, and metabolomic profiles of BTSCs to define networks of self-renewal, therapeutic resistance, and targetable vulnerabilities.

Aim 2. Identify targets whose pharmacological inhibition is efficacious on BTSCs from GBM and PFA ependymoma.

Aim 3. Preclinically test five targets to accelerate translation to the clinic.
KEY ACCOMPLISHMENTS
The Team completed sequencing and functional characterization of 89 adult glioblastomas (GBM), 4 pediatric GBM, 16 pediatric ependymomas, and 6 control neural stem cell cultures. In adult GBM, the investigators converged on two tumor subgroups defined by developmental and inflammatory signals. They also found two promising clinically-actionable targets – one epigenetic (PRMT5) and the other metabolic (GLS) – both targets of promising drug candidates. The Team also characterized the posterior fossa A and supratentorial subtypes of pediatric ependymoma using brain tumor stem cells grown from patient tumor samples and screened them in various ways to identify therapeutic vulnerabilities. In pediatric GBM, they characterized Histone 3 mutant tumors, specially focusing their efforts to target H3K27 mutant tumors with an ALK inhibitor, which showed promise for clinical translation. The Team has been conducting a phase I/Ib trial of combined 5’azacitidine and carboplatin for recurrent/refractory brain tumors.

CLINICAL TRIALS
Phase I/Ib Trial of Combined 5-Azacitidine and Carboplatin for Recurrent/Refractory Pediatric Brain and Solid Tumors; NCT03206021; Active, not recruiting

FUNDERS
SU2C DREAM TEAMS

SU2C-AMERICAN CANCER SOCIETY LUNG CANCER DREAM TEAM DT5977
Targeting KRAS-Mutant Lung Cancers
Grant Term: August 2015 - January 2021, administered by the American Association for Cancer Research

KEY PERSONNEL
Team Leader: Jedd D. Wolchok, MD, PhD
Weill Cornell Medical College

Co-Leader: Pasi A. Jänne, MD, PhD
Dana-Farber Cancer Institute

Co-Leader: Justin F. Gainor, MD
Massachusetts General Hospital Cancer Center

Principal: David R. Gandara, MD
University of California, Davis

Principal: Gad A. Getz, PhD
Broad Institute

Principal: Roy S. Herbst, MD, PhD
Yale University

Principal: John V. Heymach, MD, PhD
The University of Texas MD Anderson Cancer Center

Principal: Frank McCormick, PhD
University of California, San Francisco

Principal: Drew M. Pardoll, MD, PhD
Johns Hopkins University

Principal: Charles M. Rudin, MD, PhD
Memorial Sloan Kettering Cancer Center

Project Manager: Lalitha Ramanathapuram, PhD
Memorial Sloan Kettering Cancer Center

Project Manager: Cam Anh Tran
Dana-Farber Cancer Institute

Advocate: Andrea E. Ferris
LUNGevity Foundation

Advocate: Jeffrey L. Wigbels
Cypress Group at Morgan Stanley
PURPOSE
The Targeting KRAS-Mutant Lung Cancers Team established a collaborative, rigorous, multidisciplinary program that brings together two highly promising treatment approaches: targeted therapy – in this case targeting the KRAS gene – and immunotherapy. This combined approach may lead to novel treatments that will markedly improve outcomes for KRAS-mutant non-small lung cancer patients.

SPECIFIC AIMS
Aim 1. Target KRAS and downstream pathways.
Aim 2. Target the immune system for treatment of KRAS-mutant lung cancers. (Work on this Aim is continuing as an SU2C subproject.)
Aim 3. Integrate targeted therapies with immunotherapies for KRAS-mutant lung cancers.

KEY ACCOMPLISHMENTS
The Team amassed a large data set of NSCLC tumors derived from patients treated with checkpoint inhibitors which served as a rich resource, especially for the identification of predictive and prognostic markers of checkpoint inhibitor response. This is an important resource to aid in the design of future studies. The Team demonstrated that NSCLC patients with KRAS-mutant cancers with concomitant LKB1/STK11 mutations derived little benefit from immune checkpoint inhibitors when used as single agents and that there was no benefit from the addition of immune checkpoint inhibitors to chemotherapy. This was in contrast to patients with KRAS- or KRAS/TP53-mutant cancers. Mechanistic insights into the role of the LKB1/STK11 mutations demonstrated immune defects dependent on dysregulation of metabolic and STING pathways. This work contributed to the understanding of the role of KRAS G12C inhibitors in the treatment of these patients relative to the role of checkpoint blockade. The Team has significantly contributed to the development of KRAS G12C inhibitors and investigations of resistance mechanisms to KRAS G12C inhibitors. This Team continued its work with support from The Mark Foundation for Cancer Research.

CLINICAL TRIALS
Identifying Genetic Predictors of Durable Clinical Benefit to Pembrolizumab in Advanced Non-small Cell Lung Cancer Alone and in Combination With Chemotherapy; NCT02710396; Terminated
Phase Ib Trial of Pembrolizumab (MK-3475) and Trametinib Focused on Advanced KRAS-Mutant Non-small Cell Lung Cancer; NCT03299088; Active, not recruiting
BATTLE-2 Program: Biomarker-Integrated Targeted Therapy Study in Previously Treated Patients With Advanced Non-small Cell Lung Cancer; NCT03225664; Active, not recruiting
Phase I Trial of RO5126766 (CH5126766) in Patients With Advanced KRAS-Mutant Lung Adenocarcinomas; NCT03681483; Active, not recruiting
Phase I Trial of Trametinib and Ponatinib in Patients With KRAS-Mutant Advanced Non-small Cell Lung Cancer; NCT03704688; Completed

Open-Label, Two-Part, Phase Ib/II Study to Investigate the Safety, Pharmacokinetics, Pharmacodynamics, and Clinical Activity of the MEK Inhibitor Trametinib and the BCL-2-Family Inhibitor Navitoclax (ABT-263) in Combination in Subjects With KRAS or NRAS Mutation-Positive Advanced Solid Tumors; NCT02079740; Active, not recruiting

Neoadjuvant Nivolumab, or Nivolumab in Combination With Ipilimumab, in Resectable Non-small Cell Lung Cancer. NCT02259621; Active, not recruiting

Phase I/II Trial Immunotherapy With Durvalumab and Tremelimumab With Continuous or Intermittent MEK Inhibitor Selumetinib in NSCLC; NCT03581487; Recruiting

A Phase I/II Open-Label, Multi-Centre Study to Assess the Safety, Tolerability, and Preliminary Anti-tumour Activity of Ascending Doses of Selumetinib (AZD6244 Hyd-sulfate) in Combination With MEDI4736 and Selumetinib in Combination With MEDI4736 and Tremelimumab in Patients With Advanced Solid Tumours; NCT02586987; Completed

A First in Human Phase I trial of a Vaccine Targeting Mutant KRAS and Mesothelin Epitopes in Combination with an anti-PD-1 Antibody in Patients with Previously Treated, Metastatic, KRAS mutant NSCLC;NCT03371381;Terminated

FUNDERS

SU2C DREAM TEAMS
SU2C-OVARIAN CANCER RESEARCH ALLIANCE-NATIONAL OVARIAN CANCER COALITION OVARIAN CANCER DREAM TEAM DT5978

DNA Repair Therapies for Ovarian Cancer
Grant Term: July 2015 - June 2019, administered by the American Association for Cancer Research

KEY PERSONNEL
Team Leader: Alan D. D’Andrea, MD
Dana-Farber Cancer Institute

Co-Leader: Elizabeth M. Swisher, MD
University of Washington

Project Manager: Alexandra Feinstein
Dana-Farber Cancer Institute

Project Manager: Donald R. Watson
Dana-Farber Cancer Institute

Advocate: Jamie Crase
University of Washington

Advocate: Sue Friedman
FORCE

Advocate: Kathleen A. Gavin
Minnesota Ovarian Cancer Alliance

Advocate: Deborah Polinsky
SHARE

Principal: Gini F. Fleming, MD
University of Chicago

Principal: Maria Jasin, PhD
Memorial Sloan Kettering Cancer Center

Principal: Scott H. Kaufmann, MD, PhD
Mayo Clinic, Rochester

Principal: Karen H. Lu, MD
The University of Texas MD Anderson Cancer Center

PURPOSE
The SU2C-Ovarian Cancer Research Alliance-National Ovarian Cancer Coalition Ovarian Cancer Dream Team was assembled to develop new therapies targeting DNA repair pathways and expand on recent clinical advances to a larger group of ovarian cancer patients, including those without mutations in BRCA1 or BRCA2. The Team also worked to develop novel cancer prevention strategies through the development of ovarian cancer genetic testing and surgical prevention models.
SPECIFIC AIMS

Aim 1. Characterize mechanisms of sensitivity and resistance to PARPi that can identify individual ovarian cancers that are hypersensitive to PARPi monotherapy.

Aim 2. Evaluate novel drug combinations that extend the use of PARPi to HR-proficient ovarian cancers.

Aim 3. Develop ovarian cancer genetic testing and surgical prevention models, which could increase access to ovarian cancer genetic testing and ovarian cancer prevention.

KEY ACCOMPLISHMENTS

The Team identified new biomarkers of sensitivity and resistance to PARP inhibitors, including PTIP, EZH2 MUS81, and REV7. The Team’s TOPACIO study, which tested the combination of the PARP inhibitor Niraparib and the anti-PD1 antibody Pembrolizumab, showed an improved objective response in ovarian cancer patients with advanced platinum-resistant tumors. Analysis of patient samples revealed novel biomarkers that were predictive of patient responses. Findings from the team have also contributed to the 2016 FDA approval of rucaparib, the second PARP inhibitor approved by the FDA, for treatment of BRCA1/2 mutated ovarian cancer. The Team’s MAGENTA trial, which enrolled 3822 patients, demonstrated the benefits of genetic counseling for individuals who have been found to have a pathogenic mutation.

CLINICAL TRIALS

- **Phase 1 Trial of ABT-888 and SCH727965 in Patients With Advanced Solid Tumors; NCT01434316; Active, not recruiting**
 - Stand Up To Cancer: MAGENTA (Making Genetic Testing Accessible); NCT02993068; Recruiting
 - WISP (Women Choosing Surgical Prevention); NCT02760849; Active, not recruiting

- **Phase I Study of the Oral PI3kinase Inhibitor BKM120 or BYL719 and the Oral PARP Inhibitor Olaparib in Patients With Recurrent Triple-Negative Breast Cancer or High Grade Serous Ovarian Cancer; NCT01623349; Completed**

- **Phase I/II Clinical Study of Niraparib in Combination With Pembrolizumab (MK-3475) in Patients With Advanced or Metastatic Triple-Negative Breast Cancer and in Patients With Recurrent Ovarian Cancer; NCT02657889; Completed**

- **A Phase II, Open-Label Study of Rucaparib in Patients With Platinum-Sensitive, Relapsed, High-Grade Epithelial Ovarian, Fallopian Tube, or Primary Peritoneal Cancer (Ariel2); NCT01891344; Completed**

FUNDERS

- **OCRA ovarian cancer research alliance**
- **Innovative Ovarian Cancer Coalition**
SU2C-DUTCH CANCER SOCIETY COLORECTAL CANCER EARLY DETECTION DREAM TEAM DT5916

Molecular Early Detection of Colorectal Cancer (MEDOCC)
Grant Term: April 2015 – September 2022, administered by the American Association for Cancer Research

KEY PERSONNEL
Team Leader: Gerrit A. Meijer, MD, PhD
Netherlands Cancer Institute

Co-Leader: Victor E. Velculescu, MD, PhD
Johns Hopkins University

Principal: Veerle Coupé, PhD
VU University Medical Center

Principal: Evelien Dekker, MD, PhD
University of Amsterdam

Principal: Manon van Engeland, PhD
Maastricht University Medical Center

Principal: James G. Herman, MD
University of Pittsburgh

Principal: Miriam Koopman, MD, PhD
University Medical Center Utrecht

Principal: Ernst J. Kuipers, MD, PhD
Erasmus University Medical Center

Project Manager: Meike de Wit, PhD
Netherlands Cancer Institute
m.d.wit@nki.nl

Advocate: Joop Kroes (deceased)
Foundation for Patients With Cancer of the Digestive Tract (Stichting Voor Patiënten met Kanker aan het Spijsverteringskanaal, SPKS)

Advocate: Marcia Horn, JD
International Cancer Advocacy Network

Advocate: Huig Schipper (inactive)

PURPOSE
The SU2C-Dutch Cancer Society Colorectal Cancer Early Detection Dream Team aims to bring highly sensitive molecular tests from the lab bench to the bed side. The Molecular Early Detection Of Colorectal Cancer (MEDOCC) project has two aims. The first aim is to improve molecular stool-based tests by using the best combination of protein biomarkers. The second aim is to develop a molecular blood test for circulating cancer-associated DNA that identifies early-stage colorectal cancer patients whose survival may be improved by chemotherapy after surgery.
SU2C DREAM TEAMS

SPECIFIC AIMS

Aim 1. Develop and clinically validate a cost-effective molecular screening test for CRC that outperforms the current state-of-the-art FIT.

Aim 2. Develop and clinically validate a better test for residual disease detection and monitoring in stage II and III colorectal cancer patients.

KEY ACCOMPLISHMENTS

The currently used stool test, fecal immunochemical test (FIT), that is used in nationwide screening programs, has been proven to be successful in helping identify patients with CRC. Unfortunately, the test is not sensitive enough to identify individuals with precancerous lesions. The Team developed an improved and potentially cost-effective stool test (called mtFIT) that is more sensitive than the traditional test, without increasing the probability of false positives. In addition, the Team developed and optimized approaches for detection of circulating tumor DNA (ctDNA) in patients with early stage cancers. They have shown that a tumor-guided approach for detection of ctDNA may be useful for clinical identification of minimal residual disease in stage II and III colorectal cancer patients.

CLINICAL TRIALS

Clinical Validation of a Multi-target Faecal Immunochemical Test (mtFIT) Versus a Faecal Immunochemical Test (FIT) for Detecting Advanced Neoplasia in Population Screening for CRC: a Prospective Cohort Study With Paired Design; NCT05314309; Active, not recruiting

Prospective Data Collection Initiative on Colorectal Cancer—A Prospective Observational Cohort Study; sub-study of NCT02070146; Recruiting.

FUNDER

[Image of SU2C]
VAN ANDEL INSTITUTE-SU2C CANCER EPIGENETICS
DREAM TEAM DT5957

Team Project Name
Grant Term: January 2023 - December 2025

KEY PERSONNEL
Team Co-Leader: Peter Jones, PhD, DSc (hon)
Van Andel Institute

Co-Leader: Stephen Baylin, MD
John Hopkins University and Van Andel Institute

Principal: Kenneth P. Nephew, PhD
Indiana University School of Medicine

Principal: Feyruz V. Rassool, PhD
University of Maryland School of Medicine

Principal: Charles Rudin, MD, PhD
Memorial Sloan Kettering Cancer Center

Principal: Benjamin A. Youngblood, PhD
St. Jude Children’s Research Hospital

Project Manager: Ryan Burgos, MBA
Van Andel Institute
Ryan.Burgos@vai.org

Advocates: Beth Flory and Rick Bangs

PURPOSE:
Epigenetic therapy is an approach to cancer treatment that involves switching key genes on or off to help destroy cancer cells. The Van Andel Institute (VAI)-Stand Up To Cancer Epigenetics Dream Team II, funded by the Van Andel Institute, continues the original Epigenetics Dream Team’s work to restore normal function to damaged epigenetic mechanisms by exploring immune sensitization, chemo sensitization and novel target strategies.

SPECIFIC AIM
Bring epigenetic therapy to the forefront of cancer management.
KEY PROGRESS:
Baylin and Jones labs defined what became a well-known theme followed by many groups termed “viral mimicry” (Chiappinelli et al, Cell, 2015), (Roulois et al, Cell, 2015) representing a molecular viral defense-like response to the epigenetics drugs being studied and have extended the understanding of the concept of “viral mimicry” for DNMTi-induced upregulation of repeat sequences. The current Team has conducted 14 clinical trials and treated more than 700 patients. The composition of the Team was leveraged to receive a discipline-based NCI SPORE focused on epigenetic therapies. Additionally, they were able to show that DNMTis induce PD1 expression, and so when they are combined with Atezolizumab in MDS patients resistant to DNMTis, the result is a tripling of the expected median overall survival from 5 to 15 months (O’Connell, Casey L et al, Clinical Cancer Research, 2022). The Team is working with orally bioavailable DNMTis, where they are running the first two solid tumors trials using ASTX727. The Team has designed novel interception trials in Denmark focusing on using oral Vitamin C with the goal to augment DNMTi efficacy and slow clonal cytopenia of undetermined significance (CCUS) progression.

CLINICAL TRIALS
Trials Completed:
A phase I study of SGI-110 combined with irinotecan followed by a randomized phase II study of SGI-110 combined with irinotecan versus regorafenib or TAS-102 (Ionsurf) in previously treated metastatic colorectal cancer patients

Pilot Study Restoring Physiological Vitamin C Levels to the Normal Range: Influence on Epigenetic Regulation in Normal and Malignant Hematopoiesis

Multicenter phase 1/2 study of combination therapy with the DNA methyltransferase inhibitor decitabine and the poly ADP ribose polymerase (PARP) inhibitor talazoparib (BMN 673) for untreated acute myeloid leukemia (AML) in adult patients unfit for cytotoxic chemotherapy or relapsed/refractory AML

A Phase I/II multicenter study combining guadecitabine, a DNA methyltransferase inhibitor, with Atezolizumab, an immune checkpoint inhibitor, in patients with intermediate or high-risk myelodysplastic syndrome or chronic myelomonocytic leukemia.

SU2C Genentech Catalyst: GU-114: Overcoming Checkpoint Inhibitor Resistance With Epigenetic Therapy in Urothelial Cancer

Active, Enrollment Complete:
A Phase II Study of Epigenetic Therapy With Azacitidine and Entinostat With Concurrent Nivolumab in Subjects With Metastatic Non-Small Cell Lung Cancer (NCT01928576)

Epigenetics, Vitamin C, and Abnormal Hematopoiesis - Role of Vitamin C in Epigenetic Regulation in Hematopoiesis Sub-Study on CCUS, Low-Risk MDS, and CMML-0/1 (NCT03682029)

A Phase Ib Study of Guadecitabine (SGI-110) and Durvalumab (MEDI 4736) in Patients With Advanced Hepatocellular Carcinoma, Pancreatic Adenocarcinoma, and Cholangiocarcinoma/Gallbladder Cancer (NCT03257761)

SU2C Merck Catalyst: Phase I/Ib Study of Combined Pembrolizumab Plus Guadecitabine and Mocetinostat for Patients With Advanced NSCLC (NCT03220477)

A Phase I/I Study of DS-3201b, an EZH1/2 Inhibitor, in Combination With Irinotecan in Patients With Recurrent Small Cell Lung Cancer (NCT03879798)

Trials Enrolling:
Combining Active and Passive DNA Hypomethylation: A Randomized, Placebo-Controlled Phase II Study of the Efficacy and Safety of Oral Vitamin C in Combination With Azacitidine in Patients With Higher-Risk MDS, CMML-2 or Low-Blast Count AML (NCT03999723)

A Phase I Dose-Escalation Study of E7727, an Oral Cytidine Deaminase Inhibitor (CDAi) With Oral Decitabine in Subjects With Solid Tumors (NCT03875287)

A Phase I Study of ASTX727 Plus Talazoparib in Patients With Triple Negative or Hormone Resistant/ Human Epidermal Growth Factor Receptor 2 (HER2)-Negative Metastatic Breast Cancer (NCT04134884)

STOP-LEUKEMIA: Repurposing Metformin as a Leukemia-preventive Drug in CCUS and LR-MDS (NCT04741945)

Trial Upcoming:
CAR T cells gene-edited for improved PERSIS-Tence for pediatric and young adult patients with CD19- and/or CD22-positive leukemia (Drs. Caitlin Zebley, Benjamin Youngblood, and Stephen Gottschalk)

FUNDER

THE SU2C SCIENTIFIC SUMMIT
CORONADO, CALIFORNIA JANUARY 26-29 2024
SU2C-DREAM-TEAMS

SU2C-LUSTGARTEN FOUNDATION PANCREATIC CANCER DREAM TEAM DT5915
Transforming Pancreatic Cancer to Treatable Disease
Grant Term: July 2014 - December 2023, administered by the American Association for Cancer Research

KEY PERSONNEL
Team Leader: Elizabeth M. Jaffee, MD
Johns Hopkins University

Co-Leader: Robert H. Vonderheide, MD, DPhil
Abramson Cancer Center University of Pennsylvania

Principal: Philip Greenberg, MD
Fred Hutchinson Cancer Research Center

Principal: Robert D. Schreiber, PhD
Washington University in St. Louis

Project Manager: Stephanie Porter
Johns Hopkins University
sporter@jhmi.edu

Advocate: Betty Booher
Oregon Health & Science University

Advocate: Stuart Rickerson
University of California, San Francisco

PURPOSE
The goal of the SU2C-Lustgarten Foundation Pancreatic Cancer Dream Team is to demonstrate that the immune suppressive tumor environment (TME) in pancreatic cancer (PDA) can be converted into an immuno-stimulatory environment resulting in improved treatment response and prognosis.

SPECIFIC AIMS
Aim 1. Conduct a multicenter phase 2 study designed to test the safety and clinical activity of a PD-1 inhibitor (cemiplimab) with a CXCR4 inhibitor (plerixafor).

Aim 2. Conduct a trial to treat patients with their own T cells engineered to recognize mesothelin, a clinical target expressed specifically by pancreatic cancer cells.

Aim 3. Conduct a trial to explore whether vaccinating PDA patients with neoantigens derived from their own tumors can reactivate preexisting neoantigen specific T cells, induce T-cell responses to additional vaccine induced tumor neoantigens, and induce a measurable clinical response.
KEY PROGRESS
The Team completed their phase 2 clinical trial of combining plerixafor and cemiplimab in patients with metastatic PDA. Although only limited clinical activity has been observed, their correlative studies are anticipated to provide insights into the mechanisms behind the observed resistance to plerixafor/cemiplimab. The Team has reached their target of treating 10 patients with their neoantigen epitope vaccine. Laboratory studies confirmed that the immune system responded to at least some of the protein fragments that were used in the personalized vaccines. The Team is continuing to enroll in their clinical trial where they are testing adoptive cell therapy in pancreatic cancer. No adverse events have been observed.

CLINICAL TRIALS
A Phase II Study of Plerixafor and Cemiplimab in Metastatic Pancreatic Cancer; NCT04177810; Completed

Phase I Study of Autologous Transgenic T Cells Expressing High Affinity Mesothelin-Specific T-Cell Receptor (TCR) (FH-TCR TMSLN) in Patients With Metastatic Pancreatic Ductal Adenocarcinoma; NCT04809766; Recruiting

A Phase I Clinical Trial to Evaluate the Safety and Immunogenicity of a Neoantigen Peptide Vaccine Strategy in Pancreatic Cancer Patients Following Surgical Resection and Adjuvant Chemotherapy; NCT03956056; Terminated

Study to Assess the Safety of Continuous IV Administration of the CXCR4 Antagonist Plerixafor (Mozobil) and Assess Its Impact on the Immune Microenvironment in Patients With Advanced Pancreatic, High-Grade Serous Ovarian, and Colorectal Adenocarcinomas; NCT02179970; Completed

First-in-Human Phase I Dose-Escalation Trial of Hu5F9-G4 in Patients With Advanced Solid Malignancies; NCT02216409; Completed

Randomized Phase II Study of the Safety, Efficacy, and Immune Response of GVAX Pancreas Vaccine (With Cyclophosphamide) and CRS-207 With or Without Nivolumab in Patients With Previously Treated Metastatic Pancreatic Adenocarcinoma; NCT02243371; Completed

Study of the Safety, Immunopharmacodynamics and Anti-tumor Activity of Ibrutinib Combined With Gemcitabine and Nab-Paclitaxel in Patients With Metastatic Pancreatic Adenocarcinoma; NCT02562898; Completed

Phase I Study of Neo-adjuvant RO7009789 Alone or Neo-adjuvant RO7009789 Plus Nab-Paclitaxel and Gemcitabine Followed by Adjuvant RO7009789 Plus Nab-Paclitaxel and Gemcitabine for Patients With Newly Diagnosed Resectable Pancreatic Carcinoma; NCT02588443; Completed

FUNDER
LUSTGARTEN FOUNDATION
PANCREATIC CANCER RESEARCH
SU2C DREAM TEAMS

SU2C-DUTCH CANCER SOCIETY TUMOR ORGANOIDS
DREAM TEAM DT5906
A New Preclinical Model for Drug Sensitivity Analysis
Grant Term: April 2014 - April 2019, administered by the American Association for Cancer Research

KEY PERSONNEL
Team Leader: Hans C. Clevers, MD, PhD
Hubrecht Institute

Co-Leader: Johannes L. Bos, PhD
University Medical Center Utrecht

Principal: Sir Michael R. Stratton, PhD
Wellcome Trust Sanger Institute

Principal: Lodewyk Wessels, PhD
Netherlands Cancer Institute

Project Manager: Johan H. van Es, PhD
Hubrecht Institute
j.es@hubrecht.edu

Advocate: Pauline Evers
Leven Met Kanker

Advocate: Jeannette Janzen
Leven Met Kanker

Advocate: Margreet Jonker
Leven Met Kanker

Advocate: Catherine Transler
Leven Met Kanker

PURPOSE
The SU2C-Dutch Cancer Society Tumor Organoids Dream Team established and analyzed a large collection of long-term cultures of tumours (tumor organoids) in an effort to capture the genetic spectrum of tumours. This strategy allows the stratification of tumours based on their genomic footprint and drug sensitivity and facilitates correlations between drug sensitivity and this footprint. The ultimate goal of this Team is to design novel, more sophisticated clinical trials that test treatment regimens tailored to a patient's tumor.

SPECIFIC AIMS
Aim 1. Build and validate a large “living” biobank for colon, pancreatic, and breast cancer using organoid technology, thus capturing the genetic variability of these three tumor types.

Aim 3. Validate the dual “genetic/organoid” approach as a predictor of drug response for individual cancer patients.

Aim 4. Identify molecular mechanisms of drug sensitivity and resistance.
KEY PROGRESS
The Team developed a groundbreaking technology that allows tumor samples isolated from patients to be maintained and grown in the laboratory setting. These tumor organoids provide an unprecedented opportunity to combine DNA sequence analyses with functional studies of tumors from individual patients. Importantly, tumor organoids have allowed studies of sensitivity and resistance to a large number of anticancer drugs in the lab. The Team has developed organoids from multiple cancer types, including colorectal, pancreas, liver, esophageal, and breast. In addition to the abovementioned studies, the Team has used CRISPR with organoids to pinpoint genetic mutations responsible for a given patient's cancer.

CLINICAL TRIALS
N/A

FUNDER
Dutch Cancer Society
SU2C-DREAM-TEAMS

SU2C-ST. BALDRICK’S FOUNDATION PEDIATRIC CANCER DREAM TEAM DT5908

Immunogenomics to Create New Therapies for High-Risk Childhood Cancers
Grant Term: July 2013 - June 2018, administered by the American Association for Cancer Research

KEY PERSONNEL
Team Leader: John M. Maris, MD
Children’s Hospital of Philadelphia

Co-Leader: Crystal L. Mackall, MD
Stanford University

Advocate: Beth Anne Baber, PhD
Nicholas Connor Institute

Advocate: Kelly Cotter

Advocate: Jay Scott
Alex’s Lemonade Stand Foundation

Advocate: Liz Scott
Alex’s Lemonade Stand Foundation

Advocate: Patrick J. Sullivan, LLB
Team Finn Foundation

Advocate: Lisa Tichenor
QuadW Foundation

Advocate: Mac Tichenor
QuadW Foundation

目的
The SU2C-St. Baldrick’s Foundation Pediatric Cancer Dream Team brought together the fields of cancer genomics and immuno-oncology to rethink curative therapies for malignancies afflicting children. The Team focused on developing innovative new immunotherapies, discovering basic mechanisms of effectiveness (or lack thereof) in both antibody and cellular engineering, and devising novel methods to monitor clinical effectiveness and toxicity. The Team’s work continues through a renewal project awarded in 2017.
SPECIFIC AIMS

Aim 1. Discover and validate cell surface targets for immunotherapy of high-risk pediatric cancers.

Aim 2. Generate and develop therapeutic proteins targeting prioritized cell surface molecules.

KEY ACCOMPLISHMENTS

Team investigators developed antibodies, antibody-drug conjugates and chimeric antigen receptor-arm T cells to attack new targets for immunotherapy, discovering basic mechanisms of effectiveness (or lack thereof), made significant progress in both antibody and cellular engineering, and developed novel methods to monitor clinical effectiveness and toxicity. They demonstrated the potency of immunotherapy against childhood acute lymphoblastic leukemia (ALL), as well as defined mechanisms for how these cancers cells can adapt and avoid the modified immune cells designed to target ALL. They also made progress against childhood solid cancers, with emerging therapeutics against diseases such as neuroblastoma, glioblastoma, medulloblastoma, osteosarcoma, Ewing sarcoma, and rhabdomyosarcoma. The Team’s work contributed to two 2017 FDA approvals for refractory leukemia, a first-of-its-kind CD19 CAR T therapy that trains patient’s immune cells to eliminate cancer in children and young adults with ALL and treatment for cytokine release syndrome, a potential life-threatening complication of CAR T therapies.

CLINICAL TRIALS

Pediatric and Young Adult Leukemia Adoptive Therapy (PLAT)-02: A Phase I/II Feasibility and Safety Study of CD19-CAR T-cell Immunotherapy for CD19+ Leukemia; NCT02028455; Active, not recruiting

A Phase 1 Feasibility and Safety Study of Cellular Immunotherapy for Recurrent/Refractory Neuroblastoma Using Autologous T-cells Lentivirally Transduced to Express CD171-specific Chimeric Antigen Receptors; NCT02311621; Active, not recruiting

Phase I Dose Escalation Study of Anti-CD22 Chimeric Receptor T Cells in Pediatric and Young Adults With Recurrent or Refractory CD22-expressing B-cell Malignancies; NCT02315612; Recruiting

Phase I Study of Intracranial Injection of T Cells Expressing HER2-specific Chimeric Antigen Receptors (CAR) in Subjects With HER2-Positive Tumors of the Central Nervous System (iCAR); NCT02442297; Active, not recruiting

TCR alpha/beta+ and CD19+ Depleted KIR/KIR Ligand-Mismatched Haploidentical Hematopoietic Stem Cell Transplant and Zolendronate for Pediatric Relapsed/Refractory Hematologic Malignancies and High-Risk Solid Tumors; NCT02508038; Recruiting
Pilot Study of Autologous Anti-CD22 Chimeric Antigen Receptor Redirected T Cells in Pediatric Patients With Chemotherapy-Resistant or Refractory Acute Lymphoblastic Leukemia; NCT02650414; Recruiting

A Phase I Study of 131-I mIBG Followed by Nivolumab and Dinutuximab Beta in Children With Relapsed/Refractory Neuroblastoma; NCT02914405; Recruiting

Pediatric and Young Adult Leukemia Adoptive Therapy (PLAT)-03: A Pilot Feasibility and Safety Study of CD19t T-Antigen Presenting Cells (T-APCs) Following CAR T Cell Immunotherapy for CD19+ Leukemia; NCT03186118; Active, not recruiting

Treatment of Relapsed or Refractory Neuroblastoma With Ex Vivo Expanded and Activated Haploidentical NK Cells and Hu14.18-IL2; NCT03209869; Withdrawn

Phase I Dose Escalation Study of CD19/CD22 Chimeric Antigen Receptor (CAR) T Cells in Children and Young Adults With Recurrent or Refractory B Cell Malignancies; NCT03241940; Recruiting

Pediatric and Young Adult Leukemia Adoptive Therapy (PLAT)-05: Phase I Feasibility and Safety Study of Dual Specificity CD19 and CD22 CAR T Cell Immunotherapy for CD19+CD22+ Leukemia and Lymphoma; NCT03330691; Recruiting

Pediatric Leukemia Adoptive Therapy (PLAT)-01: Phase I Feasibility and Safety Study of Cellular Immunotherapy for Relapsed Pediatric CD19+ Acute Lymphoblastic Leukemia Using Autologous T Cells Lentivirally Transduced to Express a CD19-Specific Chimeric Antigen Receptor; NCT01683279; Active, not recruiting

A Phase II, Single-Arm, Multicenter Trial to Determine the Efficacy and Safety of CTL019 in Pediatric Patients With Relapsed and Refractory B-Cell Acute Lymphoblastic Leukemia; NCT02435849; Completed

A Two-Cohort Pilot Study of the Tocilizumab Optimization Timing for CART19 Associated Cytokine Release Syndrome (CRS) Management in Pediatric Patients With CD19 Expressing Relapsed/Refractory B-cell Acute Lymphoblastic Leukemia (ALL); NCT02906371; Completed.

Administration of HER2 Chimeric Antigen Receptor Expressing T Cells for Subjects With Advanced Sarcoma (HEROS); NCT00902044; Active, not recruiting

Pediatric and Young Adult Leukemia Adoptive Therapy (PLAT)-04: Phase I Feasibility and Safety Study of CD22-CAR T Cell Immunotherapy for CD22+ Leukemia and Lymphoma; NCT03244306; Active, not recruiting

Pilot Study of Nonviral, RNA-Redirected Autologous T Cells Engineered to Contain Anti-CD19 Linked to TCR and 4-1BB Signaling Domains in Patients With Refractory or Relapsed Hodgkin Lymphoma; NCT02624258; Terminated

Administration of HER2 Chimeric Receptor and TGF Beta Dominant Negative Receptor (DNR) Expressing EBV Specific Lymphocytes for Subjects With Advanced HER2-Positive Malignancy (HERCREEM); NCT00889954; Completed

Administration of HER2 Chimeric Antigen Receptor Expressing CMV-Specific Cytotoxic T Cells in Patients With Glioblastoma Multiforme (HERT-GBM); NCT01109095; Completed
Phase I Study of T Cells Expressing an Anti-CD19 Chimeric Receptor in Children and Young Adults With B-cell Malignancies; NCT01593696; Completed

CHP959–Phase I/IIa Study of Redirected Autologous T Cells Engineered to Contain Anti-CD19 Attached to TCR Zeta and 4-1BB Signaling Domains in Patients With Chemotherapy-Resistant or Refractory CD19+ Leukemia and Lymphoma; NCT01626495; Completed

Phase I Trial of T Cells Expressing an Anti-GD2 Chimeric Antigen Receptor in Children and Young Adults With GD2+ Solid Tumors; NCT02107963; Completed

Phase II, Single-Arm, Multicenter Trial to Determine the Efficacy and Safety of CTL019 in Pediatric Patients With Relapsed and Refractory B-Cell Acute Lymphoblastic Leukemia; NCT02228096; Completed

Phase I, Open-Label, Dose-Escalation Study of MGA271 in Pediatric Patients With B7-H3-Expressing Relapsed or Refractory Solid Tumors; NCT02982941; Completed

Pilot Study of Redirected Autologous T Cells Engineered to Contain Humanized Anti-CD19 Attached to TCR and 4-1BB Signaling Domains in Patients With Relapsed or Refractory CD19+ Leukemia and Lymphoma Previously Treated With Cell Therapy; NCT02374333; Completed
SU2C DREAM TEAMS

SU2C-CANCER RESEARCH INSTITUTE CANCER IMMUNOLOGY DREAM TEAM DT5907
Immunologic Checkpoint Blockade and Adoptive Cell Transfer in Cancer Therapy
Grant Term: March 2013 - February 2018, administered by the American Association for Cancer Research

KEY PERSONNEL
Team Leader: James P. Allison, PhD
The University of Texas MD Anderson Cancer Center

Co-Leader: Drew M. Pardoll, MD, PhD
Johns Hopkins University

Co-Leader: Antoni Ribas, MD, PhD
University of California, Los Angeles

Co-Leader: Cassian Yee, MD
The University of Texas MD Anderson Cancer Center

Principal: Glenn E. Dranoff, MD
Dana-Farber Cancer Institute

Principal: Philip D. Greenberg, MD
Fred Hutchinson Cancer Research Center

Principal: James R. Heath, PhD
California Institute of Technology

Principal: F. Stephen Hodi, MD
Dana-Farber Cancer Institute

Principal: Michel Sadelain, MD, PhD
Memorial Sloan Kettering Cancer Center

Principal: Ton N. Schumacher, PhD
Netherlands Cancer Institute

Principal: Jedd D. Wolchok, MD, PhD
Memorial Sloan Kettering Cancer Center

Project Manager: James J. Mancuso
The University of Texas MD Anderson Cancer Center
JJMancuso@mdanderson.org

Advocate: Robert E. Behrens
REB Investments, Inc.

Advocate: Debra Black
Melanoma Research Alliance

Advocate: Roy Doumani, JD (deceased)
University of California, Los Angeles

Advocate: Valerie Guild
AIM at Melanoma
The members of the SU2C–Cancer Research Institute Cancer Immunology Dream Team led the pre-clinical and clinical development of antibodies that block two immune inhibitory (checkpoint) pathways, the cornerstones of molecularly based immunotherapy, and identified additional inhibitory checkpoints and co-stimulatory molecules which are “druggable” targets.

SPECIFIC AIMS

Aim 1. Interrogate immune responses within the tumor microenvironment before and after treatment with immune checkpoint blockade.

Aim 2. Interrogate the targets of T and B-cell responses after checkpoint blockade.

Aim 3. Provide therapeutic benefit to patients with advanced tumors by improving the quality of cancer-specific T lymphocytes generated for adoptive cell transfer (ACT) therapy.

Aim 4. Develop novel combinatorial therapies based on immune checkpoint blockade.

KEY ACCOMPLISHMENTS

Work by members of this Dream Team contributed to several approvals of the PD-1 checkpoint inhibitors pembrolizumab and nivolumab for patients with different cancers starting in 2014. The Team made the landmark demonstration of the benefits of administering immunotherapy prior to surgical treatment of non-small cell lung cancer. The report was published in the New England Journal of Medicine. The Team conducted a clinical trial to assess combined CTLA-4 and PD-1/PD-L1 blockade in patients with advanced melanoma.

CLINICAL TRIALS

- Neoadjuvant Nivolumab, or Nivolumab in Combination With Ipilimumab, in Resectable Non-small Cell Lung Cancer; NCT02259621; Active, not recruiting

- A Phase I/II Clinical Trial of Malignant Pleural Disease Treated With Autologous T Cells Genetically Engineered to Target the Cancer-Cell Surface Antigen Mesothelin; NCT02414269; Active, not recruiting

- Phase Ib Study of Cellular Adoptive Immunotherapy Using Autologous Cd8+ Antigen-Specific T Cells and Anti-CTLA4 For Patients With Metastatic Uveal Melanoma; NCT03068624; Active, not recruiting
Adoptive Transfer of NY-ESO-1 TCR Engineered Peripheral Blood Mononuclear Cells (PBMC) After a Nonmyeloablative Conditioning Regimen, With Administration of NY-ESO-1157-165 Pulsed Dendritic Cells and Interleukin-2, in Patients With Advanced Malignancies; NCT01697527; Active, not recruiting

A Phase I/II, Open-Label Study of Nivolumab Monotherapy or Nivolumab Combined With Ipilimumab in Subjects With Advanced or Metastatic Solid Tumors; NCT01928394; Active, not recruiting

A Pilot Randomized Tissue-Based Study Evaluating Anti-PD1 Antibody or Anti-PD1 +Bevacizumab or Anti-PD1 + Anti-CTLA-4 in Patients With Metastatic Renal Cell Carcinoma Who Are Eligible for Cytoreductive Nephrectomy, Metastasectomy, or Post-treatment Biopsy; NCT02210117; Unknown

Phase I/II Study in WT1-Expressing Non-small Cell Lung Cancer and Mesothelioma, Comparing Cellular Adoptive Immunotherapy With Polyclonal Autologous Central Memory to Naive CD8+ T Cells That Have Been Transduced to Express a WT1-Specific T-cell Receptor; NCT02408016; Terminated (Terminated due to loss of funding)

Pilot Study of Feasibility and Safety of Personalized Autologous CD8+ T-cell Therapy Plus Anti-PD-1 Antibody in Advanced Solid Malignancies; NCT02757391; Terminated

Phase II, Single-Arm Clinical Trial of Nivolumab (BMS-936558) in Subjects With Metastatic or Unresectable Urothelial Cancer Who Have Progressed or Recurred Following Treatment With a Platinum Agent; NCT02387996; Completed

Phase Ib Safety and Dose-Assessment Study of Neoadjuvant Ipilimumab Monotherapy in Patients With Urothelial Carcinoma Undergoing Surgical Resection; NCT00362713; Completed

Neoadjuvant Phase Ila Study of Ipilimumab (Formerly known as MDX-010 [BMS-734016]) Plus Hormone Ablation in Men With Prostate Cancer Followed by Radical Prostatectomy; NCT01194271; Completed

Phase II Study of Ipilimumab Plus Androgen Deprivation Therapy in Castrate-Sensitive Prostate Carcinoma; NCT01377389; Completed

Exploratory Study of the Biologic Effects of Nivolumab and Ipilimumab Monotherapy and Nivolumab in Combination With Ipilimumab Treatment in Subjects With Advanced Melanoma (Unresectable or Metastatic); NCT01621490; Completed

Feasibility Study to Determine T-Cell Responses to Neoantigens Following Treatment With Ipilimumab in Men With Metastatic Castration-Resistant Prostate Carcinoma; NCT02113657; Completed

NY-ESO-1 TCR Engineered Adoptive Cell Transfer Therapy With Nivolumab PD-1 Blockade; NCT02775292; Completed

FUNDERS
SU2C-PROSTATE CANCER FOUNDATION PROSTATE CANCER DREAM TEAM DT5904

Targeting Adaptive Pathways in Metastatic Castration-Resistant Prostate Cancer
Grant Term: January 2013 - December 2016, administered by the American Association for Cancer Research

KEY PERSONNEL
Team Leader: Eric J. Small, MD
University of California, San Francisco

Co-Leader: Owen N. Witte, MD
University of California, Los Angeles

Principal: Tomasz M. Beer, MD
Oregon Health & Science University

Principal: Christopher P. Evans, MD
University of California, Davis, Comprehensive Cancer Center

Principal: Martin E. Gleave, MD
University of British Columbia

Principal: Joshua M. Stuart, PhD
University of California, Santa Cruz

Project Manager: Kelly McNeill
University of California, San Francisco
kelly.mcneill@ucsf.edu

Advocate: Roy Doumani, JD (deceased)
University of California, Los Angeles

Advocate: Arthur H. Kern (deceased)
University of California, San Francisco

PURPOSE
The SU2C-Prostate Cancer Foundation Prostate Cancer Dream Team was formed to explore the molecular basis of adaptive mechanisms of treatment resistance exhibited by men with castration-resistant prostate cancer (CRPC).

SPECIFIC AIMS
Aim 1. Identify adaptive pathways to abiraterone and enzalutamide active in resistant mCRPC tumors.

Aim 2. Validate that identified adaptive pathways cause resistance.

Aim 3. Demonstrate the efficacy of co-targeting adaptive pathways.

KEY ACCOMPLISHMENTS
The Team studied metastatic biopsies to understand why patients become resistant to hormone therapy. The active signaling pathway that they identified in enzalutamide-resistant patients can potentially be blocked by drugs. They found that the MEK/ERK pathway, which is being targeted already in other cancers with new drugs, is also a linchpin in metastatic prostate cancer. They conducted a clinical trial on a MEK pathway inhibitor in mCRPC patients. The Team has developed blood tests that can be used to monitor the response of patients to treatment. These methods can keep patients from having to have tumor biopsies. They also found certain genetic characteristics in patients with treatment-emergent small-cell neuroendocrine prostate cancer (t-SCNC) (a highly aggressive subtype), that can potentially be targeted with drugs.
CLINICAL TRIALS

Radiologically Guided Biopsies of Metastatic Castration-Resistant Prostate Cancer (mCRPC) to Identify Adaptive Mechanisms of Resistance; NCT02432001; Completed

Phase Ib/II Study of the Oral CDK4/6 Inhibitor LEE011 in Combination With Docetaxel Plus Prednisone in Metastatic Castration-Resistant Prostate Cancer; NCT02494921; Completed

Phase I/II Trial of Concurrent Chemohormonal Therapy Using Enzalutamide (MDV-3100) and Cabazitaxel in Patients With Metastatic Castration-Resistant Prostate Cancer; NCT02522715; Active, not recruiting

Single-Arm, Open-Label, Two-Stage Phase II Study of the MEK 1/2 Inhibitor Trametinib in Men With Progressive Metastatic Castrate-Resistant Prostate Cancer; NCT02881242; Active, not recruiting

Phase II Study Combining Ipilimumab With Abiraterone Acetate Plus Prednisone in Chemotherapy and Immunotherapy-Naive Patients With Progressive Metastatic Castration-Resistant Prostate Cancer; NCT01688492; Terminated (strategic considerations)

Multicenter, Randomized, Double-Blind, Placebo-Controlled, Phase III Study of ARN-509 in Men With Non-Metastatic (M0) Castration-Resistant Prostate Cancer; NCT019462904; Active, not recruiting

Genetic and Molecular Mechanisms Underlying Tumor Progression Despite Enzalutamide Treatment; NCT02099864; Active, not recruiting

Phase III Trial of Enzalutamide (NSC # 766085) Versus Enzalutamide, Abiraterone, and Prednisone for Castration-Resistant Metastatic Prostate Cancer; NCT01949337; Active, not recruiting

A Phase II Randomized, Multicenter Study of Cabazitaxel Versus Abiraterone or Enzalutamide in Poor Prognostic-Metastatic Castration-Resistant Prostate Cancer; NCT02254785; Unknown

Addition of Pembrolizumab Upon Progression on Enzalutamide in Men With mCRPC; NCT02312557; Active, not recruiting

Phase II Study of MAOA Inhibitor Plus Docetaxel in Patients Receiving and Progressing on Docetaxel Therapy; NCT01253642; Terminated (low enrollment)

Phase II Single-Agent Study of Selinexor (KPT-330) in Patients With Metastatic Castration-Resistant Prostate Cancer (mCRPC) and Prior Therapy With Abiraterone and/or Enzalutamide; NCT02215161; Terminated (risk-to-benefit ratio was not acceptable)

An Open-Label Study of Rovalpituzumab Tesirine in Subjects With Delta-Like Protein 3-Expressing Advanced Solid Tumors; NCT02709889; Terminated (strategic considerations)

PREVAIL: A Multinational Phase III, Randomized, Double-Blind, Placebo-Controlled Efficacy and Safety Study of Oral MDV3100 in Chemotherapy-Naive Patients With Progressive Metastatic Prostate Cancer Who Have Failed Androgen Deprivation Therapy; NCT01212991; Completed

Phase I Trial of ADIPEG 20 Plus Docetaxel in Advanced Solid Tumors With Emphasis on Castration-Resistant Prostate Cancer (CRPC) and Advanced Non-small Cell Lung Cancer (NSCLC); NCT01497925; Completed
SU2C DREAM TEAMS

Randomized Phase III Study Comparing Cabazitaxel/Prednisone in Combination With Custirsen (OGX-011) to Cabazitaxel/Prednisone for Second-Line Chemotherapy in Men With Metastatic Castrate-Resistant Prostate Cancer; NCT01578655; Completed

Phase II Study of Increased-Dose Abiraterone Acetate in Patients With Castration-Resistant Prostate Cancer (CRPC); NCT01637402; Completed

Randomized Phase II Trial of Immediate Versus Delayed Anti-CTLA4 Blockade Following Sipuleucel-T Treatment for Prostate Cancer Immunotherapy; NCT01804465; Completed

Randomized, Double-Blind, Multicenter, Parallel-Group, Phase III Study to Evaluate Efficacy and Safety of DCVAC/Pca Versus Placebo in Men With Metastatic Castration-Resistant Prostate Cancer Eligible for First-Line Chemotherapy; NCT02111577; Completed

Randomized Phase II Study of Sequencing Abiraterone Acetate and Enzalutamide in Metastatic Castration-Resistant Prostate Cancer; NCT02125357; Completed

Identifying Mechanisms of Resistance to Enzalutamide (MDV3100) Treatment in Men With Castration-Resistant Prostate Cancer; NCT02228265; Completed

Phase I Study of Cabazitaxel, Mitoxantrone, and Prednisone (CAMP) for Patients With Metastatic Castration-Resistant Prostate Cancer and No Prior Chemotherapy; NCT01594918; Completed

STRIVE: A Multicenter Phase II, Randomized, Double-Blind Efficacy and Safety Study of Enzalutamide Versus Bicalutamide in Men With Prostate Cancer Who Have Failed Primary Androgen Therapy; NCT01664923; Completed

Phase II Study of Recombinant Glycosolated Human IL7 (CYT107) After Completion of Standard FDA-Approved Therapy With Sipuleucel-T (Provenge®) for Patients With Asymptomatic or Minimally Symptomatic Metastatic Castration-Resistant Prostate Cancer; NCT01881867; Completed

Three-Arm, Randomized, Open-Label, Phase II Study of Radium-223 Dichloride 50 kBq/kg (55 kBq/kg After Implementation of NIST Update) Versus 80 kBq/kg (88 kBq/kg After Implementation of NISTUpdate), and Versus 50 kBq/kg (55 kBq/kg After Implementation of NIST Update) in an Extended Dosing Schedule in Subjects With Castration-Resistant Prostate Cancer Metastatic to the Bone; NCT02023697; Completed

Phase I Safety and Tolerability Study of ZEN003694 in Patients With Metastatic Castration-Resistant Prostate Cancer; NCT02705469; Completed

FUNDER
SU2C DREAM TEAMS

SU2C-PROSTATE CANCER FOUNDATION PROSTATE CANCER DREAM TEAM DT5903

Precision Therapy of Advanced Prostate Cancer
Grant Term: August 2012 - July 2016, administered by the American Association for Cancer Research

KEY PERSONNEL

Team Leader: Arul M. Chinnaiyan, MD, PhD
University of Michigan

Co-Leader: Charles L. Sawyers, MD
Memorial Sloan Kettering Cancer Center

Advocate: Woods Brown
University of Michigan

Advocate: Thomas A. Farrington
Prostate Health Education Network

Advocate: W. Grant Gregory
Memorial Sloan Kettering Cancer Center

Advocate: James Kiefert, EdD
Us TOO International, Inc.

Advocate: Stanley Klein
Boston Prostate Cancer Support Group

Advocate: Ian S. Liston (deceased)

Advocate: Douglas Pergament (deceased)

Chinnaiyan Sawyers

Principal: Johann S. de Bono, MBChB, MD
Institute of Cancer Research, Royal Marsden NHS Foundation Trust

Principal: Levi A. Garraway, MD, PhD
Broad Institute

Principal: Philip W. Kantoff, MD
Dana-Farber Cancer Institute

Principal: Peter S. Nelson, MD
University of Washington, Fred Hutchinson Cancer Research Center

Principal: Mark A. Rubin, MD
Weill Cornell Medical College of Cornell University

Project Manager: Karen Giles
University of Michigan
kargiles@med.umich.edu

Advocate: Ian S. Liston (deceased)

Advocate: Douglas Pergament (deceased)

PURPOSE
The SU2C-Prostate Cancer Foundation Prostate Cancer Dream Team’s goal was to apply genome analysis technologies/techniques to biopsy tissues collected from a large cohort study of men with castration-resistant prostate cancer (CRPC).

SPECIFIC AIMS

Aim 1. Establish a multi-institutional infrastructure incorporating five leading prostate cancer clinical sites and two sequencing and computational analysis sites, linked with appropriate sample and data coordination.

Aim 2. Establish a prospective cohort of 500 patients (the “CRPC 500”) utilizing the multi-institutional infrastructure to support the clinical use of integrative prostate cancer sequencing, analysis, and clinical trial decision making.
Aim 3. Conduct parallel, preclinical in vivo functional studies of resistance biomarkers and of SU2C/PCF-sponsored combination therapies.

Aim 4. Identify molecular determinants of abiraterone sensitivity and acquired resistance in patients.

Aim 5. Conduct clinical trials of novel combinations targeting AR and/or the PTEN pathway based on existing preclinical data and an understanding of resistance mechanisms.

Aim 6. Identify molecular determinants of sensitivity and acquired resistance to PARP inhibitors in patients.

KEY PROGRESS

The team’s work resulted in the largest collection of genomic data on clinical mCRPC patients to date. The Team determined the molecular landscape of metastatic CRPC and defined a “long tail” of alterations in clinically relevant genes that may inform treatment strategies. Further, the Team’s standardized analytical pipeline serves as a vital infrastructure for cross-institutional genomics studies of therapeuritic resistance. The Team also found that men with somatic loss of DNA repair genes have enhanced responses to PARPi and determined that 12% of men with mCRPC have germline aberrations in DNA repair genes. This research contributed to the 2020 FDA approval of Olaparib for homologous recombination repair gene-mutated metastatic castration-resistant prostate cancer.

CLINICAL TRIALS

- **Phase II Trial of Olaparib in Patients With Advanced Castration-Resistant Prostate Cancer (TOPARP); NCT01682772; Not recruiting**

- **Randomized Phase II Study of Enzalutamide (MDV3100) in Combination With AZD5363 in Patients With Metastatic Castration-Resistant Prostate Cancer (RE-AKT); NCT02525068; Unknown**

- **Open-Label Pharmacodynamic Study of Abiraterone Acetate in the Treatment of Metastatic, Castration-Resistant Prostate Cancer; NCT01503229; Completed**

- **Randomized Gene Fusion Stratified Phase II Trial of Abiraterone With or Without ABT-888 for Patients With Metastatic Castration-Resistant Prostate Cancer; NCT01576172; Completed**

- **ARMOR 2: A 2-Part, Phase II Trial of Galeterone in the Treatment of Castration-Resistant Prostate Cancer; NCT01709734; Completed**

- **Phase Ib Study of ARN509 Plus Everolimus in Men With Progressive Metastatic Castration-Resistant Prostate Cancer After Treatment With Abiraterone Acetate; NCT02106507; Completed**

- **Phase II Trial of Enzalutamide for Castrate-Resistant Prostate Cancer (CRPC) With Correlative Assessment of Androgen Receptor (AR) Signaling and Whole-Exome and Transcriptome Sequencing; NCT01942837; Completed**

- **Phase II Trial of Enzalutamide for Castrate-Resistant Prostate Cancer (CRPC) With Correlative Assessment of Androgen Receptor (AR) Signaling and Whole-Exome and Transcriptome Sequencing; NCT01942837; Completed**

- **Phase I Study of Crizotinib in Combination With Enzalutamide in Metastatic Castration-Resistant Prostate Cancer Before or After Progression on Docetaxel; NCT02207504; Complete**

FUNDING

SU2C DREAM TEAMS

THE SU2C SCIENTIFIC SUMMIT

CORONADO, CALIFORNIA JANUARY 26-29 2024

83
SU2C DREAM TEAMS

SU2C-MELANOMA RESEARCH ALLIANCE MELANOMA DREAM TEAM DT5913

Personalized Medicine for Patients With BRAF Wild-Type (BRAFwt) Cancer
Grant Term: April 2012 – June 2017, administered by the American Association for Cancer Research

KEY PERSONNEL

Team Leader: Jeffrey M. Trent, PhD
Translational Genomics Research Institute

Co-Leader: Patricia M. LoRusso, DO
Yale Cancer Center

Principal: Aleksandar D. Sekulic, MD, PhD
Mayo Clinic

Principal: Jeffrey A. Sosman, MD
Mayo Clinic

Principal: Kristiina Vuori, MD, PhD
Sanford Burnham Prebys Medical Discovery Institute

Project Manager: Cassandra L. Lucas, PhD
Translational Genomics Research Institute
clucas@tgen.org

Advocate: Tracy L. Bame
Freeport-McMoRan Copper & Gold Foundation

Advocate: Mark Gorman, JD
National Coalition for Cancer Survivorship

Advocate: Derrick M. Hall
Arizona Diamondbacks

Advocate: Cornelius A. McGillicuddy III
Liberty Partners Group

Advocate: Jane Perlmutter, PhD
Gemini Group

Principal: Joshua LaBaer, MD, PhD
Biosdesign Institute at Arizona State University

Principal: Svetomir N. Markovic, MD, PhD
Mayo Clinic

Principal: Brian J. Nickoloff, MD, PhD
Michigan State University

Principal: Emanuel F. Petricoin, PhD
George Mason University

Principal: Neal Rosen, MD, PhD
Memorial Sloan Kettering Cancer Center

Principal: Nicholas J. Schork, PhD
J. Craig Venter Institute
PURPOSE
The goal of this Team was to examine the genome of metastatic melanoma patients whose tumors do not bear a BRAF mutation to identify specific genetic alterations that would help match patients with an appropriate targeted therapy. The Team tested whether this personalized medicine approach would lead to more appropriate treatments and spare patients from unnecessary treatments, which are often highly toxic with uncertain benefit.

SPECIFIC AIDS

Aim 1. Conduct a randomized pilot study to assess the feasibility and safety of characterizing BRAFwt MM tumors to design a molecularly informed therapeutic regimen.

Aim 2. Iteratively refine and standardize a set of statistical and informatics methodologies for matching treatments to the patient’s tumor, based on its molecular profile.

Aim 3. Evaluate whether molecularly informed personalized therapy selection, based on a tumor’s molecular profile (potentially enhanced by the refined methodology for predicting drug response developed in Aim 2), will improve outcomes relative to standard of care therapy in BRAFwt MM.

KEY ACCOMPLISHMENTS

The Team developed and optimized a methodology for molecular characterization of BRAF wild-type melanomas. This optimization decreased the time for the clinical and molecular profiling from biopsy to tumor board from five weeks to 22 days. The Team successfully conducted a pilot study, followed by a larger-scale clinical trial, to assess the feasibility of tumor molecular characterization to guide the selection of appropriate treatments.

CLINICAL TRIALS

Stand Up To Cancer Consortium Genomics-Enabled Medicine for Melanoma (G.E.M.M.): Using Molecularly Guided Therapy for Patients With BRAF Wild-Type (BRAFwt) Metastatic Melanoma; NCT02094872; Completed

FUNDER

Melanoma Research Alliance
SU2C DREAM TEAMS

SU2C PANCREATIC DREAM TEAM DT5921
Cutting Off the Fuel Supply: A New Approach to the Treatment of Pancreatic Cancer
Grant Term: December 2009 - October 2017, administered by the American Association for Cancer Research

KEY PERSONNEL
Team Leader: Craig B. Thompson, MD, (2009–2011)
University of Pennsylvania

Team Leader: Jeffrey A. Drebin, MD, PhD (2011–2015)
University of Pennsylvania

Co-Leader: Daniel D. Von Hoff, MD
Translational Genomics Research Institute

Principal: Chi Van Dang, MD, PhD
University of Pennsylvania

Principal: Joshua D. Rabinowitz, MD, PhD
Princeton University

Principal: Geoffrey M. Wahl, PhD
Salk Institute for Biological Studies

Advocate: Julie M. Fleshman, JD
Pancreatic Action Network

Advocate: Barton A. Kamen (deceased)
Leukemia and Lymphoma Society

Advocate: Kerri Kaplan
Lustgarten Foundation

Advocate: Randall M. Katz
Milestone Entertainment

Advocate: Howard Young

PURPOSE
The Pancreatic Dream Team aimed to develop new clinical tests to determine how pancreatic cancer cells fuel their growth and survival to allow tailored clinical therapies challenging the tumor cell’s fuel supply. Clinical trials were initiated of drugs to inhibit pancreatic cancer cells from effectively using either stromal cell-derived cytokines or glucose and/or glutamine to maintain their survival.
SPECIFIC AIMS

Aim 1. Imaging glucose and/or glutamine uptake in pancreatic tumors.

Aim 2. Investigating clinical therapies to impair tumor metabolism and stromal support.

KEY ACCOMPLISHMENTS

The Team has transformed how pancreatic cancer patients could be treated by developing a new way to take an image of the tumor inside a patient’s body, showing the efficacy of a new drug regimen that is now being used as the standard of care, demonstrating how circulating DNA in the blood can be used to detect cancer recurrence, and developing a new cancer-killing strategy using a vitamin D-like compound. The results of the Team’s Phase III trial testing Gemcitabine +/- Albumin-bound paclitaxel provided key evidence leading to the FDA approval of the combination of nab-paclitaxel with gemcitabine for the treatment of advanced pancreatic cancer -- changing the standard of care.

CLINICAL TRIALS

- **Phase I Study:** PET Imaging of Cancer Patients Using \([18F] 4-L-Fluoroglutamine (2S,4R); NCT01697930; Recruiting**

- **Randomized Phase III Study of Weekly ABI-007 Plus Gemcitabine Versus Gemcitabine Alone in Patients With Metastatic Adenocarcinoma of the Pancreas; NCT00844649; Completed**

- **Stand Up To Cancer Consortium: Phase II Study of Therapy Selected by Molecular/Metabolic Profiling in Patients With Previously Treated Metastatic Pancreatic Cancer; NCT01196247; Completed**

- **Phase I/II Pharmacodynamics Study of Hydroxychloroquine in Combination With Gemcitabine/Abraxane to Inhibit Autophagy in Pancreatic Cancer; NCT01506973; Completed**

- **Randomized Pilot/Pharmacodynamic/Genomic Study of Neoadjuvant Paricalcitol to Target the Microenvironment in Resectable Pancreatic Cancer; NCT02030860; Completed**

- **Exploratory Study of Metformin With or Without Rapamycin as Maintenance Therapy After Induction Chemotherapy in Subjects With Metastatic Pancreatic Adenocarcinoma Cancer; NCT02048384; Completed**
SU2C EPIGENETICS DREAM TEAM DT5917

Bringing Epigenetic Therapy to the Forefront of Cancer Management

Grant Term: December 2009 - January 2015, administered by the American Association for Cancer Research

KEY PERSONNEL

Team Leader: Stephen B. Baylin, MD
Johns Hopkins University

Co-Leader: Peter A. Jones, PhD, DSc (hc)
Van Andel Institute

Principal: Steven A. Belinsky, PhD
Lovelace Respiratory Research Institute

Principal: Nancy E. Davidson, MD
Fred Hutchinson Cancer Research Center

Principal: Jean-Pierre J. Issa, MD
Coriell Institute for Medical Research

Advocate: Diana T. Chingos
National Cancer Institute

Advocate: Lillie D. Shockney
Johns Hopkins University

PURPOSE

The Epigenetics Dream Team tested the hypothesis that drugs targeting DNA demethylation and histone deactylation can potently change the management of advanced NSCLC.

SPECIFIC AIMS

Aim 1. Develop molecular markers that predict and monitor the efficacy of cancer epigenetic therapies.

Aim 2. Perform clinical trials to bring epigenetic therapy to the forefront of cancer management.

Aim 3. Determine whether a key mechanism for efficacy of epigenetic therapy is the targeting and exhaustion of self-renewing cancer cells.

Aim 4. Develop a clinical trial with a new drug designed to circumvent the instability of 5-AC and DAC.

Aim 5. Determine targets in addition to promoter DNA hypermethylation that may be utilized in new cancer epigenetic therapy approaches.
KEY ACCOMPLISHMENTS
The Epigenetics Dream Team explored the therapeutic potential of different epigenetic drugs; namely, 5-azacitidine (5-AC), decitabine (DAC), entinostat, and a novel DNA demethylating agent SGI-110 (guadecitabine), in clinical trials for non-small cell lung cancer, colorectal cancer, AML, breast cancer and MDS/AML. They observed objective, durable responses in patients with solid tumors treated with low-dose azacitidine and entinostat in their phase I/II clinical trial. Correlative analyses of lung cancer clinical trial samples, along with results from preclinical studies, indicated that epigenetic therapy may prime tumors for responsiveness to immune checkpoint blockade.

CLINICAL TRIALS
A Phase II Study of Epigenetic Therapy With Azacitidine and Entinostat With Concurrent Nivolumab in Subjects With Metastatic Non-Small Cell Lung Cancer; NCT01928576; Completed

A Phase I/II Study of Entinostat in Combination With 5-Azacitidine in Patients With Recurrent Advanced Non-small Cell Lung Cancer; NCT00387465; Completed

Phase II Study of Azacitidine and Entinostat in Patients With Metastatic Colorectal Cancer; NCT0105377; Completed

Phase 1-2, Dose Escalation, Multicenter Study of Two Subcutaneous Regimens of SGI-110, a DNA Hypomethylating Agent, in Subjects With Intermediate or High-Risk Myelodysplastic Syndromes (MDS) or Acute Myelogenous Leukemia (AML); NCT01261312; Completed

Phase II Study of Azacitidine and Entinostat (SNDX-275) in Patients With Advanced Breast Cancer; NCT01349959; Completed

Randomized Phase II Trial of Adjuvant Combined Epigenetic Therapy With 5-Azacitidine and Entinostat in Resected Stage 1 Non-small Cell Lung Cancer Versus Standard Care; NCT01207726; Terminated

Randomized Phase II Trial of Cytotoxic Chemotherapy With or Without Epigenetic Priming in Patients With Advanced Non-small Cell Lung Cancer; NCT01935947; Terminated
SU2C DREAM TEAMS

SU2C CIRCULATING TUMOR CELL (CTC) DREAM TEAM DT5919
Bioengineering and Clinical Applications of Circulating Tumor Cell Chip
Grant Term: December 2009 - November 2013, administered by the American Association for Cancer Research

KEY PERSONNEL
Team Leader: Daniel A. Haber, MD, PhD
Massachusetts General Hospital

Co-Leader: Mehmet Toner, PhD
Massachusetts General Hospital

Principal: Sangeeta N. Bhatia, MD, PhD
Massachusetts Institute of Technology

Principal: John V. Heymach, MD, PhD
The University of Texas MD Anderson Cancer Center

Principal: Bruce E. Johnson, MD
Dana-Farber Cancer Institute

Principal: Mark G. Kris, MD
Memorial Sloan Kettering Cancer Center

Advocate: Rebecca Douglass
Douglass Family Foundation

Advocate: Jeane Ungerleider
Boston IVF

PURPOSE
The SU2C Circulating Tumor Cell Dream Team generated the prototype Herringbone-CTC-Chip, which allows initial molecular analysis of Circulating Tumor Cells (CTCs) and enables pilot clinical trials in cancers of the lung, prostate, breast, and pancreas, as well as melanoma. It also laid the groundwork for the next-generation CTC-iChip.

SPECIFIC AIMS
Aim 1a. Examine bioengineering optimization and nanosensing for increased sensitivity.

Aim 1b. Perform molecular characterization of CTCs.

Aim 2. Investigate clinical applications of the CTC-chip.

KEY ACCOMPLISHMENTS
The Team created a silicon chip that captures CTCs in a blood sample, allowing them to be analyzed, and laid the groundwork for a more sensitive, next-generation chip. The Team continued to develop techniques for studying CTCs and growing them in the laboratory. With these new methods, a doctor can learn about a patient’s tumor by studying CTCs in a simple blood sample, rather than having to order a biopsy.
CLINICAL TRIALS
Circulating Tumor Cell Analysis in Patients With Localized Prostate Cancer Undergoing Prostatectomy; NCT01961713; Unknown

Phase II Study of Lapatinib in Combination With Trastuzumab in Patients With HER2-Positive, Metastatic Breast Cancer; NCT00470704; Active, not recruiting

First-Line Erlotinib Therapy and the Subsequent Development of Mechanisms of Secondary Resistance in Patients With Non-small Cell Lung Cancer and Known Sensitizing EGFR Mutations; NCT00997334; Completed

Detecting EGFR T790M Mutations From Circulating Tumor Cells; NCT01734915; Completed

Phase II Single-Arm, Open-Label Study to Evaluate the Efficacy and Safety of Trastuzumab and Vinorelbine in Advanced Breast Cancer Patients With Human Epidermal Growth Factor-2 (HER2) Negative Primary Tumors and HER2-Positive Circulating Tumor Cells; NCT01185509; Terminated
SU2C DREAM TEAMS

SU2C PI3K DREAM TEAM DT5918
Targeting the PI3K Pathway in Women’s Cancers
Grant Term: November 2009 – October 2013, administered by the American Association for Cancer Research

KEY PERSONNEL
Team Leader: Lewis C. Cantley, PhD
Beth Israel Deaconess Medical Center

Co-Leader: Gordon B. Mills, MD, PhD
The University of Texas MD Anderson Cancer Center

Co-Leader: Charles L. Sawyers, MD (2009-2012)
Memorial Sloan Kettering Cancer Center

Principal: Carlos L. Arteaga, MD
Vanderbilt-Ingram Cancer Center

Principal: José Baselga, MD, PhD (deceased)
Vall d’Hebron Institute of Oncology

Principal: Ramon E. Parsons, MD, PhD
Herbert Irving Comprehensive Cancer Center

Principal: Thomas M. Roberts, PhD
Dana-Farber Cancer Institute

Principal: David B. Solit, MD
Memorial Sloan Kettering Cancer Center

Project Manager: Donald R. Watson
Dana-Farber Cancer Institute
donald_watson@dfci.harvard.edu

Advocate: Piru Cantarell
Vall d’Hebron Institute of Oncology

Advocate: Ruth Fax
Dana-Farber Cancer Institute

Advocate: Elizabeth Frank
Dana-Farber Cancer Institute

Advocate: Judi Hirschfield-Bartek
Beth Israel Deaconess Medical Center

Advocate: Patricia Lee
Vanderbilt University

Advocate: Don Listwin
Canary Foundation

Advocate: Jane Perlmutter
Gemini Group

Advocate: Sara Weiss
Dana-Farber Cancer Institute
PURPOSE
The goal of the PI3K Dream Team was to discover approaches that predict which patients will respond positively to PI3K pathway inhibitors. This project’s aims allowed clinicians to use biomarkers and imaging techniques to predict which patients would benefit from specific PI3K pathway inhibitors, leading to the development of therapeutic combinations that would hit multiple targets in the complex pathways that contribute to cancer cell growth.

SPECIFIC AIMS
Aim 1. Develop molecular markers and/or imaging modalities that predict the subset of cancers that are likely to respond to PI3K pathway inhibitors.

Aim 2. Design and conduct single-agent, molecular marker-driven adaptive trial(s).

Aim 3. Develop rational therapeutic combinations of PI3K pathway-targeted drugs.

Aim 4. Design and conduct two multi-arm, molecular marker-driven adaptive trials using a rational combination of a PI3K pathway inhibitor with another targeted therapy.

KEY ACCOMPLISHMENTS
The PI3K Dream Team developed a set of biomarkers, PI3K pathway inhibitors, and AKT inhibitors which were studied in 15 clinical trials. Promising early results from PI3K pathway or AKT inhibitor combinations in breast, ovarian, and endometrial cancers led to follow-on studies supported by pharmaceutical companies. Studies of olaparib drug combinations in BRCA1 ovarian and triple negative breast cancers informed the later work of the SU2C-Ovarian Cancer Research Alliance-National Ovarian Cancer Coalition Ovarian Cancer Dream Team. Results of one clinical trial developed by the team contributed to the FDA approval of alpelisib combined with fulvestrant for advanced or metastatic HR+/HER2-, PIK3CA-mutated breast cancer in postmenopausal women and in men. The SU2C PI3K Dream team has continued the team science concepts and collaborative model developed during the SU2C-supported grant with continued collaborations on preclinical studies and clinical trials. The trials initiated with SU2C’s support of the PI3K Dream team have demonstrated marked benefit for patients and have driven the development of multiple ongoing clinical trials.

CLINICAL TRIALS
Phase Ib Trial of BYL719 (an a-Specific PI3K Inhibitor) in Combination With Endocrine Therapy in Post-menopausal Patients With Hormone Receptor-Positive Metastatic Breast Cancer; NCT01791478; Active, not recruiting

Three-Arm, Randomized, Phase II Study of Paclitaxel/Carboplatin/Bevacizumab (NCI #704865), Paclitaxel/Carboplatin/Temsirolimus (NCI #683864), and Ixabepilone (NCI #710428)/Carboplatin/ Bevacizumab as Initial Therapy for
Measurable Stage 3 or 4a, Stage 4b, or Recurrent Endometrial Cancer; NCT00977574; Active, not recruiting

Randomized Phase I Study With a Safety Lead-In to Assess the Antitumor Efficacy of the MEK Inhibitor Trametinib Alone or in Combination With GSK2141795, an AKT Inhibitor, in Patients With Recurrent or Persistent Endometrial Cancer; NCT01935973; Completed

Phase Ib Trial of BKM120 (a PI3K Inhibitor) or BEZ235 (a PI3K/mTOR Inhibitor) in Combination With Endocrine Therapy in Post-menopausal Patients With Hormone Receptor-Positive Metastatic Breast Cancer; NCT01248494; Completed

Phase Ib Dose-Escalation and Biomarker Study of MK-2206 in Combination With Standard Doses of Weekly Paclitaxel in Patients With Locally Advanced or Metastatic Solid Tumors With an Expansion in Advanced Breast Cancer; NCT01263145; Completed

Phase II Trial of AKT Inhibitor MK2206 in Patients With Advanced Breast Cancer Who Have Tumors With a PIK3CA Mutation, or an AKT Mutation, and/or PTEN Loss/PTEN Mutation; NCT01277757; Completed

Phase II Study of MK-2206 in the Treatment of Recurrent High-Grade Serous Platinum-Resistant Ovarian, Fallopian Tube, or Primary Peritoneal Cancer; NCT01283035; Completed

Phase II Trial of BKM120 (a PI3K Inhibitor) in Patients With Triple-Negative Metastatic Breast Cancer; NCT01629615; Completed

Phase I Study of the Oral PI3kinase Inhibitor BKM120 or BYL719 and the Oral PARP Inhibitor Olaparib in Patients With Recurrent Triple-Negative Breast Cancer or High-Grade Serous Ovarian Cancer; NCT01623349; Completed

Phase II, Two-Stage, Two-Arm PIK3CA Mutation Stratified Trial of MK-2206 in Recurrent or Advanced Endometrial Cancer; NCT01312753; Completed

Phase II Evaluation of AZD6244 (NSC#748727) in the Treatment of Recurrent or Persistent Endometrial Carcinoma; NCT01011933; Completed

Phase I/II Study of XL147 (SAR245408) Administered in Combination With Trastuzumab or Paclitaxel and Trastuzumab in Subjects With Metastatic Breast Cancer Who Have Progressed on a Previous Trastuzumab-Based Regimen; NCT01042925; Completed

Phase I/II Dose-Escalation Study of XL147 (SAR245408) or XL765 (SAR245409) in Combination With Letrozole in Subjects With Hormone Receptor-Positive and HER2-Negative Breast Cancer Refractory to a Nonsteroidal Aromatase Inhibitor; NCT01082068; Completed

Multicenter, Single-Arm, Open-Label, Phase II Study of GDC-0980 for the Treatment of Recurrent or Persistent Endometrial Carcinoma; NCT01455493; Completed

Phase II, Randomized, Double-Blind, Placebo-Controlled Study of Letrozole With or Without BYL719 or Buparlisib for the Neoadjuvant Treatment of Postmenopausal Women With Hormone Receptor-Positive, HER2-Negative Breast Cancer; NCT01923168; Completed

A Phase Ib Study of the Oral PARP Inhibitor Olaparib With the Oral mTORC1/2 Inhibitor AZD2014 or the Oral AKT Inhibitor AZD5363 for Recurrent Endometrial, Triple Negative Breast, and Ovarian, Primary Peritoneal, or Fallopian Tube Cancer; NCT02208375; Active, not recruiting
SU2C DREAM TEAMS

SU2C BREAST CANCER DREAM TEAM DT5920
An Integrated Approach to Targeting Breast Cancer Molecular Subtypes and Their Resistance Phenotypes
Grant Term: October 2009 - September 2014, administered by the American Association for Cancer Research

KEY PERSONNEL
Team Leader: Dennis J. Slamon, MD, PhD
University of California, Los Angeles

Co-Leader: Joe W. Gray, PhD
Oregon Health & Science University

Principal: Craig V. Jordan, DSc, PhD
Fox Chase Cancer Center

Principal: C. Kent Osborne, PhD
Baylor College of Medicine

Principal: Peter K. Sorger, PhD
Harvard Medical School

Principal: Terence P. Speed, PhD
University of California, Berkeley

Principal: Zena Werb, PhD (deceased)
University of California, San Francisco

Principal: Max S. Wicha, MD
University of Michigan

Advocate: Janice Barlow (Retired)
Zero Breast Cancer

Advocate: Cindy Geoghegan
Patient & Partners, LLC

Advocate: Ellen L. Stoval (deceased)
National Coalition for Cancer Survivorship

Advocate: Frances M. Visco
National Breast Cancer Coalition

PURPOSE
The SU2C Breast Cancer Dream Team studied the mechanisms of resistance to treatment in three major subtypes of breast cancer – ER-positive, HER2-positive, and triple negative. It used its findings to develop less toxic therapies with the potential to improve treatment outcomes.
SPECIFIC AIMS

Aim 1. Expand the understanding of the known “driving” initial molecular mechanisms responsible for the pathogenesis and clinical behavior of the three known therapeutic breast cancer subtypes, i.e., estrogen (E2)/estrogen receptor (ER-positive), HER2-positive, and triple-negative (TN) subtypes of breast cancer.

Aim 2. Study the “driving” mechanisms responsible for de novo as well as acquired resistance to appropriately targeted treatments of the three known therapeutic breast cancer subtypes, i.e., estrogen (E2)/estrogen receptor (ER-positive), HER2-positive, and triple-negative (TN) breast cancers.

Aim 3. Investigate the potential initial “driving” pathogenetic as well as de novo or acquired “resistance” mechanisms mediated by “stem/progenitor” breast cancer cells within each or across all of the three known breast cancer subtypes, with the ultimate objective being the design, development, and clinical testing of new and innovative therapies for the “tumorigenic” and “resistance” phenotypes potentially mediated by these stem/progenitor cells.

Aim 4. Develop new and/or characterize existing relevant and representative cell line and xenograft models, as well as utilize annotated clinical material to query the contributions of “normal” and “malignancy-derived” matrix/stromal components of each breast cancer subtype, including those that might contribute to or mediate the “resistance” phenotype to targeted therapeutics.

Aim 5. Develop an integrated discovery and informatics research unit that cuts across the above aims that is designed to deploy, inform, and facilitate implementation of relevant discovery and informatics platforms needed for these aims.

KEY ACCOMPLISHMENTS

The Breast Cancer Dream Team endeavored to develop less toxic therapies with the potential to improve treatment outcomes, study the malignant cancer stem cells’ impact of resistance across the three major breast cancer subtypes, and develop a “discovery platform” for identifying and validating new drug combinations and targets that can be pursued in clinical trials by creating a database which integrates existing information about breast cancer. A significant outcome of these efforts contributed to the 2015 FDA approval of the first-in-class CDK4/6 inhibitor palbociclib in combination with letrozole for ER+, HER2- metastatic breast cancer.

CLINICAL TRIALS

Novel (PD 0332991: CDK4/6 Inhibitor, Pfizer) ER-Positive, HER2-Negative Advanced Breast Cancer in Postmenopausal Women; NCT00721409; Completed
RESEARCH TEAMS

SU2C-TORREY COAST FOUNDATION GASTROESOPHAGEAL CANCER RESEARCH TEAM RT6352
Targeting Immune Evasion in Gastroesophageal Cancer
Grant Term: May 2023 – April 2026

KEY PERSONNEL
Team Leader: Yelena Janjigian, MD
Memorial Sloan Kettering Cancer Center

Co-Leader: Jedd Wolchok, MD, PhD
Weill Cornell Medicine

Principal: Taha Merghoub, PhD
Weill Cornell Medicine

Principal: Benjamin Greenbaum, PhD
Memorial Sloan Kettering Cancer Center

Project Manager: Fiona Socolow
Memorial Sloan Kettering Cancer Center
SocolowF@mskcc.org

Clinical Research Manager: Amin Yaqubie
Memorial Sloan Kettering Cancer Center
YaqubieA@mskcc.org

Advocate: Aki Smith
Stomach Cancer Awareness Network

Advocate: Mindy Mordecai, JD
Esophageal Cancer Action Network

Advocate: Lynn Degregorio
DeGregorio Family Foundation

PURPOSE
This Research Team will define the immune-suppressive mechanisms contributing to ICB resistance in GEC and their relationship to CIN. Specifically, the research aims to delineate subtype-specific features of the pre-treatment tumor neoantigens and tumor immune microenvironment (TME) associated with clinical benefit from ICB and their relationship to CIN as well as assess the potential of cGAS+ micronuclei, an indicator of ongoing CIN, as a biomarker of ICB resistance. Finally, the Team will identify neoantigens in CIN tumor biopsies and evaluate the prevalence of corresponding T cells.

SPECIFIC AIMS
Aim 1. Delineate subtype-specific features of the pre-treatment tumor neoantigens and tumor immune microenvironment (TME) associated with clinical benefit from ICB and their relationship to CIN.

Aim 2. Identify CIN samples and characterize cGAS-STING activation.

Aim 3. Identify neoantigens in CIN tumor biopsies and evaluate the prevalence of corresponding T cells in matched patient PBMCs.

CLINICAL TRIALS
N/A

FUNDER

STAND UP TO CANCER
SCIENTIFIC SUMMIT 2024
SU2C-TORREY COAST FOUNDATION GASTROESOPHAGEAL CANCER RESEARCH TEAM RT6353

Novel Therapeutic Approaches for Esophageal Squamous Cell Carcinoma
Grant Term: July 2023 - June 2026

KEY PERSONNEL

Team Leader: Anil K. Rustgi, MD
Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center

Co-Leader: Kwok-Kin Wong, MD, PhD
NYU Langone Health and NYU Grossman School of Medicine

Principal: J. Alan Diehl, PhD
Case Comprehensive Cancer Center, Case Western Reserve University

Project Manager: Emer Smyth, PhD
Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center
es3551@cumc.columbia.edu

Advocate: Lynn Degregorio
DeGregorio Family Foundation

Advocate: Mindy Mordecai, JD
Esophageal Cancer Action Network

Advocate: Rhonda Small
Esophageal Cancer Awareness Association

PURPOSE

Hypothesizing that eliminating an unfavorable metabolic environment for tumor growth can improve outcomes in ESCC, the Research Team seeks to exploit glutamine dependence of ESCC and calibrate anti-tumor immune cell function by impeding glutamine metabolism in combination with inhibitors of cyclin-dependent kinases. Recent work has identified several mechanisms that may allow ESCCs to evade sustained immunologic control, spanning tumor-immune interactions and intrinsic tumor cell dependencies. This Team is proposing a program of translational studies to parse the differential impact of glutamine pathway blockade on tumor-intrinsic and -extrinsic factors.

SPECIFIC AIMS

Aim 1. To examine the direct anti-tumor impact of DON/DRP-104 and CDK4/6 inhibition in ESCC.

Aim 2. To evaluate the impact of CDK4/6 and glutamine metabolism inhibition on the ESCC tumor microenvironment.

CLINICAL TRIALS

N/A

FUNDER

Torrey Coast Foundation | GEMINI
SU2C-TORREY COAST FOUNDATION GASTROESOPHAGEAL CANCER RESEARCH TEAM RT6354
Therapeutics for Gastroesophageal Adenocarcinoma: Application, Translation and Discovery
Grant Term: January 2023 - December 2027

KEY PERSONNEL

Team Leader: William Sellers, MD
Broad Institute

Co-Leader: Marcela Maus, MD, PhD
Massachusetts General Hospital

Project Manager: Maura Charlton
Broad Institute
charlton@broadinstitute.org

Advocate: Jason Diaz
Hope for Stomach Cancer

PURPOSE

The past 10 years have seen a revolution in the development of cancer therapeutics, which created the basis for this Research Team to uncover new therapeutics and initiate new trials in GEA. The Team plans to do this by: 1) defining and targeting the cell surface of gastroesophageal adenocarcinoma and squamous cell carcinoma, and 2) using functional genomic approaches to identify therapeutic targets in gastroesophageal adenocarcinoma. The Team also plans to develop biparatopic claudin 18.2-targeting CAR T cells for clinical development in claudin 18.2-expressing gastric and esophageal cancers.

SPECIFIC AIMS

Aim 1. Defining and targeting the cell surface of gastroesophageal adenocarcinoma

Aim 2. Functional genomic approaches to identify therapeutic targets in GEA and GESC

KEY PROGRESS

Since the inception of funding in May 2023, we have hired and attracted the key personnel that will constitute the research team, worked to characterize the cancer cell surface (the Surfaceome), and completed paralog CRISPR screens with a 168,000-guide library targeting ~7500 paralog pair and 4500 single genes in 5 gastric and 5 esophageal cancer cell lines. In addition, we have generated claudin 18.2- and claudin 18.1-expressing cell lines for immunization and screening, with the aim of generation biparatopic antibodies.

CLINICAL TRIALS

N/A

FUNDER

Torrey Coast | GEMINI
The Diversity in Early Development Clinical Trials Research Grants Program is supporting four teams to increase diversity among participants in Phase 1 and Phase 2 cancer clinical trials. The objective is to increase accessibility for patients of all racial and ethnic backgrounds and/or living in medically underserved locations to equally participate in studies. Each Team is bringing together key stakeholders who are deeply connected to the impacted communities, integrating social/behavioral determinants of health, community engagement and outreach with cancer biology, prevention, and treatment, and realizing the ideal of health equity.

SU2C DIVERSITY IN EARLY DEVELOPMENT CLINICAL TRIALS RESEARCH TEAMS

Increasing Diversity in Cancer Clinical Trials

Grant Term: January 2023 - December 2024

The Diversity in Early Development Clinical Trials Research Grants Program is supporting four teams to increase diversity among participants in Phase 1 and Phase 2 cancer clinical trials. The objective is to increase accessibility for patients of all racial and ethnic backgrounds and/or living in medically underserved locations to equally participate in studies. Each Team is bringing together key stakeholders who are deeply connected to the impacted communities, integrating social/behavioral determinants of health, community engagement and outreach with cancer biology, prevention, and treatment, and realizing the ideal of health equity.

1. **CREATE A RANDOMIZED RECRUITMENT STUDY**
 - Randomly recruit Black patients for a special clinical trial.
 - Keep patients informed about progress through emails, text messages and other electronic messaging systems.
 - Work with doctors to use more culturally appropriate communication methods.
 - Work with community organizations and hospitals to build a patient database.

2. **IMPLEMENT A PROGRAM FOR SCREENING, RECRUITING, AND ENROLLING PATIENTS**
 - Work with local universities, health centers and community outreach programs to create a program.
 - Impact and efficiency of trial enrollment procedures will be studied, and patients will be surveyed and interviewed to find areas of improvement.

3. **EXAMINE EXISTING STRUCTURES TO FIND IMPROVEMENTS**
 - Work with the county hospital system to enhance referral and enrollment of minority patients.
 - Study the demographics, financial and social burdens, geographical barriers, and impact of remote trials on participation in early cancer clinical trials.

4. **IDENTIFY AND OVERCOME SPECIFIC BARRIERS**
 - Work to address all barriers patients may have to access a clinical trial.
 - Work with community outreach programs to help educate patients.
 - Information and data gathered will be shared on a public website.

CREATING MORE OPPORTUNITIES FOR MINORITIES TO ACCESS CLINICAL TRIALS is the ultimate goal for this initiative. By working in underserved communities in four major metropolitan areas, the teams will be able to reach, educate, better understand, and serve a large population that is historically less engaged in cancer research and treatment. The result will be better outcomes for cancer patients and their families and communities.
UNIVERSITY OF CHICAGO RT6344
Project: Enhancing Diversity in Early Phase Clinical Trials in an Urban Underserved Community

KEY PERSONNEL
Team Leader: Walter Stadler, MD
Co-Leader: Brisa Aschebrook-Kilfoy, PhD

SPECIFIC AIMS
Aim 1. Conduct a randomized recruitment study for available phase 1 and 2 cancer trials.
Aim 2. Assess the long-term impact of the community engagement program.

KEY PROGRESS
To address the under-representation of African American (AA) cancer patients in clinical trials, we are conducting a randomized recruitment trial to determine if novel patient outreach alone or in conjunction with community outreach enhances accrual above and beyond treating physician outreach only. Using a combination of artificial intelligence and manual approaches, patients potentially eligible for one of more than 130 available clinical trials at the University of Chicago Comprehensive Cancer Center (UCCC) will be pre-screened and randomized. In the control group, the treating physician will be informed of the specific trial the patient is potentially eligible for. In the patient outreach group, a novel drip-marketing approach more typical of consumer environments utilizing email and text messaging will be utilized to inform and educate the patient about clinical trials. The physicians in this group will also receive additional information on culturally appropriate communication. In the last randomized group, patients will additionally be offered contact with community cancer ambassadors trained to provide support in the clinical trial participation decision. In the first 6 months we have:

- Worked with community-based partners to finalize patient and physician facing informational materials.
- Finalized the computer and AI-based screening methodology for identifying potential trial candidates.
- Finalized the electronic communications tool for drip marketing.
- Obtained IRB approval for the recruitment trial.
- Begun to obtain consent from treating physicians to participate in the recruitment trial.
- Identified community ambassadors and have initiated trainings.
- Developed study related workflows for all 3 study-arms.
- Engaged physician partners whose clinical trials we will be targeting for outreach.

FUNDER
Johnson & Johnson
UNIVERSITY OF TEXAS SOUTHWESTERN MEDICAL CENTER
RT6342
Project: Transferring Care to Enhance Access to Early-phase Cancer Clinical Trials

KEY PERSONNEL
Team Leader: David Gerber, MD
Co-Leader: Sukh Makhnoon, PhD, MS

GERBER MAKHNOON

SPECIFIC AIMS
Aim 1. Implement a program for screening, recruiting, and enrolling patients from a safety-net medical system on early-phase cancer clinical trials in a university-based NCI-designated cancer center.

Aim 2. Determine program impact and efficiency.

Aim 3. Determine experience with and perceptions of the program.

KEY PROGRESS
The team has made substantial progress during the first six months of the project. The team has hired/appointed three Clinical Trial navigators, engaged with patient advocates, clinicians, and administrative staff leading to successful project development and implementation. Key project implementation milestones include the following: establishing a process with the safety-net medical system to facilitate rapid referral of cancer patients to phase I and II clinical trials; developing logistical process and parameters (including financial support) for timely and effective communication and coordination between the safety-net medical system and the research team. To date, the team has prescreened 17 patients. One patient has been enrolled in a trial (phase 1 trial requiring study-specific biopsies).

FUNDER
Johnson & Johnson
UNIVERSITY OF SOUTHERN CALIFORNIA RT6345
Project: Eliminating Enrollment Barriers to Early Phase Trials in a Diverse Population in Los Angeles County

KEY PERSONNEL
Team Leader: Anthony El-Khoueiry, MD
Co-Leader: Chanita Hughes-Halbert, PhD

SPECIFIC AIMS
Aim 1. Engage oncology care providers in a safety net hospital system to identify referral barriers and facilitators using key informant interviews.

Aim 2. Create a multicomponent intervention tailored to address barriers at the patient, provider, and system levels and to optimize the referral and enrollment process in early phase therapeutic trials in a safety-net setting.

Aim 3. Evaluate the impact of remote trial enrollment in a funded investigator-initiated trial.

FUNDER
Johnson & Johnson
THE RESEARCH INSTITUTE OF FOX CHASE CANCER CENTER
RT6343
Project: Accelerating and Diversifying Access to Clinical Trials (adacT)

KEY PERSONNEL
Team Leader: Martin Edelman, MD
Co-Leader: Linda Fleisher, PhD

PURPOSE
This initiative is designed to combat racial, ethnic and socioeconomic disparities that frequently occur during enrollment to clinical trials. Funded by Stand up to Cancer (SU2C), the ADACT Initiative is a multifaceted approach that aims to identify and overcome widespread barriers to accrual—specifically in early phase clinical trials (EPCTs). It aims to address all levels of the socioeconomic model which encompasses the patient, provider, community and system as a whole, and is driven by community involvement and partnership. The goal is to increase the number and diversity of patients enrolled in EPCTs across the entire Temple University Health System, including at the Fox Chase Cancer Center (FCCC) and Temple University Hospital (TUH), with a particular focus on patients served by the Cancer Center at TUH.

SPECIFIC AIMS
Aim 1. Develop infrastructure/personnel to extend early phase clinical trials
Aim 2. Provide extensive patient support and services in early phase clinical trials
Aim 3. Leverage community and patient engagement for community education and to integrate existing community services to support early phase clinical trials participation.

KEY PROGRESS
Since the start of the ADACT initiative, we have had a significant increase in clinical trial activation and accrual, especially amongst Spanish speakers. This is largely due to the increase in translated clinical trial documents, such as consent forms. Focusing on building infrastructure at TUH in North Philadelphia, we have on-boarded new leadership and staff including a senior investigator. We are in the process of initiating a bi-lingual Clinical Trial Patient Navigator position after thoughtful collaboration with UT Southwestern. Numerous “Listening Sessions” have been conducted with interdisciplinary teams at TUH, including clinical, research, and social work teams, among others, to pinpoint where resources are most needed. We are working with Palliative Care services at TUH and the primary FCCC campus to develop an oncology-centered outpatient palliative care consult service with a focus on supporting patients enrolled on trials. We have reviewed our community grants and revised our community ambassador training, as well as conducted an extensive Geo-mapping analysis to identify which communities to target. Proposals for Spanish translation of the mychoice™ clinical trial education tool are underway.

FUNDER
Johnson&Johnson
SU2C LUNG CANCER HEALTH EQUITY RESEARCH TEAM RT6228
Southeastern Consortium for Lung Cancer Health Equity
Grant Term: February 2022 - January 2025

KEY PERSONNEL
Team Leader: Robert A. Winn, MD
Virginia Commonwealth University

Co-Leader: Marvella E. Ford, PhD
Medical University of South Carolina

Principal: Louise Henderson, PhD
University of North Carolina at Chapel Hill

Project Manager: Rosuany Vélez Acevedo, PhD
Virginia Commonwealth University
velezrn@vcu.edu

Advocates: Tomma Hargraves and Vernal Branch
UNC Lineberger Comprehensive Cancer Center

Advocate: Rudene Mercer Haynes
Virginia Commonwealth University

Advocate: Diane Juitt
MUSC Hollings Cancer Center

PURPOSE:
The Southeastern Consortium for Lung Cancer Health Equity Team is focusing on lung cancer disparities within the Black/African American population using a “cell-to-society” approach. They aim to create a sustainable infrastructure to gather relevant data needed to increase lung cancer screening and develop better methods for identifying those at the highest risk for a diagnosis of and/or poor treatment outcomes for lung cancer.

SPECIFIC AIMS
Aim 1. Initiate and evaluate a high-impact, multimodal and multilevel navigation intervention to promote LCS among Black/African American individuals from both rural and urban medically underserved communities in Virginia, North Carolina, and South Carolina.

Aim 2. Develop a robust, shared population-based cohort and biorepository to further support research in understanding biologic determinants or risk factors for poor lung cancer outcomes among Black/African Americans.

KEY PROGRESS
The Consortium has addressed two of the most critical components of patient navigation with their clinical site partners and with the surrounding communities in preparation for study activation. These components include: 1) establishing clear workflow processes for clinical care referral and 2) conducting community asset mapping. Without establishing these components, patient navigation is less supportive and helpful. Additionally, the Team developed and held a comprehensive training for the navigators. Study activation for the navigation aim has occurred. Recruitment for the biorepository aim began in late July 2023.

CLINICAL TRIALS
N/A

FUNDER
Bristol Myers Squibb
STAND UP TO CANCER-FANCONI ANEMIA RESEARCH FUND-FARRAHFAWCETTFOUNDATIONHEADANDNECKCANCER RESEARCH TEAM RT6219

Precision Therapy for Fanconi Anemia and HPV-Related Head and Neck Cancers

Grant Term: October 2021 - September 2024

KEY PERSONNEL

Team Leader: Agata Smogorzewska, MD, PhD
The Rockefeller University

Co-Leader: Barbara Burtness, MD
Yale School of Medicine

Principal: Amanda Paulovich, MD, PhD
Fred Hutchinson Cancer Research Center

Principal: Markus Grompe, MD
Oregon Health & Science University

Principal: Jorge Silvio Gutkind, PhD
University of California, San Diego

Project Manager: Anna Arnal Estate, PhD
Yale School of Medicine
anna.arnal@yale.edu

Advocate: Allison Breininger

Advocate: Peter Krause, MD
Yale School of Medicine

PURPOSE

The goal of the Precision Therapy for Fanconi Anemia and HPV-Related Head and Neck Cancers Team is to develop improved treatments for patients with head and neck squamous cell carcinoma. The Team is concentrating on treatments for patients who develop this cancer due to human papillomavirus infection (HPV) or Fanconi anemia (FA). Cancers that develop due to HPV infection are often diagnosed when cancer has already spread, and a quarter of these patients are not cured with current therapies. Standard therapies cannot be used in patients with Fanconi anemia due to their disease, leading to poor outcomes. In both patient groups, successful treatment may be associated with serious side effects resulting in low quality of life.

SPECIFIC AIMS

Aim 1. Perform proteogenomic and digital histologic analysis of FA-related and HPV-related HNSCCs to identify common and cohort-specific therapeutic approaches.

Aim 2. Identify and test novel therapeutic approaches in HPV-related HNSCC.

Aim 3. Identify effective chemoprevention and treatments in FA-associated HNSCC.

Aim 4. Assess the toxicity of potential cancer therapeutics using FA mice bone marrow function assays.

KEY PROGRESS

CLINICAL TRIALS

N/A
People with Fanconi anemia and some types of HPV have a greater risk of developing head and neck cancers. These cancers are difficult to treat and even successful treatment can cause significant side effects resulting in low quality of life. Scientists are developing three approaches to treat these cancers.

AIM 1: COMPARE FANCONI ANEMIA-AND HPV-RELATED CANCERS
Find therapies that may be effective for both.

AIM 2: IDENTIFY AND TEST NOVEL THERAPEUTIC APPROACHES IN HPV-RELATED CANCER
Better understand underlying biology of HPV-related cancers leading to new therapies.

AIM 3: FIND MOLECULAR AND GENETIC TARGETS FOR FANCONI ANEMIA-ASSOCIATED CANCERS AND ASSESS TOXICITY OF CANDIDATE DRUGS
Develop therapeutic and preventive strategies.

SU2C, Fanconi Anemia Research Fund, Farrah Fawcett Foundation, American Head and Neck Society, and the Head and Neck Cancer Alliance are collaborating to unite researchers who typically take different approaches to understand how head and neck cancers grow. Their research is exploring combinations of existing and emerging treatments for head and neck squamous cell cancers, especially for people with the human papillomavirus (HPV) or Fanconi anemia — a rare disease that primarily affects the bone marrow.

These cancers account for more than 90% of cancers in the head and neck. They are the sixth most common cancer in the world and can appear in the nasal cavity, sinuses, lips, mouth, salivary glands, thyroid gland, throat, or larynx.

About 66,000 Americans will be diagnosed with head and neck cancers annually. 25% of head and neck squamous cell cancers are HPV-related.

The incidence of head and neck squamous cell carcinoma in people with Fanconi anemia is up to 700 times greater than in the general population.

Current treatments for both HPV- and Fanconi Anemia-related head and neck cancers are often ineffective over the long term or cause significant side effects.

A multidisciplinary team of FA, HPV, and oncology experts spans institutions across the country.

SU2C AND FOUR ORGANIZATIONS are exploring ways to help patients for whom traditional treatments would be too toxic or debilitating. New understandings of the biology of these cancers will pave the way to improve the lives of people at risk for and diagnosed with head and neck cancers.
SU2C-CRUK PEDIATRIC CANCER NEW DISCOVERIES CHALLENGE
RESEARCH TEAM RT6188
Combinatorial Targeting of Oncogene-Driven Childhood Cancer
Grant Term: March 2021 - September 2023

KEY PERSONNEL
Team Leader: John Anderson, MBBS, MRCP, PhD
University College London Great Ormond Street Institute of Child Health

Co-Leader: Louis Chesler, MD, PhD, FRCPCH
Institute of Cancer Research

Principals:
- Paul M. Sondel, MD, PhD
 University of Wisconsin, Madison
- Darren Hargrave, MD, FRCPCH, MRCP
 University College London Great Ormond Street Institute of Child Health
- Laura Donovan, PhD
 University College London Great Ormond Street Institute of Child Health

Project Manager: Jennifer Furman, PhD
University College London
j.furman@ucl.ac.uk

Advocate: Parker Moss

Advocate: Lori R. Schultz
UW Health American Family Children’s Hospital

PURPOSE
The Combinatorial Targeting of Oncogene-Driven Childhood Cancer Team is working to overcome the diminished efficacy of immunotherapies in the treatment of pediatric cancers, specifically in neuroblastoma and medulloblastoma, using immune competent models of resistant disease. They are designing CAR T cells to overcome immune evasion and barriers using new compounds to overcome tumor growth and immune barrier formation and are also using a combination of drugs to strengthen immune responses, employing multiparameter proteomics to measure response and resistance.

SPECIFIC AIMS
Aim 1. Evaluate MYC inhibitor combinations with chemotherapy and anti-GD2 antibody in neuroblastoma model.

Aim 2. Evaluate MYC inhibitor agents with local delivery of CAR T cells in medulloblastoma model.

Aim 3. Optimize CAR T to incorporate into combination studies.

Aim 4. Evaluate MYC inhibitor with in situ vaccine in neuroblastoma.

Aim 5. Evaluate addition of in situ vaccine to MYC targeting in medulloblastoma.

Aim 7. Evaluate addition of in situ vaccine to MYC-targeting and systemic CAR T in medulloblastoma.
RESEARCH TEAMS

KEY PROGRESS

The Team has demonstrated the capacity of synthetic immunotherapy combined with immune modulators to induce endogenous memory response in immune cold neuroblastoma. The Team has generated prototypes for next generation CAR T to target neuroblastoma and medulloblastoma.

The following highlights are of particular note:

Development of an anti-B7H3 CAR T platform built on a novel anti-B7H3 binder and incorporating a novel off-switch mechanism through incorporation of an IMiD drug sensitive degradation tag called iTAG2.

Generation of animal models of neuroblastoma and medulloblastoma built on genetically modified mice that represent human counterparts, suitable for high throughput evaluation of combination immunotherapies.

Completion of combination therapies trials using these models to evaluate small molecule/synthetic immunotherapy +/- molecular radiotherapy.

Optimisation of spatial imaging of the mouse tumour environment from the therapeutics intervention trials using the Phenocycler platform.

The lead innovation for translation into clinical evaluation is the iTAG2 degron tagged anti-B7H3 CAR T platform. Based on data emerging from the New Discoveries Challenge funding, the group has secured funding for a paediatric brain tumour clinical trial incorporating locoregional administration of repeatedly infused CAR T cells that have been manufactured in the presence of IMiD drug iberdomide to minimize CAR T signaling during manufacture.

A second clinical trial of the same construct in neuroblastoma which will involve administration of an IMiD drug to patients to allow transient rest of CAR T has been proposed in the second stage funding application from the Team.

CLINICAL TRIALS

N/A

A larger version of this graphic is available in the appendix.
SU2C-CRUK PEDIATRIC CANCER NEW DISCOVERIES CHALLENGE
RESEARCH TEAM RT6187

Targeting R-loop Stability in Ewing Sarcoma
Grant Term: January 2021 - September 2023

KEY PERSONNEL
Team Leader: Alexander Bishop, DPhil
UT Health San Antonio

Co-Leader: Kevin Hiom, PhD
University of Dundee

Principal: Chun Wei-Chen, PhD
Beckman Research Institute of the City of Hope

Project Manager: Sneha Prabhu, MPH
UT Health San Antonio
prabhus@uthscsa.edu

Advocate: Laura Jean Rutledge
Rutledge Cancer Foundation

Advocate: Gregory Aune
UT Health San Antonio

PURPOSE
The Targeting R-loop Stability in Ewing Sarcoma Research Team is investigating the basis for the strong increase in R loops seen in Ewing sarcoma. The long-term goal is to leverage insights gained into Ewing sarcoma biology to identify vulnerabilities that can be targeted with available compounds or new formulations.

SPECIFIC AIMS
Aim 1. Target SF3B1/SRSF2 complex in Ewing sarcoma to induce toxic levels of R-loops.

Aim 2. Disrupt DHX9:EWSR1-FLI1 interaction to promote pathological R-loops.

KEY PROGRESS
The Team created a comprehensive database containing approximately 800 datasets to identify high-quality R-loop sequencing data allowing an in-depth analysis of R-loops; this allowed a novel categorization of these structures in the genome and confirmed that Ewing sarcoma has significantly altered levels of R-loops. Through their CRISPR scanning research, the Team delved into the functional characteristics of potential proteins like BRCA1 and SF3B1 that are involved in R-loop regulation, unveiling crucial insights into their dynamics and discovered that SF3B1 regulates BRCA1 availability in Ewing sarcoma. Leveraging this newfound knowledge, the Team identified a promising therapeutic avenue centered around manipulating BRCA1 protein availability which they are now testing in preclinical models with a goal of translating to the clinic to provide a new much needed therapeutic option for Ewing sarcoma.

CLINICAL TRIALS
N/A
Pediatric New Discoveries Challenge

Three teams of scientists in both the UK and the US work to improve targeted therapies by studying some of the rarest and deadliest cancers for kids. One or two of these first-round teams will be selected to receive a second round of funding based on progress and potential impact.

Pediatric New Discoveries Challenge

- **TEAM 1**: Manchester, UK
 - Leader: Martin McCabe, MB/BChir, PhD, University of Manchester
 - Co-Leader: Thomas Merchant, BS, DO, PhD, St. Jude Children’s Research Hospital
- **TEAM 2**: Dundee, UK
 - Leader: John Anderson, BA, MBBS, MRCP, PhD, University College London
 - Co-Leader: Louis Chesler, MD, PhD, FRCPCH, Institute of Cancer Research
- **TEAM 3**: Groningen, NL
 - Leader: Alexander Bishop, DPhil, UT Health San Antonio
 - Co-Leader: Kevin Hiom, PhD, University of Dundee

CREATING BETTER TARGETED THERAPIES
is an important step for curing childhood cancers. Three transatlantic teams working on new ways to use gene therapies and radiation against pediatric cancers have promising solutions that could soon change the way these cancers are treated.

Targeting R-loop stability in Ewing Sarcoma

Ewing sarcoma is a type of bone cancer that is poorly understood, with limited treatment. A gene alteration causes a strong increase in the formation of "R-loops," which can cause cancer. The team noticed a higher number of R-loops than usual in Ewing sarcoma patients.

The team will investigate this unique biological hallmark to create a drug. The long-term goal is to develop new ways to target this unusual gene mutation with novel or existing compounds.

Leader: John Anderson, BA, MBBS, MRCP, PhD, University College London
Co-Leader: Louis Chesler, MD, PhD, FRCPCH, Institute of Cancer Research

Combinational Targeting of Oncogene-driven Childhood Cancer

Immunotherapies, while increasingly successful with adults, have so far not been as successful at treating childhood cancers. The team will study the immune system of patients with two types of brain cancer: neuroblastoma or medulloblastoma. They plan to design special CAR-T cells that can boost a child’s immune system to overcome tumor growth and other immunity barriers.

Leader: Alexander Bishop, DPhil, UT Health San Antonio
Co-Leader: Kevin Hiom, PhD, University of Dundee

Atlas of Childhood Neuroradiation Damage

Pediatric brain cancers are the deadliest form of cancers. Precision radiotherapy is one type of treatment but causes lifelong side effects including cognition and hormone production.

The team will study the paths radiation beams make through tumors, and map out the long-term side effects in the brain. The goal is to create more precise radiotherapy to avoid the most sensitive brain regions.

Leader: Martin McCabe, MB/BChir, PhD, University of Manchester
Co-Leader: Thomas Merchant, BS, DO, PhD, St. Jude Children’s Research Hospital

Combinational Targeting of Oncogene-driven Childhood Cancer

Immunotherapies, while increasingly successful with adults, have so far not been as successful at treating childhood cancers. The team will study the immune system of patients with two types of brain cancer: neuroblastoma or medulloblastoma. They plan to design special CAR-T cells that can boost a child’s immune system to overcome tumor growth and other immunity barriers.

Leader: Alexander Bishop, DPhil, UT Health San Antonio
Co-Leader: Kevin Hiom, PhD, University of Dundee

Targeting R-loop stability in Ewing Sarcoma

Ewing sarcoma is a type of bone cancer that is poorly understood, with limited treatment. A gene alteration causes a strong increase in the formation of “R-loops,” which can cause cancer. The team noticed a higher number of R-loops than usual in Ewing sarcoma patients.

The team will investigate this unique biological hallmark to create a drug. The long-term goal is to develop new ways to target this unusual gene mutation with novel or existing compounds.

Leader: John Anderson, BA, MBBS, MRCP, PhD, University College London
Co-Leader: Louis Chesler, MD, PhD, FRCPCH, Institute of Cancer Research

CREATING BETTER TARGETED THERAPIES
is an important step for curing childhood cancers. Three transatlantic teams working on new ways to use gene therapies and radiation against pediatric cancers have promising solutions that could soon change the way these cancers are treated.

Targeting R-loop stability in Ewing Sarcoma

Ewing sarcoma is a type of bone cancer that is poorly understood, with limited treatment. A gene alteration causes a strong increase in the formation of “R-loops,” which can cause cancer. The team noticed a higher number of R-loops than usual in Ewing sarcoma patients.

The team will investigate this unique biological hallmark to create a drug. The long-term goal is to develop new ways to target this unusual gene mutation with novel or existing compounds.

Leader: John Anderson, BA, MBBS, MRCP, PhD, University College London
Co-Leader: Louis Chesler, MD, PhD, FRCPCH, Institute of Cancer Research
SU2C-CRUK PEDIATRIC CANCER NEW DISCOVERIES CHALLENGE
RESEARCH TEAM RT6186

BRAINatomy: A Validated Anatomical Atlas of Childhood Neuroradiation Damage
Grant Term: April 2021 –November 2023

KEY PERSONNEL

Team Leader: Martin G. McCabe, MB/BChir, PhD
University of Manchester

Co-Leader: Thomas E. Merchant, BS, DO, PhD
St. Jude Children’s Research Hospital

Principal: Lara Barazzuol, PhD
University Medical Center Groningen

Project Manager: Kate Vaughan, PhD
University of Manchester
kate.vaughan@manchester.ac.uk

Advocate: James Adams

Advocate: Helen Bulbeck
Braintrust

Advocate: Joshua Goddard

Advocate: Adam Thomson
Braintrust

PURPOSE

The BRAINatomy: A Validated Anatomical Atlas of Childhood Neuroradiation Damage Team is studying the path radiation travels in treating pediatric brain tumors to link brain regions to long term side effects and to differentiate the damaging effects of radiotherapy from other clinical factors. In parallel, the biological effects of proton and X-ray radiotherapy on single cells and bulk brain regions are being investigated in an animal model. The team hopes to develop an atlas of brain regions to be avoided during radiotherapy.

SPECIFIC AIMS

Aim 1. To analyze brain regions responsible for cognitive and endocrine damage in a large, retrospective cohort of children from St Jude Children’s Research Hospital (medulloblastoma clinical trial dataset) and Manchester (multiple histologies, “real world” dataset) treated with cranial radiotherapy.

Aim 2. To prospectively evaluate the functional and biological effects of brain irradiation in a well- characterised juvenile rat model.

Aim 3. To compare the effects on multiple brain compartments of irradiation with X-ray photons and high-energy protons.
KEY PROGRESS
Using a custom supervised machine learning algorithm to examine their real world dataset, the Team has identified novel radiological features centring on midline and hemispheric structures, imaged prior to any treatment, that predict subsequent processing speed and working memory. In the St Jude dataset, image-based data mining has identified a brain region where received radiotherapy dose correlates highly with subsequent abnormalities in processing speed, one of the key mediators of school performance. In the juvenile rat model, they have a behavioural readout that reliably demonstrates cognitive damage after both proton therapy and X-ray radiotherapy and imaging evidence of radiation damage with both MR and PET imaging. Using nuclear RNA sequencing the Team has identified subtle differences in the biological effects of proton therapy and X-ray radiotherapy in the same anatomical regions highlighted by the clinical study data.

CLINICAL TRIALS
N/A

RESEARCH TEAMS

CREATING BETTER TARGETED THERAPIES
is an important step for curing childhood cancers. Three transatlantic teams working on new ways to use gene therapies and radiation against pediatric cancers have promising solutions that could soon change the way these cancers are treated.

Pediatric New Discoveries Challenge
Three teams of scientists in both the UK and the US work to improve targeted therapies by studying some of the rarest and deadliest cancers for kids. One or two of these first-round teams will be selected to receive a second round of funding based on progress and potential impact.

Pediatric brain cancers are the deadliest form of cancers. Precision radiotherapy is one type of treatment but causes lifelong side effects including cognition and hormone production.

The team will study the paths radiation beams make through tumors, and map out the long-term side effects in the brain. The goal is to create more precise radiotherapy to avoid the most sensitive brain regions.

Leader: Martin McCabe, MB/BChir, PhD, University of Manchester
Co-Leader: Thomas Merchant, BS, DO, PhD, St. Jude Children’s Research Hospital

Immunotherapies, while increasingly successful with adults, have so far not been as successful at treating childhood cancers.

The team will study the immune system of patients with two types of brain cancer: neuroblastoma or medulloblastoma. They plan to design special CAR-T cells that can boost a child’s immune system to overcome tumor growth and other immunity barriers.

Leader: Alexander Bishop, DPhil, UT Health San Antonio
Co-Leader: Kevin Horn, PhD, University of Dundee

Targeting R-loop stability in Ewing Sarcoma
Ewing sarcoma is a type of bone cancer that is poorly understood, with limited treatment. A gene alteration causes a strong increase in the formation of “R-loops,” which can cause cancer. The team noticed a higher number of R-loops than usual in Ewing sarcoma patients.

The team will investigate this unique biological hallmark to create a drug. The long-term goal is to develop new ways to target this unusual gene mutation with novel or existing compounds.

Leader: John Anderson, BA, MBBS, MRCP, PhD, University College London
Great Ormond Street Institute of Child Health
Co-Leader: Louis Chesler, MD, PhD, FRCPath, Institute of Cancer Research

Ewing sarcoma is a type of bone cancer that is poorly understood, with limited treatment. A gene alteration causes a strong increase in the formation of “R-loops,” which can cause cancer. The team noticed a higher number of R-loops than usual in Ewing sarcoma patients.

The team will investigate this unique biological hallmark to create a drug. The long-term goal is to develop new ways to target this unusual gene mutation with novel or existing compounds.

Leader: John Anderson, BA, MBBS, MRCP, PhD, University College London
Great Ormond Street Institute of Child Health
Co-Leader: Louis Chesler, MD, PhD, FRCPath, Institute of Cancer Research
SU2C GASTRIC CANCER INTERCEPTION RESEARCH TEAM RT6072
Early Detection and Interception of Diffuse and Intestinal Gastric Cancer
Grant Term: September 2020 – August 2024, administered by the American Association for Cancer Research

KEY PERSONNEL
Team Leader: Andrew T. Chan, MD, MPH
Massachusetts General Hospital

Co-Leader: Sandra W. Ryeom, PhD
Columbia University Irving Medical Center

Principal: Jeeyun Lee, MD
Samsung Medical Center

Principal: Blasé Polite, MD
University of Chicago

Principal: Yanghee Woo, MD
Beckman Research Institute of City of Hope

Principal: Sam S. Yoon, MD
Columbia University Irving Medical Center

Project Manager: Marina Magicheva-Gupta
Massachusetts General Hospital
mmagicheva-gupta@mgh.harvard.edu

Advocate: Jason Diaz
Stomach Cancer Awareness Network

Advocate: Aki Agata Smith
Stomach Cancer Awareness Network

PURPOSE
The Early Detection and Interception of Diffuse and Intestinal Gastric Cancer Team is developing ways to intercept intestinal and diffuse-type gastric cancer through identification and treatment of gastric “precancers” and early-stage disease.

SPECIFIC AIMS
Aim 1. Discover and optimize molecularly specific imaging agents and novel circulating biomarkers for early-stage gastric cancer (GC) using mouse models recapitulating the major TCGA GC subtypes.

Aim 2. Translate preclinical findings to humans by assessing the feasibility of molecular endoscopic or capsule-based imaging across the spectrum of gastric premalignancy and refine circulating biomarkers within cohorts of individuals undergoing routine GC screening and surgery for early-stage disease.

Aim 3. Assess initial performance of a molecular and/or capsule imaging platform for detection of GC and validate circulating biomarkers in locally advanced GC patients enrolled in a clinical trial.

KEY PROGRESS
The Team has established the largest global GC consortium to leverage existing blood and tissue specimens from patients with premalignant lesions and early-stage cancers from endoscopic screening populations (Samsung Medical Center) and from high-risk populations undergoing care in the United States (Columbia University Medical Center, City of Hope, MGH, Samsung Medical Center and the NCI). The Team has identified 16 proteins as potential biomarkers in genetic mouse models of early GC. A subset of these proteins has been confirmed to be expressed in both mouse and human stool from...
early-stage GC in mice and patients with diffuse GC. The Team is continuing to enroll participants in a clinical trial that tests the feasibility of a molecular-based imaging agent (pegulicianine) to detect early GC and precancerous lesions. The Team is also developing a novel blood-based early detection assay to detect proteins that are overexpressed in early GC.

CLINICAL TRIALS

- Feasibility of the LUM Imaging System for Detection of Gastrointestinal Cancers; NCT02584244; Recruiting
- A Phase II Study of Neoadjuvant NALIRIFOX Followed by Chemoradiation With Paclitaxel and Carboplatin in Locally Advanced Esophagogastric Cancer; NCT04656041; Recruiting

Detecting Gastric Cancer

The SU2C Gastric Cancer Intercetion Research Team is pursuing two strategies to develop more effective screening methods so that pre-cancer or early stages of the disease can be found in patients.

ADVANCED IMAGING

The team is developing a more advanced way to use a camera capsule to detect and identify cancer cells in a patient.

- The camera capsule is swallowed, and an infrared detectable dye is injected in patients.
- The dye sticks to biomarkers on the surface of cancer and pre-cancer cells, and glows under the camera’s infrared light.

BLOOD BIOMARKERS

- Cancer cells, DNA, and cell components circulate in the blood at very low concentrations, and finding them is like looking for a needle in a haystack.
- Three different tests are being developed to find evidence of cancer or pre-cancer cells.
- Cell-free DNA
- Circulating Tumor Cells
- Exosomes

The Team is also working in the lab to identify additional biomarkers.

ONCE VALIDATED, one or more of these tests could be used to help doctors find the beginning of a cancer before a tumor even forms.
PANCREATIC CANCER COLLECTIVE RESEARCH TEAMS—COMPUTATIONAL APPROACHES TO IDENTIFYING HIGH-RISK PANCREATIC CANCER POPULATIONS RT6179

Identification of Genomic and Immune Factors in High-Risk Populations for Pancreatic Cancer
Grant Term: May 2019 - February 2022

KEY PERSONNEL

Team Leader: Raul Rabadan, PhD
Columbia University

Co-Leader: Núria Malats, MD, MPH, PhD
Spanish National Cancer Research Centre (CNIO)

Principal: Tal Korem, PhD
Columbia University

Principal: Gulam Manji, MD, PhD
Columbia University

Principal: Ken Olive, PhD
Columbia University

Project Manager: Oleksandr Kravets
Columbia University

Project Manager: Ioan Filip
(formerly) Columbia University

Project Manager: Paula Ralph-Birkett
Columbia University
pr2470@cumc.columbia.edu

Project Manager: Evangelina López de Maturana
CNIO

Project Manager: Lola Alonso
CNIO

PURPOSE

Using five patient cohorts, the Pancreatic Cancer Collective Research Team—Identification of Genomic and Immune Factors in High-Risk Populations for Pancreatic Cancer leveraged the power of large datasets to assess the compounded risk of pancreatic cancer based on well-established empirical factors together with novel genomic and microenvironmental markers.

SPECIFIC AIMS

Aim 1A. Identify de novo and germline alterations.

Aim 1B. Annotate the non-coding landscape of alterations in pancreatic tumors.

Aim 2A. Characterize pathogenic infections in the tumor microenvironment.

Aim 2B. Characterize HLA allele-specific expression.

Aim 3. Pursue external validation and integration with other data modalities.
KEY ACCOMPLISHMENTS
Association analysis of HLA loci variation with pancreatic cancer risk allowed the identification of specific HLA alleles and haplotypes, thereby improving the definition of a high-risk pancreatic cancer population when combined with the stabilized epidemiological risk factors (using the PanGen-EU as a discovery data set and the UK Biobank for validation). Association analysis of microbiome diversity (oral and fecal) and pancreatic cancer risk has been completed. Based on two risk prediction methods, the fecal microbiome was proven to predict PDAC risk better than the oral microbiome. HLA and microbiome integrative risk analysis has been carried out yielding moderate predictive ability. Comprehensive analysis of HLA class I allele-specific expression in the TCGA cohort, based on a novel HLA quantification method, showed that the corresponding loss of homozygosity is a pervasive phenomenon in PDAC and is associated with decreased overall survival in the basal-like subtype. The latter association was further validated in a cohort from Columbia University.
PANCREATIC CANCER COLLECTIVE RESEARCH TEAMS—COMPUTATIONAL APPROACHES TO IDENTIFYING HIGH-RISK PANCREATIC CANCER POPULATIONS RT6180

Identifying Individuals at High Risk of Pancreatic Cancer Through Machine Learning Analysis of Clinical Records and Images
Grant Term: May 2019 – April 2022

KEY PERSONNEL
Team Leader: Chris Sander, PhD
Dana-Farber Cancer Institute

Co-Leader: Regina Barzilay, PhD
Massachusetts Institute of Technology

Principal: Peter Kraft, PhD
Harvard T. H. Chan School of Public Health

Principal: Michael Rosenthal, MD, PhD
Dana-Farber Cancer Institute

Principal: Brian Wolpin, MD
Dana-Farber Cancer Institute

Collaborator: Søren Brunak, PhD
University of Copenhagen

SANDER BARZILAY

Project Manager: Elizabeth Andrews
Dana-Farber Cancer Institute
ElizabethA_Andrews@dfci.harvard.edu

PURPOSE

SPECIFIC AIMS
Aim 1. Curate and annotate data.

Aim 2. Extract features from data.

Aim 3. Conduct predictive modeling.

KEY ACCOMPLISHMENTS
Training on disease code trajectories in the Danish National Patient Registry has been completed, and the Team constructed a data query system under this infrastructure for future analyses and modeling. A common data dictionary that includes disease-relevant demographic, laboratory and clinical information has now been completed, and this data framework will allow models to be trained and validated across sites independent of the medical record structure. The Team found that diabetes and weight loss were each independently associated with a moderately increased risk for development of pancreatic cancer. When weight loss co-occurred with recent-onset diabetes, the subsequent risk of pancreatic cancer was substantially elevated, which identifies a very high-risk group who may benefit from early detection strategies.

CLINICAL TRIALS
N/A

FUNDERS

THE ST2C SCIENTIFIC SUMMIT
CORONADO, CALIFORNIA JANUARY 26-29 2024
PANCREATIC CANCER COLLECTIVE RESEARCH TEAM—NEW THERAPIES CHALLENGE RT6156

Targeting SHP2 in Pancreatic Cancer
Grant Term: November 2018 - October 2024, administered by the American Association for Cancer Research

KEY PERSONNEL

Team Leader: René Bernards, PhD
Netherlands Cancer Institute

Co-Leader: Hana Algül, MD, PhD
Technical University of Munich

Co-Leader: Emile E. Voest, MD, PhD
Netherlands Cancer Institute

Project Manager: Henri van Luenen, PhD
Netherlands Cancer Institute
h.v.luenen@nki.nl

Advocate: Ab Doorn
The Netherlands Cancer Institute

Advocate: Otto Lutz
Arbeitskreis der Pankreatektomierten e.V.

PURPOSE

Members of the Targeting SHP2 in Pancreatic Cancer Research Team previously found that tumors with an activating KRAS mutation are sensitive to the inhibition of SHP2. In its first grant, the Team found that SHP2/ERK inhibitor combination (RMC4550 and LY3214996, respectively) is efficacious and tolerable in preclinical models. With additional funding, they are set to conduct a phase I/Ib clinical trial of RMC4630 and LY3214996 to treat KRAS mutant pancreatic cancer.

SPECIFIC AIMS

Aim 1. Evaluate the maximum tolerated dose of the SHP2 inhibitor and MEK inhibitor of choice in non-tumor-bearing mice.

Aim 2. Identify qualifying biomarkers for response that will allow us to identify patients most likely to respond to the proposed therapy.

Aim 3. Test different treatment schedules in different mouse models of pancreatic cancer, in order to maximize the antitumor effect and to minimize toxicity.

KEY PROGRESS

The Team confirmed that RMC4550 and LY3214996 can penetrate pancreatic tumors in preclinical laboratory experiments. In addition, the Team has identified different ways by which tumors can become resistant to the RMC4550/LY3214996 treatment combination. They continue to enroll patients in their clinical trial.

CLINICAL TRIALS

Phase I/Ib Study With the Combination of RMC4630 (SHP2 Inhibitor) and LY3214996 (ERK Inhibitor) in Metastatic KRAS Mutant CRC, PDAC and NSCLC; NCT04916236; Recruiting

FUNDERS
PANCREATIC CANCER COLLECTIVE RESEARCH TEAM—NEW THERAPIES CHALLENGE RT6155

Exploiting DNA Repair Gene Mutations in Pancreatic Cancer
Grant Term: November 2018 – December 2024, administered by the American Association for Cancer Research

KEY PERSONNEL

Team Leader: Alan D. D’Andrea, MD
Dana-Farber Cancer Institute

Co-Leader: James M. Cleary, MD, PhD
Dana-Farber Cancer Institute

Principal: Andrew Aguirre, MD, PhD
Dana-Farber Cancer Institute

Principal: Geoffrey I. Shapiro, MD, PhD
Dana-Farber Cancer Institute

Principal: Brian M. Wolpin, MD
Dana-Farber Cancer Institute

Project Manager: Donald R. Watson
Dana-Farber Cancer Institute
Donald_watson@dfci.harvard.edu

PURPOSE

The Pancreatic Cancer Collective Research Team—Exploiting DNA Repair Gene Mutations in Pancreatic Cancer is testing the hypothesis that targeting DNA repair deficiency and replicative stress are effective therapeutic strategies in the treatment of pancreatic cancer.

SPECIFIC AIMS

Aim 1. Assess DNA damage repair (DDR) deficiency in pancreatic cancer.

Aim 2. Target replicative stress in platinum-resistant pancreatic cancer.

KEY PROGRESS

The Team has completed enrollment to its phase 2 trial of PARP inhibitor niraparib in pancreatic cancer patients with mutations in homologous recombination genes. Given the chemotherapy agent gemcitabine’s ability to increase replicative stress, the Team is conducting clinical trials testing the combination of gemcitabine with inhibitors of proteins; namely, CHK1, ATR and WEE1. To understand the mechanisms of response/resistance to the gemcitabine/CHK1 inhibitor combination, the Team has generated 3D cultures called organoids from patient tumors.

CLINICAL TRIALS

Phase Ib/IIa Two-Part, Open-Label, Multicenter Study to Evaluate the Safety and Efficacy of LY2880070 as Monotherapy and in Combination With Gemcitabine in Patients With Advanced or Metastatic Cancer; NCT02632448; Completed

Phase II Proof-of-Concept Trial Testing the PARP Inhibitor Niraparib in Patients With Pancreatic Cancer Harboring Deficiencies in Homologous Recombination DNA Repair; NCT03601923; Completed

Phase I Trial of Gemcitabine Combined With the BAY 1895344 ATR Inhibitor in Advanced Pancreatic and Ovarian Cancer; NCT04616534; Recruiting

FUNDERS

THE S↑2C SCIENTIFIC SUMMIT
CORONADO, CALIFORNIA JANUARY 26-29 2024
PANCREATIC CANCER COLLECTIVE RESEARCH TEAM–NEW THERAPIES CHALLENGE RT6154
Adoptive Transfer of TGF-ß-Resistant TIL to Defeat Immunosuppressive PDAC
Grant Term: November 2018 - September 2020, administered by the American Association for Cancer Research

KEY PERSONNEL
Team Leader: Patrick Hwu, MD
The University of Texas MD Anderson Cancer Center

Co-Leader: Chantale Bernatchez, PhD
The University of Texas MD Anderson Cancer Center

Co-Leader: Cliona M. Rooney, PhD
Baylor College of Medicine

PURPOSE
The Adoptive Transfer Pancreatic Cancer Collective New Therapies Challenge Research Team planned to engineer tumor-infiltrating lymphocytes (TIL) to make the cells resistant to the suppressive effect of TGF-ß, potentially enabling the TILs to attack the cancer tissue within the pancreas.

SPECIFIC AIMS
Aim 1. Optimize PDAC TIL retroviral transduction method.

Aim 2. Test the impact of the expression of TGF ßDNRII on PDAC TIL function.

KEY ACCOMPLISHMENTS
The Team demonstrated that TILs from two pancreatic cancer patients could be transduced with the TGF decoy receptor and expanded.

CLINICAL TRIALS
N/A

FUNDERS

Project Manager: Karen Millerchip
The University of Texas MD Anderson Cancer Center
KAMillerchip@mdanderson.org
PANCREATIC CANCER COLLECTIVE RESEARCH TEAM–NEW THERAPIES CHALLENGE RT6152

Combined Targeting of MEK1/2 and Autophagy for Pancreatic Cancer Therapy
Grant Term: November 2018 -December 2020, administered by the American Association for Cancer Research

KEY PERSONNEL
Team Leader: Martin McMahon, PhD
University of Utah

Co-Leader: Eric A. Collisson, MD
University of California, San Francisco

Principal: Conan G. Kinsey, MD, PhD
University of Utah

Project Manager: Karrie Lasater
University of Utah

Advocate: Phyllis D. Coley
University of Utah

Advocate: Thomas Kursar
University of Utah

SPECIFIC AIMS
Aim 1. Test if there is a PDA cell genotype-T/HCQ drug response phenotype in PDA cell lines and PDX models with an initial emphasis on TP53 mutation status.

Aim 2. Explore novel targets and agents to inhibit trametinib-induced autophagy in PDA cells.

Aim 3. Initiate clinical trials of the combination of trametinib plus HCQ (T/HCQ) in PDA patients.

KEY ACCOMPLISHMENTS
The Team completed a phase 1 trial designated THREAD – testing a fixed dose of the MEK inhibitor trametinib and an escalating dose of the autophagy inhibitor hydroxychloroquine (T/HCQ) in patients with chemotherapy refractory PDAC. Two dose levels of HCQ in combination with trametinib were tested in 14 patients. A safe and tolerable dose of this combination was identified and a plan for an expansion cohort was developed.

CLINICAL TRIALS
THREAD: A Phase I Trial of Trametinib and Hydroxychloroquine in Patients With Advanced Pancreatic Cancer; NCT03825289; Recruiting

FUNDERS

PURPOSE
The Combined Targeting of MEK1/2 and Autophagy for Pancreatic Cancer Therapy Team tested a combination approach to pancreatic cancer therapy shutting down two cellular pathways. The first pathway (MEK) carries signals that relate to tumor growth, and the second controls a process called autophagy, in which a cell effectively reuses its own interior contents to function. By shutting down both pathways, the Team hoped to slow or stop the growth of pancreatic tumors.
PANCREATIC CANCER COLLECTIVE RESEARCH TEAM—NEW THERAPIES CHALLENGE RT6157

Targeting Stem Cell Signals in Pancreatic Cancer
Grant Term: November 2018–October 2020, administered by the American Association for Cancer Research

KEY PERSONNEL
Team Leader: Tannishtha Reya, PhD
University of California, San Diego

Co-Leader: Andrew M. Lowy, MD
University of California, San Diego

Co-Leader: Margaret A. Tempero, MD
University of California, San Francisco

Project Manager: Marcie Kritzik, PhD
University of California, San Diego

PURPOSE
The Targeting Stem Cell Signals in Pancreatic Cancer Team tested whether blocking ROR gamma, a protein that regulates inflammation, can slow or stop the growth of pancreatic cancer.

SPECIFIC AIMS
Aim 1. Test inhibition of ROR-γ in combination with chemotherapy in preclinical models.

Aim 2. Identify biomarkers predictive of response and define a molecular signature reflective of response to ROR-γ inhibition.

KEY ACCOMPLISHMENTS
The Team tested whether pharmacologic inhibition of ROR gamma using a small molecule inhibitor AZD-0284 could inhibit this nuclear receptor and alter the growth of pancreatic cancer cells. AZD-0284 exhibited modest activity in the models tested.

CLINICAL TRIALS
N/A

FUNDERS
PANCREATIC CANCER COLLECTIVE RESEARCH TEAM – NEW THERAPIES CHALLENGE RT6153

Molecularly Targeted Radionuclide Therapy via the Integrin αvß6
Grant Term: November 2018 - June 2024, administered by the American Association for Cancer Research

KEY PERSONNEL
Team Leader: Julie L. Sutcliffe, PhD
University of California, Davis

Co-Leader: Richard J. Bold, MD, MBA
University of California, Davis

Principal: Cameron C. Foster, MD
University of California, Davis

Project Manager: Sonal J. Desai, PhD
University of California, Davis

Advocate: Lora Kelly, RN

PURPOSE
The Molecularly Targeted Radionuclide Therapy via the Integrin αvß6 Team is working to conduct a phase I, first-in-human study to evaluate the safety and efficacy of a [68Ga]Ga DOTA-5G / [177Lu]Lu DOTA-ABM-5G theranostic pair in patients with locally advanced or metastatic pancreatic cancer.

SPECIFIC AIMS

Aim 1A. Establish that [68Ga]Ga DOTA-5G can detect lesions in patients with locally advanced or metastatic pancreas cancer. The ability of [68Ga]Ga DOTA-5G to detect lesions will be assessed by increased standard uptake values (SUVmax >2-fold above normal lung or liver) of [68Ga]Ga DOTA-5G in at least one lesion assessed by [68Ga]Ga DOTA-5G PET/CT.

Aim 1B. Establish the safety and tolerability of the theranostic pair [68Ga]Ga DOTA-5G / [177Lu]Lu DOTA-ABM-5G. Safety and tolerability of [68Ga]Ga DOTA-5G / [177Lu]Lu DOTA-ABM-5G will be assessed by number of patients with treatment-related adverse events using CTCAE v5.0.

Aim 1C. Evaluate the maximum tolerated dose (MTD), and determine the recommended phase II dose (RP2D) of [177Lu]-αvß6-BP. Dose-limiting toxicities (DLT) of [177Lu]-αvß6-BP with activity levels starting from 25 mCi and increasing up to the "standard" PRRT level of 200 mCi will be assessed using SPECT/CT.

Aim 2. Establish an optimal dosing regimen in pre-clinical models. Fractionated dosing with the [177Lu]-αvß6-BP as well as combination with standard-of-care chemotherapy and novel avß6-BP drug conjugates will be explored in xenograft, orthotopic and metastatic mouse models.
KEY PROGRESS
The integrin αvβ6 is a protein that can be found on the surface of pancreatic cancer cells but is undetectable on normal cells. Receiving an initial round of funding support, the Team synthesized a pair of compounds, a 68Ga-αvβ6-binding peptide (68Ga]Ga DOTA-5G) to visualize cancer, and a 177Lu-αvβ6-binding peptide (177Lu]Lu DOTA-ABM-5G) to treat cancer, and confirmed that these peptides can home in on the αvβ6 in vitro and in vivo. With the support of Round 2 funding, they have enrolled 27 patients in their Phase I clinical trial where they are determining whether 68Ga]Ga DOTA-5G can be used to detect lesions in patients with locally advanced or metastatic pancreatic cancer, establish the safety of the two peptides, and identify the maximum tolerated dose and recommended phase II dose of 177Lu]Lu DOTA-ABM-5G. To date they have demonstrated that the 68Ga]Ga DOTA-5G can detect lesions and that the 68Ga]Ga DOTA-5G and 177Lu]Lu DOTA-ABM-5G are safe and well tolerated.

CLINICAL TRIALS
First-in-human Study of the Theranostic Pair 68Ga]Ga DOTA-5G and 177Lu]Lu DOTA-ABM-5G in Pancreatic Cancer; NCT04665947; Recruiting

FUNDERS
Immunotherapy Targeting Mutant KRAS

Grant Term: November 2018 - September 2024, administered by the American Association for Cancer Research

KEY PERSONNEL

Team Leader: Robert H. Vonderheide, MD, DPhil
University of Pennsylvania

Co-Leader: Elizabeth M. Jaffee, MD
Johns Hopkins University

Co-Leader: Beatriz M. Carreno, PhD
University of Pennsylvania

Principal: Neeha Zaidi, MD
Johns Hopkins University

Early-Career Investigator: Adham Bear, MD, PhD
University of Pennsylvania

Project Manager: TBD

PURPOSE

KRAS mutations (mKRAS) occur in greater than 90% of pancreatic ductal adenocarcinoma (PDA) tumors. In Round 1 of its funding, the Immunotherapy Targeting Mutant KRAS Team isolated mKRAS-specific T-cell receptors (TCRs) from neoantigen-reactive T cells. These TCRs have been confirmed in preclinical experiments to confer selective cytotoxicity against mKRAS-expressing PDA tumors. In Round 2, the team is conducting a phase I clinical study of adoptively transferred autologous T cells engineered to express a mKRAS-specific TCR.

SPECIFIC AIMS

Aim 1. To identify novel mKRAS-specific TCRs in PDAC patients.

Aim 2. To initiate a phase I clinical study of adoptively transferred autologous T cells engineered to express a mKRAS-specific TCR.

KEY PROGRESS

The investigators have identified candidate KRAS epitopes using computational, biochemical, and proteomic determinations. The Team continues enrollment in their two vaccine trials, which have enabled epitope validation and provide samples for mKRAS-specific TCR identification and isolation. A candidate TCR has been selected for clinical development and pre-clinical and IND-enabling studies are on-going.

CLINICAL TRIALS

Pilot Study of Mature Dendritic Cell Vaccination Against Mutated KRAS in Patients With Resectable Pancreatic Cancer; NCT03592888; Recruiting

Pooled Mutant KRAS-Targeted Long Peptide Vaccine Combined With Nivolumab and Ipilimumab for Patients With Resected MMR-p Colorectal and Pancreatic Cancer; NCT04117087; Recruiting

FUNDERS
SU2C-LUSTGARTEN FOUNDATION PANCREATIC CANCER INTERCEPTION RESEARCH TEAM RT6059

Developing Novel Approaches to Detect and Treat Early Pancreatic Cancer

Grant Term: January 2018 - December 2022, administered by the American Association for Cancer Research

KEY PERSONNEL

Team Leader: David P. Ryan, MD
Massachusetts General Hospital

Co-Leader: Alec C. Kimmelman, MD, PhD
New York University

Principal: Richard A. Burkhart, MD
Johns Hopkins University

Principal: Daniel Laheru, MD
Johns Hopkins University

Principal: Wells A. Messersmith, MD
University of Colorado, Denver

Principal: Cullen M. Taniguchi, MD, PhD
The University of Texas MD Anderson Cancer Center

Project Manager: Leilana Ly
Massachusetts General Hospital
LLY2@mgh.harvard.edu

Advocate: Robert A. Ettl (deceased)
Harvard Management Co., Inc.

Advocate: Regina Pyle
Massachusetts General Hospital

Advocate: Carole Seigel
Massachusetts General Hospital

PURPOSE

The Interception Research Team is evaluating in a randomized setting whether the addition of losartan and nivolumab to FOLFIRINOX increases the rate of surgical resection for localized pancreatic cancer. The Team is also utilizing tumor organoid technology in which an individual patient’s tumor cells are grown in the laboratory to create “minitumors” that can be used to test treatments. The Team is also studying changes in the tumor microenvironment.

SPECIFIC AIMS

Aim 1. Evaluate novel neoadjuvant approaches in PDAC patients.

Aim 1A. Conduct neoadjuvant clinical trial to increase curability.

Aim 1B. Determine whether therapeutic screening of patient-derived organoids can identify an optimal clinical treatment.

Aim 1C. Conduct primary tumor molecular analysis.

Aim 1D. Determine the ctDNA, CTC, and exosomes at presentation, during treatment, and after surgery.

Aim 1E. Determine the changes in the tumor microenvironment (TME) between arms.

KEY ACCOMPLISHMENTS

The Team aimed to improve the number of pancreatic cancer patients who are curable by pre-treating patients with new combination therapies prior to surgery. They have successfully completed their accrual goal of 160 patients. They were also able to demonstrate the feasibility of assessing the feasibility of a hospital-at-home intervention for a subset of patients in their clinical trial. With additional funding from a SU2C Sharp Challenge grant, pre-treatment biopsies, post-treatment resection, and serial blood samples are being analyzed to uncover new mechanistic insights into pancreatic cancer pathogenesis and to understand how the therapeutic interventions in this trial led to the observed R0 resection rates.

CLINICAL TRIALS

A randomized Phase II Study of Losartan and Nivolumab in Combination With FOLFIRINOX and SBRT in Localized Pancreatic Cancer; NCT03563248; Active, not recruiting

FUNDERS

SU2C STAND UP TO CANCER SCIENTIFIC SUMMIT 2024
SU2C-LUNGEVITY FOUNDATION-AMERICAN LUNG ASSOCIATION LUNG CANCER INTERCEPTION RESEARCH TEAM RT6058

Blood-Based Early Interception of Lung Cancer
Grant Term: December 2017 - February 2019, administered by the American Association for Cancer Research

KEY PERSONNEL
Team Leader: Lecia V. Sequist, MD
Massachusetts General Hospital

Co-Leader: Maximilian Diehn, MD, PhD
Stanford University

Project Manager: Elaina PuiYee Chan, PhD
Massachusetts General Hospital
pchan9@partners.org

Advocate: Chris M. Draft
Chris Draft Family Foundation

PURPOSE
The Blood-Based Early Interception of Lung Cancer Team hypothesized that the early detection of invasive lung cancers could be improved through new technological approaches, and that progress on this front can quickly bring about more effective patient treatments.

SPECIFIC AIMS
Develop a multianalyte Lung Cancer Interception Assay (LCIA) incorporating circulating tumor DNA, CTC-derived RNA signatures, and plasma proteomics for use in early-stage lung cancer detection.

KEY ACCOMPLISHMENTS
The investigators laid the groundwork for a multianalyte lung cancer early detection test. They demonstrated promising performance of circulating tumor DNA and further explored circulating tumor cells (CTCs) and patterns of proteins in the plasma of early stage lung cancer patients.

CLINICAL TRIALS
N/A

FUNDERS

THE SU2C SCIENTIFIC SUMMIT
CORONADO, CALIFORNIA JANUARY 26-29 2024
SU2C–LUSTGARTEN FOUNDATION TRANSLATIONAL RESEARCH TEAM RT6116, RT6162
Chimeric Antigen Receptor T-cell (CAR T) Therapy for Pancreatic Cancer
Grant Term: April 2017 – November 2022

KEY PERSONNEL
Team Leader: Carl H. June, MD
University of Pennsylvania

Co-Leader: Shelley L. Berger, PhD
University of Pennsylvania

Co-Leader: E. John Wherry, PhD
University of Pennsylvania

Principal: M. Angela Aznar, PhD
University of Pennsylvania

Principal: Charly R. Good, PhD
University of Pennsylvania

Principal: Mark H. O’Hara, MD
University of Pennsylvania

Principal: Janos L. Tanyi, MD, PhD
University of Pennsylvania

Project Manager: Regina M. Young, PhD
University of Pennsylvania
ryoung@upenn.edu

Advocate: James E. Prevor
Phoenix Media Network

PURPOSE
The CAR T Therapy for Pancreatic Cancer Team (June, Berger, and Wherry) came together to identify mechanisms of resistance to CAR T cell therapy and discover strategies to enhance the potency of immunotherapies targeting pancreatic cancer. The goals were to open a phase 1 study to evaluate the safety and feasibility of treating metastatic PDAC patients with CART cells directed against mesothelin and conduct research to interrogate CAR T cells and tumor cells in patients.
SPECIFIC AIMS

Aim 1. Carry out clinical trials in cancer immunotherapy for metastatic pancreatic cancer and transcriptionally and epigenetically interrogate samples prior to and following therapy to compare CAR T cell signatures from responsive and resistant patients, with the objective of improving therapeutic response.

Aim 2. Define the epigenetic landscape and sensitivities of pancreatic cancer cells and therapeutic immune cells, with the goal of identifying baseline molecular differences in pancreatic patients that may impede optimal CAR T cell function.

KEY ACCOMPLISHMENTS

The Team has made significant progress on both aims. They opened a trial for patients with metastatic pancreatic cancer to test the safety and feasibility of mesothelin-directed (M5) CAR T cells (NCT03323944) and completed enrollment on cohort 1. Currently, they are enrolling to cohort 2, intraperitoneal infusion of CAR T cells and cohort 3, local infusion via a microcatheter placed into the hepatic artery. Biopsy samples are being examined by flow cytometry, scRNA-seq and scATAC-seq for changes in the CAR T cells as they traffic to the tumor site.

CLINICAL TRIALS

Phase I Study of Human Chimeric Antigen Receptor Modified T Cells in Patients With Mesothelin-Expressing Cancers; NCT03054298; Recruiting

Phase I Study of Human Chimeric Antigen Receptor Modified T Cells (CAR T Cells) in Patients With Pancreatic Cancer; NCT03323944; Active, not recruiting

FUNDERS

[Images of logos]
LAURA ZISKIN TRANSLATIONAL AWARD RESEARCH TEAM
RT5934
Phosphatidylinositol 3-kinase δ Inhibition to Treat Patients With Relapsed or Refractory Follicular Lymphoma
Grant Term: March 2016 – May 2020

KEY PERSONNEL
Team Leader: Siddhartha Mukherjee, MD
Columbia University

Co-Investigator: Abdullah Ali, PhD
Columbia University

Co-Investigator: Jafarov Toghrul, PhD
Columbia University

Project Manager: Yan Ma
Columbia University

PURPOSE
The Phosphatidylinositol 3-kinase δ Inhibition Team investigated PI3K inhibition in the treatment of relapsed or refractory lymphoma. They studied a novel PI3k inhibitor TGR-1202 (umbralisib) while analyzing mechanisms of resistance and response, along with the effects of PI3K inhibition on the tumor cells.

SPECIFIC AIMS
Aim 1. Assess markers of responsiveness versus resistance to PI3K δ inhibition in a population of patients with relapsed or refractory FL using genomic, epigenomic, and metabolomics profiling.

Aim 2. Use cell lines to determine how PI3K δ inhibition affects growth and survival of lymphoma cells and their sensitivity to other drugs active in lymphoma.

Aim 3. Develop mouse models of FL and use these models to study the response of lymphoma to duvelisib in vivo.

KEY ACCOMPLISHMENTS
The clinical trial was launched but due to personnel changes was terminated. Five subjects had been enrolled, and the required blood and tumor samples are being analyzed via genetic and RNA sequencing. Findings have direct clinical implications for the multiple p110 δ inhibitors that are in clinical trials and provide a way to increase treatment efficacy for patients with many types of tumors. Studies of the novel PI3K inhibitor, CUD-207, demonstrated that it is substantially more potent than currently available PI3K inhibitors such as idelalisib, duvelisib, and tenalisib in lymphoma cells.

CLINICAL TRIALS
Study of the Phosphoinositide-3-Kinase-Delta Inhibitor TGR-1202 in Patients With Relapsed or Refractory Follicular Lymphoma; NCT03178201; Terminated

FUNDER
SU2C-FARRAH FAWCETT FOUNDATION HPV RESEARCH TEAM RT5914

Therapeutic CD8 Vaccines Against Conserved E7 HPV Epitopes Identified by MS
Grant Term: July 2014 - February 2020, administered by the American Association for Cancer Research

KEY PERSONNEL
Team Leader: Ellis L. Reinherz, MD
Dana-Farber Cancer Institute

Co-Leader: Robert I. Haddad, MD
Dana-Farber Cancer Institute

Project Manager: Joanie Lindstrom
Dana-Farber Cancer Institute

Project Manager: Farzana Masood, PhD
Dana-Farber Cancer Institute

Advocate: Mary-Jo Murphy

PURPOSE
The Therapeutic CD8 Vaccines Against Conserved E7 HPV Epitopes Identified by MS Team focused on patients with HPV-driven cancers, including cervical, anal, and head and neck cancer, who relapse following initial therapy. The Team aimed to develop novel immunotherapy approaches that will address this important unmet clinical need.

SPECIFIC AIMS
Aim 1. Perform a phase IB/II trial of adjuvant E711-19 nanomer vaccine DPX-E7 in 40 HLA-A*0201- positive patients with HPV16+ squamous cancers of the cervix, anus, or oropharynx.

Aim 2. Define additional immunogenic HLA-bound tumor antigens on HPV-driven cancers of the cervix, anus, and head and neck.

Aim 3. Investigate clonal heterogeneity and molecular functional avidity of TCRs elicited by vaccination to engender those supporting the most sensitive tumor antigen recognition/tumor cell killing as well as future adoptive cell therapy.

KEY ACCOMPLISHMENTS
The Team identified the E711-19 tumor antigen using miniscule amounts of tumor tissue via fine needle biopsy. The Team, in conjunction with the NCI, explored the possibility of treating patients who did not respond to the vaccine, with T cell receptor gene therapy targeting the same E711-19 epitope.

CLINICAL TRIALS
A Phase Ib/II Trial to Test the Safety and Efficacy of Vaccination With HPV16-E711-19 Nanomer for the Treatment of Incurable HPV16-Related Oropharyngeal, Cervical, and Anal Cancer in HLA-A*02- Positive Patients; NCT02865135; Active, not recruiting

FUNDERS

THE SU2C SCIENTIFIC SUMMIT
CORONADO, CALIFORNIA JANUARY 26-29 2024
SU2C-TRANSLATIONAL GENOMICS RESEARCH INSTITUTE GRANT RT1234
Next-Generation Sequencing of Small Cell Lung Cancer to identify Actionable Targets for Treatment
Grant Term: August 2014 - July 2016

KEY PERSONNEL
Team Leader: Jeffrey Trent, PhD
Translational Genomics Research Institute (TGEN)

Principal: Jessica Aldrich
TGEN

Principal: Carly Benford, CRC
TGEN

Principal: John Carpten, PhD
TGEN

Principal: David Craig, PhD
TGEN

Principal: Jeff Kiefer, PhD
TGEN

Principal: Sara Nasser, PhD
TGEN

Principal: Glen Weiss, MD
Cancer Treatment Centers of America

Principal: Tim Whitsett, PhD
TGEN

PURPOSE
This study sought to understand the molecular factors that lead to progression of advanced small cell lung cancer (SCLC) after at least one line of chemotherapy. The goals were to (1) align best practice clinical and research efforts across TGen and Cancer Treatment Centers of America in Arizona, (2) use novel methods including whole genome and transcriptome next-generation sequencing and bioinformatics analysis to identify individual patients’ genomic characteristics, (3) match this information to individual actionable drug treatment plans, and (4) conduct joint Clinical and Molecular Tumor Boards.

SPECIFIC AIMS
Aim 1. Pilot Study.

Aim 2. Treatment Selection.

KEY ACCOMPLISHMENTS
The pilot clinical study completed accrual with 12 patients. All patients had at least two clinically actionable targets identified. The Team planned to continue developing this approach and potentially expand it to other cancer types.

CLINICAL TRIALS
N/A
SU2C-DUTCH CANCER SOCIETY TRANSLATIONAL RESEARCH TEAM RT5905

Prospective Use of DNA-Guided Personalized Cancer Treatment
Grant Term: January 2013 - December 2017, administered by the American Association for Cancer Research

KEY PERSONNEL

Team Leader: Emile E. Voest, MD, PhD
Netherlands Cancer Institute

Co-Leader: René Bernards, PhD
Netherlands Cancer Institute

Principal: Trey Ideker, PhD
University of California, San Diego

Principal: Stefan Sleijfer, MD, PhD
Erasmus MC Rotterdam

Principal: Laura J. van’t Veer, PhD
University of California, San Francisco

Project Manager: Alice Tondeur
Netherlands Cancer Institute

PURPOSE

The aim of the Prospective Use of DNA-Guided Personalized Cancer Treatment Research Team was to refine treatment algorithms for cancer patients based on large-scale mutational analyses of tumor DNA.

SPECIFIC AIMS

Aim 1. Identify DNA-based biomarkers of response to neoadjuvant chemotherapy +/- neratinib in breast cancer through analyses of biopsies from the trial.

Aim 2. Generate genomic selection criteria for patients with KRAS wild-type colorectal tumors to improve the outcome of anti-EGFR antibody treatment using genomic analyses of metastases for a cancer mini-genome of genes.

KEY ACCOMPLISHMENTS
The Team demonstrated the value of an integrative genomics approach, combining DNA, RNA, and proteomic analyses on a small series of tumor biopsies to identify pathways relevant for response to targeted cancer agents. The finding that DNA, RNA, or protein individually were unable to predict drug responses underscores the need for an integrative approach. The Team's work on the analyses of biopsies of patients treated with immune-oncology drugs helped deepen understanding of the factors that determine whether patients respond to these therapies. The work of the team contributed to the 2020 FDA approval of encorafenib and cetuximab combination for treatment of metastatic colorectal cancer with the BRAF V600E mutation.

CLINICAL TRIALS
I-SPY 2 Trial (Investigation of Serial Studies to Predict Your Therapeutic Response With Imaging and Molecular Analysis 2); NCT01042379; Recruiting

Development of a Platform for Next-Generation DNA Sequencing-Based Personalized Treatment for Cancer Patients: Protocol to Obtain Biopsies From Patients With Locally Advanced or Metastatic Cancer (CPCT-02 Biopsy Protocol); NCT01855477; Recruiting

Assessing Efficacy of Carboplatin and Atezolizumab in Metastatic Lobular Breast Cancer GELATO Trial; NCT03147040; Terminated

Phase Ib/II Multicenter, Open-Label, Dose-Escalation Study of LGX818 and Cetuximab or LGX818, BYL719, and Cetuximab in Patients With BRAF Mutant Metastatic Colorectal Cancer; NCT01719380; Completed

FUNDER

[Image of the Dutch Cancer Society]
SU2C CONVERGENCE™

RESEARCH TEAMS
SU2C CONVERGENCE™ RESEARCH TEAMS

SU2C CONVERGENCE™ 3.1416 RESEARCH TEAM CV6204
Molecular and Biophysical Definition of Tumor-Host Interactions and Impact on Tumorigenesis and Therapeutic Response
Grant Term: January 2021 – December 2023

KEY PERSONNEL
Team Leader: Ileana Cristea, PhD
Princeton University

Team Member: Shawn Davidson, PhD
Princeton University

Team Member: Scott Manalis, PhD
Massachusetts Institute of Technology

Team Member: Benjamin Neel, MD, PhD
New York University

Project Manager: Alice Lustig
Stand Up To Cancer
alustig@su2c.org

PURPOSE
The Molecular and Biophysical Definition of Tumor-Host Interactions and Impact on Tumorigenesis and Therapeutic Response Team is seeking to provide an understanding of the mechanisms regulating the tumor-host interaction interface and their effects on host immunity, tumorigenesis, and therapeutic response.

SPECIFIC AIMS
Cristea Lab/Princeton University
Aim 1. Uncover molecular drivers of tumor-host interactions by developing methods for defining surface proteomes in 3D cell models in conjunction with secretome and intracellular proteome assays.

Aim 2. Define global protein complex dynamics underlying signaling and immune responses in organoids.

Aim 3. Determine how organelle contact sites link lipid metabolism and immune signaling in organoids.

Manalis Lab/Massachusetts Institute of Technology
Aim 1. Develop chemostat for organoid culture.

Aim 2. Study mechanisms by which microbiota affect tumor responses to anti-PD-1 therapy.

Aim 3. Understand how microbial peptides alter biophysical properties of mammalian cells.

Aim 4. Use genotype-defined syngeneic organoid models to study tumor/TME interactions and therapy.

Aim 5. Determine if single-cell biophysical measurements can optimize strategies to enhance immunotherapy.
SU2C CONVERGENCE™ RESEARCH TEAMS

Davidson Lab/Princeton University
Aim 1. Define the metabolic tumor microenvironment by integrating spatial-omics in mouse and organoid models of cancer.
Aim 1A. Define the metabolic and immunologic microenvironment of high-grade serous tubo-ovarian cancer (HGSC).
Aim 1B. Determine the functional metabolic interaction of commensal gut microbiota, T cells, and lung cancer.
Aim 2. Conduct high-throughput metabolic characterization of organoids based on biophysical separation.
Aim 2A. Perform metabolic screening of organoids from primary dissociated tumors separated by biophysical methods
Aim 3. Develop methods for MALDI (3D imaging and improved spatial resolution) and nanoflow-LC-MS.
Aim 3A. Develop 3D MALDI for labeled metabolite distribution in tumors, organs, and organoids.
Aim 3B. Improve MALDI spatial resolution and metabolic pathway coverage.
Aim 3C. Investigate nanoflow metabolomics toward obtaining separation-based single-cell metabolism measurements.

Neel Lab/New York University
Aim 1. Use genotype-defined organoids to delineate cell autonomous/non-autonomous effects on HGSC evolution.
Aim 2. Further characterize tumor/TME interactions and optimize therapy for Ccne1OE and Nf/- HGSC.
Aim 3. Develop more refined, TME-retaining human and mouse organoid models of HGSC.

KEY PROGRESS
Generated and characterized numerous genetically defined organoid models for poor prognosis high grade serous tubo-ovarian carcinoma (HGSC). Integrative proteomic and microscopy investigations of HGSC models in both two-dimensional monolayers and three-dimensional organoids uncovered HGSC signatures in elevated organelle-organelle membrane contacts (stable mitochondria-ER encapsulations), mitochondrial calcium, oxidative phosphorylation, and lipid biogenesis.

Engineered cancer organoids with distinct copy number abnormality signatures in human HGSC models and investigated tumor evolution upon serial passaging with next generation sequencing.

A proteomic and phosphoproteomic platform was established to analyze cancer organoids at single-organoid and near-single-cell levels. Between 4000 to 6000 proteins were quantified from 1.25 ng (~6 cells equivalent) to 20 nanograms of protein, respectively, complemented by quantification of > 9,000 phosphopeptides. These analyses provided orthogonal support that HGSC exhibits increased mitochondria-associated metabolic processes.
A labeling method was established to investigate cell-cell communication in the virus microenvironment by spatially discriminating and phenotyping cell populations within a local cellular niche upon virus infection. This facilitated the isolation of virus-infected cells, infection-adjacent neighboring ides a more physiologically relevant microenvironment, including oxygen gradient, flow, shear stress, and chemical composition, with assessments on cancer organoid cultures.

A cantilever-based microfluidic sensor (suspended microchannel resonator) was developed that uniquely measures distinct populations of unactivated T cells, providing a platform to further assess label-free biomarker(s) of dysfunctional T cells.

A three-dimensional organ analysis of metabolic processes was generated and used to demonstrate the roles of different cell types and how anatomical differences in an organ dictate diverse metabolic pathways and substrate utilization. Cryosectioning protocols and methods to perform imaging mass spectrometry for metabolite detection have been optimized and applied to investigate tumor-immune modulation upon bacterial colonization.

SU2C CONVERGENCE™ RESEARCH TEAMS

A labeling method was established to investigate cell-cell communication in the virus microenvironment by spatially discriminating and phenotyping cell populations within a local cellular niche upon virus infection. This facilitated the isolation of virus-infected cells, infection-adjacent neighboring ides a more physiologically relevant microenvironment, including oxygen gradient, flow, shear stress, and chemical composition, with assessments on cancer organoid cultures.

A cantilever-based microfluidic sensor (suspended microchannel resonator) was developed that uniquely measures distinct populations of unactivated T cells, providing a platform to further assess label-free biomarker(s) of dysfunctional T cells.

Modeling Cancer within the Human Microbiome

Four teams will seek to learn more about the communication between the body and the tumor on a cellular level—and how the microbiome has both positive and negative implications for the effectiveness of cancer therapies.

- **Team 1**
 - Microbiome: The collection of fungi, bacteria, viruses and other microorganisms that live in the human body.
 - Organoids: Tissue cultures derived from actual cancer samples and human stem cells.
 - Mouse models: A way to test microbiome, cancer, and drug interactions in real-life conditions.
 - Chemostats: Devices that support the growth of exceptionally complex cell cultures.
 - Identify and define the mechanisms regulating tumor-host interactions, seeking to find molecular and biophysical markers across cancer cells, normal cells, and associated microbiota.

- **Team 2**
 - Understand how cancer interplays with microbiomes in a person’s gut, with a focus on identifying specific microbiota that cause or facilitate the treatment of tumors.

- **Team 3**
 - Reconstruct cancer in organoids to analyze how microbiomes interact with tumors to increase the effectiveness of immunotherapy treatments.

- **Team 4**
 - Design therapies that can moderate tumor growth and cancer development using gene expression studies to understand communications between the microbiome and a tumor.

- **Team 5**
 - CHEMOSTAT GROUP
 - Build an accurate, stable model of tumors and their surroundings by growing and maintaining gut organoids complete with the surrounding tissue and microbiome. This engineering feat will be a dramatic advance in scientists’ ability to model human cancer so new treatments can be more quickly and effectively tested.

CLINICAL TRIALS

N/A

FUNDERS

ThermoFisher SCIENTIFIC

Genentech

A Member of the Roche Group

SU2C CONVERGENCE™ RESEARCH TEAMS

An international collaboration of scientists is working to understand how cancer convinces the body’s organs and tissues to support tumor growth. Cancer’s interaction with the micro-environments that exist within the human body is a special focus of the work.

Four teams will seek to learn more about the communication between the body and the tumor on a cellular level—and how the microbiome has both positive and negative implications for the effectiveness of cancer therapies.

TEAM 1

- Identify and define the mechanisms regulating tumor-host interactions, seeking to find molecular and biophysical markers across cancer cells, normal cells, and associated microbiota.

TEAM 2

- Understand how cancer interplays with microbiomes in a person’s gut, with a focus on identifying specific microbiota that cause or facilitate the treatment of tumors.

TEAM 3

- Reconstruct cancer in organoids to analyze how microbiomes interact with tumors to increase the effectiveness of immunotherapy treatments.

TEAM 4

- Design therapies that can moderate tumor growth and cancer development using gene expression studies to understand communications between the microbiome and a tumor.

TEAM 5

- CHEMOSTAT GROUP
 - Build an accurate, stable model of tumors and their surroundings by growing and maintaining gut organoids complete with the surrounding tissue and microbiome. This engineering feat will be a dramatic advance in scientists’ ability to model human cancer so new treatments can be more quickly and effectively tested.

CONVERGENCE 3.1416 MISSION

By better understanding how microbiomes affect the support the human body provides to tumors, these teams of scientists will help accelerate research and treatments across a wide range of cancers and provide tools to spur the next generation of cancer research.
SU2C CONVERGENCE™ 3.1416 RESEARCH TEAM CV6205
Integrating Gnotobiotic, Organoid, and Metabolomic Pipelines to Probe the Cancer–Microbiome Connection
Grant Term: January 2021 – December 2023

KEY PERSONNEL
Team Leader: Kenya Honda, MD, PhD
Keio University, Japan

Team Member: Hans Clevers, MD, PhD
Hubrecht Institute, Netherlands

Team Member: Josh Rabinowitz, MD, PhD
Princeton University

Team Member: Toshiro Sato, MD, PhD
Keio University, Japan

Project Manager: Alice Lustig
Stand Up To Cancer
alustig@su2c.org

PURPOSE
This Integrating Gnotobiotic, Organoid, and Metabolomic Pipelines to Probe the Cancer–Microbiome Connection Team is studying gastrointestinal malignancies using gnotobiotic assays, organoids, and metabolomics to identify the mechanisms by which bacteria interact with the host cells to cause tumor development or regression.

SPECIFIC AIMS
Honda Lab/Keio University
Aim 1. Establish an in vivo model appropriate for screening of CRC-promoting bacteria.

Aim 2. Search for bacterial strains that promote CRC development.

Aim 4. Search for bacterial strains that can prevent CRC development.

Aim 5. Elucidate diet-microbiome-immune connection.

Clevers Lab/Hubrecht Institute
Aim 1. Build on top of our identification of the first bacterially induced mutational signature by screening further bacterial toxins, strains, and species of potentially genotoxic bacteria.

Aim 2. Focus on the impact of colorectal cancer-associated bacteria on cellular behavior beyond mutation accumulation. This will be performed both on individual cancer-associated species and on microbial communities derived from healthy donors and colorectal cancer patients.

Aim 3. Study the role in tumorigenesis of bacteria from the Clostridium genus associated with CRC tumorigenesis by metagenomics studies.
SU2C CONVERGENCE™ RESEARCH TEAMS

Aim 4. Obtain microbial communities derived from healthy donors and colorectal cancer patients, and expose healthy human colon and colorectal cancer organoids to microbial communities and the metabolites produced by these, to identify community-level effects on colorectal cancer cell behavior.

Rabinowitz Lab/Princeton University

Aim 1. Investigate diet-microbiome connection.

Aim 2. Study diet-microbiome-immune connection.

Aim 3. Explore diet-cancer therapy connection.

Sato Lab/Keio University

Aim 1. Study carcinogenic potential of gut microbes on colonic epithelium in vivo.

Aim 2. Develop new in vivo human CRC model.

Aim 3. Model bacteria-induced colon carcinogenesis using an in vitro organoid co-culture system.

Aim 4. Understand the molecular determinants of invasiveness and metastatic capacity during colon carcinogenesis.

KEY PROGRESS

Team members across the project are reporting progress. At the Hubrecht Institute, a strain of E. coli has been uncovered that has an additional 10–12 genes, E. coli pks, from a foreign source that synthesizes a mutagen that reacts with the DNA of the colon cells and causes mutations in the APC gene, the first gene to acquire mutations in the progression of colon cancer. This is a clear demonstration of the contribution of the microbiome to colon cancer formation. At Keio University, scientists determined the in vivo effect of E. coli pks using the gnotobiotic technique on somatic mutations in the mouse colonic epithelium. Scientists at Princeton University have varied the diet of mice undergoing chemotherapy to reduce or eliminate tumors that they carry and have demonstrated that dietary changes do have a large impact upon the efficiency of tumor reduction or elimination.

CLINICAL TRIALS

N/A

FUNDERS

[Genentech](https://www.roche.com/)

[ThermoFisher](https://www.thermofisher.com/)

A larger version of this graphic is available in the appendix.
SU2C CONVERGENCE™ 3.1416 RESEARCH TEAM CV6206
Integrating Microbiome and Organoid Analyses of Patient Cohorts for Immuno- oncology Therapeutic Development
Grant Term: January 2021 – December 2023

KEY PERSONNEL
Team Leader: Calvin Kuo, MD, PhD
Stanford University

Team Member: Ami Bhatt, MD, PhD
Stanford University

Team Member: Michael Fischbach, PhD
Stanford University

Team Member: Jennifer Wargo, MD, MMSc
The University of Texas MD Anderson Cancer Center

Project Manager: Alice Lustig
Stand Up To Cancer
alustig@su2c.org

PURPOSE
The Integrating Microbiome and Organoid Analyses of Patient Cohorts for Immuno-oncology Therapeutic Development Team is investigating the limitations of immunotherapy, including both intrinsic and acquired resistance. Their work is integrating microbiome and organoid analyses of immunotherapy patient cohorts to develop novel immunotherapeutic combinations.

SPECIFIC AIMS
Kuo Lab/Stanford University
Aim 1. Investigate Air-Liquid Interface (ALI) tumor organoid-based anoxic culture for obligate anaerobes.

Aim 1A. Flow-based anaerobic/aerobic transwell platform for organoid culture.

Aim 1B. Organoid and anaerobic bacterial interaction and growth.

Aim 2. Integrate microbiota into ALI tumor organoids from neoadjuvant anti-PD-1 patient cohorts.

Aim 2A. Combination with candidate microbiota.

Aim 2B. Addition of microbiota-derived small molecules and peptides.

Aim 2C. Effects on anti-PD-1 responses.

Aim 3. Incorporate peripheral immune components with ALI tumor organoids.

Aim 3A. Human ALI tumor organoid co-culture with autologous lymph node organoids.

Aim 3B. Murine ALI tumor organoid co-culture with autologous lymph node organoids.

Bhatt Lab/Stanford University
Aim 1. Leverage culture-free approaches to strain tracking in human microbiome studies.

Aim 1A. Culture-free genome assembly from microbiomes.

Aim 1B. Measuring genomic plasticity.
SU2C CONVERGENCE™ RESEARCH TEAMS

Aim 1C. Dissecting the role of translated microbial genes in immunotherapy response.

Aim 2. Identify bioactive microbial small peptides that may modulate cancer biology and therapy efficacy.

Aim 2A. Decoding microbial communication.

Aim 2B. Microbial microproteins and their impact on cellular biophysics.

Aim 2C. Mining microbial microprotein communication signals to transform drug discovery.

Fishbach Lab/Stanford University

Aim 1. Study the role of bacterially derived molecules in dictating the fate of an elicited T cell.

Aim 2. Determine whether tumor-specific T cells can be induced by expressing host antigens in bacterial colonists.

Aim 3. Investigate whether we can study the contribution of each strain in a complex community to immune modulation.

Wargo Lab/MD Anderson Cancer Center

Aim 1. Determine characteristics of the gut microbiome associated with optimal response to immunotherapy in a prospective cohort of immunotherapy-treated patients.

Aim 2. Identify optimal strategies to enhance response to immunotherapy via gut microbiota modulation by deep profiling and integrated analysis of data from existing cohorts.

Aim 3. Optimize strategies to enhance immunotherapy response via gut microbiota/functional interventions with testing in preclinical models.

KEY PROGRESS

The team has successfully created organoid cultures that contain cancer and immune cells, to which microbial components can be added. Based on work at Stanford University, a particular strain of streptococcus has been found to result in the immunization of CD4 cells that protect mice from further infection, whereas the identical bacteria in a wound immunizes CD4 inflammatory cells and causes tissue destruction. Bacteria in different organ systems lead to diverse immune responses by triggering different CD4 T-cell types which give rise to diverse cytokines. A similar result has been observed with other bacterial strains in laboratories at Keio University and New York University. Different bacteria regulate different CD4 T-cell subtypes and cytokines. Which bacterial species impact CD-8 killing of cancer cells is under intensive study.

CLINICAL TRIALS

N/A

FUNDERS

Genentech

A Member of the Roche Group

ThermoFisher Scientific

Modeling Cancer within the Human Microbiome

A global collaborative of scientists is working to understand how cancer convinces the body’s organs and tissues to support tumor growth. Cancer’s interaction with the body’s resident microbes is a major focus of this work.

- **Team 1:** Wargo Lab/MD Anderson Cancer Center
- **Team 2:** Fishbach Lab/Stanford University
- **Team 3:** Keio University, University of Texas Southwestern Medical Center, New York University
- **Team 4:** Stanford University
- **Team 5:** Chemostat Group

CONVERGENCE 3.1416 MISSION

To accelerate the translation of new knowledge about the biology of cancer to new treatments, SU2C launched the largest international collaboration of scientists to understand the human microbiome and the role it plays in cancer development. The collaboration, led by SU2C and the National Cancer Institute, is bringing together scientists from around the world to study the microbiome and cancer.

STAND UP TO CANCER

An international movement to galvanize the momentum and resources required to end cancer as we know it. SU2C harnesses the力量 of the entertainment industry to drive new knowledge and create new possibilities in cancer research, treatment, and care. A fifth group will work to create a laboratory tool that can grow gut tumor organoids using stem cells, lymphoid tissue, and the microbiome to provide scientists with a replicable tool that will supercharge the study of the microbiome’s effects on tumor development.

FIND OUT MORE

Visit the SU2C website for more information on these and other SU2C projects.

A larger version of this graphic is available in the appendix.
SU2C CONVERGENCE™ RESEARCH TEAMS

SU2C CONVERGENCE™ 3.1416 RESEARCH TEAM CV6207
Multi-omic Analysis of Immune System and Microbiota Influence on Temporal and Spatial Evolution of Tumor Microenvironments
Grant Term: January 2021 – December 2023

KEY PERSONNEL
Team Leader: Dan Littman, MD, PhD
New York University Grossman School of Medicine

Team Member: Karuna Ganesh, MD, PhD
Memorial Sloan Kettering Cancer Center

Team Member: Tyler Jacks, PhD
Massachusetts Institute of Technology

Team Member: Raul Rabadan, PhD
Columbia University

Project Manager: Alice Lustig
Stand Up To Cancer
alustig@su2c.org

PURPOSE
The Multi-omic Analysis of Immune System and Microbiota Influence on Temporal and Spatial Evolution of Tumor Microenvironments Team is working to advance understanding of tumor-intrinsic and -extrinsic factors that contribute to the dynamic interactions between immune system cells and cells in the tumor microenvironment. The Team aims to identify tumor vulnerabilities and new molecular and cellular targets that can be validated in pre-clinical models and then applied to clinical practice.

SPECIFIC AIMS

Littman Lab/New York University

Aim 1. Investigate mechanisms by which microbiota influence anti-tumor responses, in the presence and absence of exogenous anti-PD-1 therapy.

Aim 1A: Examination of how gut microbiota exert immune functions at distal sites, including scenarios where epitopes are shared between gut-colonizing flora and tumor neoantigens.

Aim 1B: Characterization of candidate microbiota/diet-derived metabolites and gut microbiome-derived cytokines/signals in regulation of antitumor responses.

Ganesh Lab/Memorial Sloan Kettering Cancer Center

Aim 1. Develop a prospective functional longitudinal biospecimen platform to dissect tumor, immune, and microbial determinants of metastasis.

Aim 2. Study effects of microbiota on intra-tumoral T cells and their subsequent differentiation programs, in mice and organoids.

Aim 2A: Mechanisms of microbiota-induced Th1/Th17 cell differentiation, and their effects on anti-tumor immunity.

Aim 2B: Screening of bacterial peptide libraries for effects on the tumor microenvironment and T-cell differentiation in collaboration with Ami Bhatt.
Aim 3. Define molecular determinants of regenerative plasticity and innate immune activation during infection and cancer.

Jacks Lab/Massachusetts Institute of Technology
Aim 1. Investigate the tumor-immune context in immunogenic and immune refractory pancreas and colon cancers by single-cell mRNA sequencing (sc-mRNAseq) and spatial analysis of gene expression, protein expression, and metabolites.

Aim 2. Conduct ex vivo and in vivo organoid-based functional studies.

Rabatan Lab/Columbia University
Aim 1. Quantify host expression and microbial abundances for bulk and single-cell data analysis.

Aim 2. Quantify allele-specific HLA class I expression.

Aim 3. Random matrix theory (RMT) for single-cell denoising.

Aim 4. Topological data analysis (TDA) for dissecting dynamical single-cell data.

Aim 5. Gaussian random fields (GRF) approach for studying cell-cell interactions with special protein and transcriptomic data.

KEY PROGRESS
The Team has compiled a large cohort of esophageal and colorectal cancer patients for which primary tumors, metastases, and stool samples are available for study and has performed detailed single cell analyses and identified a non-canonical transcriptional program that resembles a dedifferentiated state that is observed in the colon of normal fetus. They have established new mouse models to study anti-tumor T cell responses and the properties of distinct commensal microbes that elicit effective T cell-mediated control of tumor growth independently of anti-PD-1 therapy.

CLINICAL TRIALS
N/A

FUNDERS

SU2C CONVERGENCE™ RESEARCH TEAMS
SU2C CONVERGENCE™ RESEARCH TEAM CV6126
Correlating Immunological Health to Cancer Susceptibility
Grant Term: January 2018 – December 2021

KEY PERSONNEL
Team Leader: Mark M. Davis, PhD
Stanford University

Team Member: David Furman, PhD
Buck Institute

Team Member: Thomas Montine, MD, PhD
Stanford University

Team Member: Kari Nadeau, MD, PhD
Stanford University

Team Member: Stephen Quake, PhD
Stanford University

Project Manager: Alice Lustig
Stand Up To Cancer
alustig@su2c.org

PURPOSE
The Correlating Immunological Health to Cancer Susceptibility Convergence Research Team used blood cells and other markers to intensively monitor the immune system over time in participants in three research cohorts: an aging cohort, a twin cohort, and a cohort with inherited immunodeficiency. The results will be used to determine signatures of poor immune health that might predispose an individual to cancer.

SPECIFIC AIMS

Aim 2. Complementary cohorts.

Aim 3. Validation cohorts.

KEY ACCOMPLISHMENTS
The Team undertook a longitudinal analysis of elderly individuals (> 80 years old) from the Stanford-Ellison Cohort that identified an inflammatory signature present 1-2 years before cancer diagnosis. The cancers were primarily UV-mediated skin cancers, including melanoma, squamous cell carcinomas, and basal cell carcinomas. This suggests that some cancers could be identified years before diagnosis and treatment could be initiated at cancer’s earliest stages. A consistent elevation of cytokine transcriptional activity was correlated with aging across 10 types of cancer, coinciding with cellular senescence signatures characterized by p53 activation.

CLINICAL TRIALS
N/A

FUNDERS
Microsoft
Society for Immunotherapy of Cancer
SU2C CONVERGENCE™ RESEARCH TEAM CV6124
Single-Cell Functional Multi-omics to Characterize and Monitor CAR T Therapy
Grant Term: January 2018 – November 2022

KEY PERSONNEL
Team Leader: Rong Fan, PhD
Yale University

Team Member: Pablo Gonzalez Camara, PhD
University of Pennsylvania Perelman School of Medicine

Team Member: Stephanie Halene, MD, PhD
Yale University

Team Member: Carl H. June, MD
University of Pennsylvania Perelman School of Medicine

Team Member: J. Joseph Melenhorst, PhD
University of Pennsylvania Perelman School of Medicine

Project Manager: Alice Lustig
Stand Up To Cancer
alustig@su2c.org

PURPOSE
The Single-Cell Functional Multi-omics to Characterize and Monitor CAR T Therapy Team worked to identify biomarkers that will predict the efficacy and potential side effects of CAR T therapy in individual patients. The Team is developing computational models combining topological analysis - looking at multiple data sets across many fields - with machine learning to better understand the causes of therapeutic efficacy and toxicity.

SPECIFIC AIMS
Aim 1. Measure the full spectrum of cytokine functions in pre-infusion CAR T cells upon antigen-specific stimulation, correlating to objective response and adverse effect.

Aim 2. Measure circulating and/or tumor-infiltrating CAR T cells ex vivo to monitor patient outcome and investigate the mechanism of efficacy versus immune-toxicity.

Aim 3. Develop computational models combining topological analysis and machine learning to unveil the molecular characteristics that underlie therapeutic efficacy and toxicity of CAR T therapy, and identify candidate biomarkers.
KEY ACCOMPLISHMENTS
The team is exploring the molecular determinants of ultra-long-term remission in acute lymphoblastic leukemia (ALL) patients treated with CAR T anti CD-19 therapy. They present the first large-scale single-cell multi-omics study of 82 patients and totally they sequenced one million CAR T cells from all these patients and 6 healthy donors, representing the largest single-cell dataset from CAR T cells to date. Comprehensive analysis identified that elevated type-2 functionality in CAR T infusion products was significantly associated with patients maintaining a durable response of >8 years. Both in vitro and in vivo functional experiments were conducted to examine how type 2 cytokine-producing CAR T cells mediate population fitness and anti-tumor capability, providing valuable preclinical data that could be useful to inform innovative strategies to better engineer CAR T products. Their findings provide key insights into the mediators of CAR T longevity and have huge implications for the development of next-generation CAR T therapies to achieve long-term response and cure.

CLINICAL TRIALS
None

FUNDERS
Microsoft
Society for Immunotherapy of Cancer
SU2C CONVERGENCE™ RESEARCH TEAM CV6123
Machine Learning for Cancer Immunotherapy
Grant Term: January 2018 – November 2023

KEY PERSONNEL

Team Co-Leader: Ernest Fraenkel, PhD
Massachusetts Institute of Technology

Team Co-Leader: Regina Barzilay, PhD
Massachusetts Institute of Technology

Project Manager: Alice Lustig
Stand Up To Cancer
alustig@su2c.org

PURPOSE

The Machine Learning for Cancer Immunotherapy Team is using artificial intelligence to predict molecular pathways and clinical outcomes for cancer patients. Data scientists are working to reconstruct signaling pathways and identify previously unrecognized regulatory mechanisms that contribute to the development of cancer. Their discoveries may provide new approaches for treatment with immunotherapy.

SPECIFIC AIMS

Aim 2. Identify pathways conferring resistance to natural killer cells.

Aim 3. Predict CD8+ and CD4+ T-Cell epitopes.

KEY PROGRESS

Collaborating to model NK cell killing pathways. Applied AI to cancer imaging for diagnostic improvements and to the analysis of chemical space and classes for the development of drugs. Work is underway to predict pathways distinguishing responders and non-responders to immunotherapy and to predict immune-tumor interactions.

Published insights into NK cell killing pathways. Developed interpretable representation learning algorithms that integrate multi-omics data to identify pathways and mutational patterns associated with response to immunotherapy.

CLINICAL TRIALS

N/A

FUNDERS

Microsoft

Society for Immunotherapy of Cancer

STAND UP TO CANCER
SCIENTIFIC SUMMIT 2024
SU2C CONVERGENCE™ RESEARCH TEAMS

SU2C-LUSTGARTEN FOUNDATION CONVERGENCE™ RESEARCH TEAM CV6122
Computational Deconstruction of Neoantigen-TCR Degeneracy for Cancer Immunotherapy
Grant Term: January 2018 – November 2022

KEY PERSONNEL

Team Co-Leader: Benjamin Greenbaum, PhD
Memorial Sloan Kettering Cancer Center

Team Co-Leader: Vinod Balachandran, MD
Memorial Sloan Kettering Cancer Center

Team Member: Marta Luksza, PhD
Icahn School of Medicine at Mount Sinai

Team Member: Eileen M. O’Reilly, MD
Memorial Sloan Kettering Cancer Center

Team Member: Jedd Wolchok, MD, PhD
Memorial Sloan Kettering Cancer Center

Project Manager: Alice Lustig
Stand Up To Cancer
alustig@su2c.org

PURPOSE
The Computational Deconstruction of Neoantigen-TCR Degeneracy for Cancer Immunotherapy Team is investigating why a small group of pancreatic cancer patients survive for many years after diagnosis and developing tools to devise new cancer vaccines that will turn all pancreatic cancer patients into long-term survivors.

SPECIFIC AIMS

Aim 1. Identify the origin, clonality, phenotype, and longevity of neoantigen vaccine-induced T cells.

Aim 2. Isolate immunologic correlates of neoantigen vaccine response.

KEY ACCOMPLISHMENTS
Researchers carried out a clinical trial with 16 stage 2 and 3 pancreatic cancer patients who underwent surgery, FOLFIRINOX treatment, and immunization with RNA encoded vaccines that were matched to 20 different neo-antigens that arose in the genomes of the pancreatic cancer. In this trial, half of the patients responded to the vaccines, and have not seen their cancers return. This is the first demonstration of how to immunize pancreatic cancer patients with an mRNA vaccine. A follow up trial is now being planned.

CLINICAL TRIALS
Phase I Clinical Trial of Personalized Neoantigen Tumor Vaccines and Programmed Death-Ligand 1 (PD-L1) Blockade in Patients With Surgically Resected Pancreatic Cancer; NCT04161755; Recruiting

FUNDERS
SU2C CONVERGENCE™ RESEARCH TEAM CV6125

Integrating Experimental and Computational Pipelines to Develop Biomarkers of Tumor Cell Resistance to NK Cells
Grant Term: January 2018 – November 2022

KEY PERSONNEL

Team Leader: Constantine S. Mitsiades, MD, PhD
Dana-Farber Cancer Institute

Team Member: Aedin Culhane, PhD
Dana-Farber Cancer Institute

Team Member: Olga Dashevsky, PhD
Dana-Farber Cancer Institute

Team Member: Todd Golub, MD
Broad Institute of MIT and Harvard

Team Member: Ricardo de Matos Simoes, PhD
Dana-Farber Cancer Institute

Team Member: Jennifer Roth, MSc, MBA
Broad Institute of MIT and Harvard

Team Member: Michal Sheffer, PhD
Dana-Farber Cancer Institute

Team Member: Aviad Tshemiak, MSc
Broad Institute of MIT and Harvard

Project Manager: Alice Lustig
Stand Up To Cancer
alustig@su2c.org

PURPOSE

This SU2C team integrated experimental (e.g., CRISPR screens, and novel types of preclinical models in the lab and in living tissues) and computational pipelines to develop biomarkers of tumor cell resistance to NK cells in solid tumors and hematologic malignancies and validate the relevance of these biomarkers in patient-derived samples from diverse neoplasias.

SPECIFIC AIMS

Aim 1. Apply and develop next-level computational resources to optimize identification of biomarkers of tumor cell sensitivity versus resistance to NK cells.

Aim 2. Expand the spectrum of phenotypic data on NK cell responses.

Aim 3. Validate candidate markers in our in vitro and in vivo experimental platforms.

KEY ACCOMPLISHMENTS

Human NK cells are increasingly applied in various immunotherapies, including CAR-NK cells. This SU2C team employed CRISPR systems to identify which genes, when deleted or activated in tumor cells, prevent vs. enhance the antitumor activity of NK cells. They identified many previously underappreciated genes and pathways which regulate NK cell killing in solid tumors or hematologic malignancies; and applied single-cell technologies to understand how tumor cells adapt to NK cell attack. Work from this team was published in Nature Genetics (2021), Nature Cancer (2022 and 2023), and BioRxiv (2022).

CLINICAL TRIALS

N/A

FUNDERS

Microsoft

Society for Immunotherapy of Cancer
SU2C CONVERGENCE™ RESEARCH TEAM CV6128
Responders and Non-Responders to Endometrial Cancers With Mismatch Repair
Grant Term: January 2018 – December 2021

KEY PERSONNEL
Team Leader: Alessandro D. Santin, MD
Yale University

Team Member: Ludmil Alexandrov, PhD
University of California, San Diego

Team Member: Stephania Bellone, PhD
Yale University

Team Member: Akiko Iwasaki, PhD
Yale University

Project Manager: Alice Lustig
Stand Up To Cancer
alustig@su2c.org

PURPOSE
The Responders and Non-responders to Endometrial Cancers With Mismatch Repair Team is investigating why only half of all endometrial cancer patients with mismatch repair deficiencies (MMRd) respond to immunotherapy.

Researchers are utilizing patient biopsies from a clinical trial to try to predict response and side effects and potentially design better immunotherapies for endometrial cancer patients.

SPECIFIC AIMS
Aim 1. How can we predict responders from non-responders to checkpoint inhibitors?

Aim 2. Can we predict which patients will develop side effects to these therapies? How can we relate the peptide sequence of antigens to the nucleic acid sequence of T-cell receptor variable regions?

Aim 3. Can we predict peptide antigens from T-cell receptor sequences? Can we determine with some confidence the neoantigens that are expressed by tumors that are recognized by the immune system in an HLA-dependent fashion?

KEY ACCOMPLISHMENTS
The Team completed enrollment in the planned clinical trial (83% clinical benefit) and evaluated samples from 25 hypermutated, MSI-High endometrial cancer patients. Matched recurrent tumor samples from patients with secondary resistance identified multiple mutations in genes affecting antigen presentation. Analysis of T cells showed that the most-prominent clones were more skewed towards the effector CD8 population in the patients responding with CR/PR when compared to those with SD/PD. Patients with mutation-al (ie, Lynch/Lynch-like) MMRd tumors had higher
response rates and longer survival than those with epigenetic (ie, methylated) MMRd tumors. Mutation burden was higher in tumors with mutational MMRd compared with epigenetic MMRd; however, within each category of MMRd, mutation burden was not correlated with response to immunotherapy. Longitudinal single-cell RNA-seq of circulating immune cells revealed contrasting modes of antitumor immunity for mutational versus epigenetic MMRd cancers. Whereas effector CD8+ T cells correlated with regression of mutational MMRd tumors, activated CD16+ NK cells were associated with ICB-responsive epigenetic MMRd tumors. These data highlight the interplay between tumor-intrinsic and tumor-extrinsic factors that influence response to immunotherapy.

CLINICAL TRIALS
Phase II Evaluation of Pembrolizumab, a Humanized Antibody Against PD-1, in the Treatment of Persistent or Recurrent Hypermutated/Ultramutated Endometrial Cancer Identified by Next-Generation Sequencing (NGS) and Comprehensive Genomic Profiling (CGP); NCT02899793; Active, not recruiting.

FUNDERS
Microsoft
Society for Immunotherapy of Cancer
SU2C CONVERGENCE™ RESEARCH TEAM CV6127
Connecting Immune Health and Tumor Biology in Gynecologic Cancers
Grant Term: January 2018 - November 2022

KEY PERSONNEL
Team Leader: E. John Wherry, PhD
University of Pennsylvania

Co-Leader: Claire Friedman, MD
Memorial Sloan Kettering Cancer Center

Team Member: Dmitriy Zamarin, MD, PhD
Memorial Sloan Kettering Cancer Center

Team Member: Shelley Berger, PhD
University of Pennsylvania

Team Member: Erica Carpenter, MBA, PhD
University of Pennsylvania

Team Member: Travis Hollman, MD
BMS

Project Manager: Alice Lustig
Stand Up To Cancer
alustig@su2c.org

PURPOSE
The Connecting Immune Health and Tumor Biology in Gynecologic Cancers Team studies immune defects in gynecologic cancer patients with highly mutated tumors to gain insights into immune responsiveness. The scientists are working to predict therapeutic outcomes and tailor treatment regimens for this subset of gynecologic cancers.

SPECIFIC AIMS
Aim 1. Test how tumor-intrinsic factors predispose to response or resistance to checkpoint blockade.

Aim 2. Test how baseline immune function and quality affects response to checkpoint blockade.

Aim 3. Define how on-treatment blood markers may reflect the tumor-immune interaction.

KEY ACCOMPLISHMENTS
The Team collected data from two clinical trials of PD-1 blockade in patients with gynecologic cancers (see below section). Tumor and blood samples were shared with the Wherry lab in order to test the hypothesis that the T-cell intrinsic response to proliferative and genotoxic stress might contribute to the disparity between immunologic and clinical response.

First, we conducted a phase II study of nivolumab in patients with dMMR gynecologic cancers using objective response rate (ORR) and progression-free survival at 24 weeks (PFS24) as endpoints (NCT03241745). We enrolled 35 patients, 34 of whom were evaluable. The ORR was 58.8% and PFS24 rate was 64.7%, meeting the...
pre-specified endpoints. In the tumor microenvironment (TME), using multiplexed immunofluorescence, we found that presence of dysfunctional (CD8+PD-1+) or terminally dysfunctional (CD8+PD-1+TOX+) T cells and their interaction with PD-L1+ cells were independently associated with PFS24. On the genetic level, PFS24 was associated with presence of MEGF8 or SETD1B mutations but not with tumor mutational burden or type of dMMR (genetic or epigenetic). Our findings highlight several genetic and TME parameters associated with response to PD-1 blockade in dMMR cancers, generating rationale for their validation in larger cohorts.

In parallel, the Wherry lab developed a high-dimensional single cell cytometric platform to simultaneously analyze T cell differentiation with changes in DNA damage and repair (DDR) pathways. In patients with mismatch repair-deficient (dMMR) or microsatellite instable (MSI) uterine cancer treated with nivolumab, we were able to distinguish responders versus non-responders based on the upregulation of phosphorylated-ATM (pATM) in CD8 T cells. This suggests that T cell-intrinsic DDR plays a role in regulating immune responsiveness and thus clinical outcome in patients treated with immunotherapy. These findings are outlines in a paper available on BioRxiv.

CLINICAL TRIALS

Pilot Study of Nivolumab in Combination With Front-Line Neoadjuvant Dose-Dense Paclitaxel and Carboplatin Chemotherapy and Postsurgical Dose-Dense Paclitaxel and Carboplatin Chemotherapy in Patients With High-Grade Serous Ovarian, Fallopian Tube, or Primary Peritoneal Cancer; NCT03245892; Active, not recruiting.

Phase II Trial of Single-Agent Nivolumab in Patients With Microsatellite Unstable/Mismatch Repair Deficient/Hypermutated Uterine Cancer; NCT03241745; Active, not recruiting.

FUNDERS

Microsoft

Society for Immunotherapy of Cancer
SU2C CONVERGENCE™ RESEARCH TEAMS

SU2C-BREAST CANCER RESEARCH FOUNDATION
CONVERGENCE™ RESEARCH TEAM CV6004
Ecology of the Tumor Microenvironment in Breast Cancer
Grant Term: June 2015 – December 2019

KEY PERSONNEL

Team Leader: Peter P. Lee, MD
City of Hope

Team Member: Gurinder S. “Mickey” Singh Atwal, PhD
Cold Spring Harbor Laboratory

Team Member: Darrell J. Irvine, PhD
Massachusetts Institute of Technology

Team Member: Herbert Levine, PhD
Rice University

Team Member: Clare C. Yu, PhD
University of California, Irvine

Project Manager: Alice Lustig
Stand Up To Cancer
alustig@su2c.org

SPECIFIC AIMS

Aim 1. Study the breast cancer TME via deconstruction into key components and 3-D reconstruction.

Aim 2. Study the intact breast cancer TME and TDLN via quantitative, spatial tissue analysis.

Aim 3. Investigate combination therapy targeting multiple components of the TE.

KEY ACCOMPLISHMENTS

The Team used high dimensional histology, image analysis, cell cultures from primary breast tumors, next generation and single cell genomics, bioinformatics, ecology modeling, and nanotechnology to study the ecology of the TME in breast cancer and to develop therapeutic and imaging applications.

CLINICAL TRIALS
Ivermecten and Balstilimab for the Treatment of Metastatic Triple Negative Breast Cancer; NCT05318469; Active, not recruiting

FUNDERS

The goal of the Ecology of the Tumor Microenvironment in Breast Cancer Team was to study the different cell populations within/surrounding human breast tumors to understand their interactions in the tumor microenvironment (TME). The project included participation from experts in breast cancer, immunology, genomics, bioinformatics, mathematical modeling, ecology, and drug delivery to destabilize the TME as novel treatments.
SU2C CONVERGENCE™ RESEARCH TEAMS

SU2C-NATIONAL SCIENCE FOUNDATION CONVERGENCE™ RESEARCH TEAM CV6006
Rational Design of Anticancer Drug Combinations with Dynamic Multi-Dimensional Input
Grant Term: September 2015 – August 2019

KEY PERSONNEL
Team Leader: Anthony G. Letai, MD, PhD
Dana- Farber Cancer Institute

Team Member: Reka Z. Albert, PhD
Pennsylvania State University

Team Member: Raul Rabadan, PhD
Columbia University

Team Member: Maurizio Scaltriti, PhD
Memorial Sloan Kettering Cancer Center

Team Member: Nikhil Wagle, MD
Dana-Farber Cancer Institute/ Harvard Cancer Center

Project Manager: Alice Lustig
Stand Up To Cancer
alustig@su2c.org

PURPOSE
The Rational Design of Anticancer Drug Combinations with Dynamic Multi-Dimensional Input Team focused on understanding cancer mutations that can be key to developing therapeutic responses. Five biological and computation labs engaged collaboratively to identify how cancer cells distort protein-protein communications and how drug combinations can be used to restore proper function.

SPECIFIC AIMS

Aim 2. Perform systematic gain-of-function screens to refine and iterate the dynamic models.

Aim 3. Dissect the evolutionary trajectories of acquired cancer drug resistance.

KEY ACCOMPLISHMENTS
Researchers developed a test employing the tissue sections of cancers to measure the BCL-2 family of proteins that regulate the release of cytochrome from mitochondria channel VDAC. This helped to predict whether treatments of the tumor would result in apoptosis or not. A biotech company was initiated to validate and carry out the tests.

CLINICAL TRIALS
Phase I Trial of BYL719 Plus Letrozole or Exemestane for Patients With Hormone Receptor-Positive, Locally Advanced, Unresectable or Metastatic Breast Cancer; NCT01870505; Active, not recruiting

Phase II, Randomized, Double-Blind Study of Neoadjuvant Letrozole Plus GDC-0032 Versus Letrozole Plus Placebo in Postmenopausal Women With ER-Positive/HER2-Negative, Early-Stage Breast Cancer; NCT02273973; Completed

Phase I, Open-Label, Dose-Escalation Study Evaluating the Safety, Tolerability, and Pharmacokinetics of GDC-0077 as a Single Agent in Patients With Locally Advanced or Metastatic PIK3CA-Mutant Solid Tumors and in Combination With Endocrine and Targeted Therapies in Patients With Locally Advanced or Metastatic PIK3CA-Mutant Hormone Receptor-Positive Breast Cancer; NCT03006172; Recruiting

FUNDERS

Bristol Myers Squibb

U.S. National Science Foundation
SU2C CONVERGENCE™ RESEARCH TEAMS

SU2C-NATIONAL SCIENCE FOUNDATION CONVERGENCE™ RESEARCH TEAM CV6007
Genetic, Epigenetic, and Immunological Underpinnings of Cancer Evolution Through Treatment
Grant Term: September 2015 - December 2019

KEY PERSONNEL
Team Leader: Ross Levine, MD
Memorial Sloan Kettering Cancer Center

Team Member: Steven J. Altschuler, PhD
University of California, San Francisco

Team Member: Chang S. Chan, PhD
Rutgers Cancer Institute of New Jersey

Team Member: Daniel S. Fisher, PhD
Stanford University

Team Member: Aaron Hata, MD, PhD
Massachusetts General Hospital

Team Member: Harlan Robins, PhD
Fred Hutchinson Cancer Research Center

Team Member: Lecia VanDam Sequist, MD, MPH
Massachusetts General Hospital

Project Manager: Alice Lustig
Stand Up To Cancer
alustig@su2c.org

PURPOSE
The Genetic, Epigenetic, and Immunological Underpinnings of Cancer Evolution Through Treatment Team focused on Non-small cell lung cancer (NSCLC) and acute myeloid leukemia (AML) where, despite initial beneficial responses to treatment, resistance to further treatment is all too common. Mathematical modeling approaches were used to understand the evolution of drug resistance and to develop novel therapeutic strategies aimed at keeping the cancers from adapting to treatments.

SPECIFIC AIMS
Aim 1. Investigate genetic, epigenetic, and phenotypic diversity in response to cancer therapies.

Aim 2. Examine immune system dynamics in response to cancer therapies.

KEY ACCOMPLISHMENTS
Scientists have described clonal hematopoiesis and the increase in the myeloid compartment with aging in some individuals. Team members also described the evolution of mutations in clonal hematopoiesis, their fitness and selection. This described a path in the development of AML in older adults.

CLINICAL TRIALS
Phase II Study of EGF816 and Gefitinib in TKI-Naive EGFR-Mutant Non-small Cell Lung Cancer; NCT03292133; Recruiting

FUNDERS
Bristol Myers Squibb

U.S. National Science Foundation

THE SU2C SCIENTIFIC SUMMIT
CORONADO, CALIFORNIA JANUARY 26-29 2024
159
SU2C CONVERGENCE™ RESEARCH TEAMS

SU2C-NATIONAL SCIENCE FOUNDATION–LUSTGARTEN FOUNDATION CONVERGENCE™ RESEARCH TEAM CV6005
Liberating T-Cell Mediated Immunity to Pancreatic Cancer
Grant Term: September 2015 - January 2020

KEY PERSONNEL
Team Co-Leader: Peter O’Dwyer, MD
University of Pennsylvania

Team Co-Leader: Jeffrey Drebin, MD
Memorial Sloan Kettering Cancer Center

Team Co-Leader: Jedd Wolchok, MD, PhD
Memorial Sloan Kettering Cancer Center

Team Member: Curtis G. Callan, PhD
Princeton University

Team Member: Benjamin D. Greenbaum, PhD
Icahn Medical School at Mount Sinai

Team Member: Harlan Robins, PhD
Fred Hutchinson Cancer Research Center

Team Member: David T. Ting, MD
Massachusetts General Hospital/Harvard Medical School

Project Manager: Alice Lustig
Stand Up To Cancer
alustig@su2c.org

PURPOSE
This group of physicians, cancer immunologists, computational biologists, and biophysicists in the Liberating T-Cell Mediated Immunity to Pancreatic Cancer Team worked to better understand the immunologic microenvironment of pancreatic cancer, develop technologies to take advantage of cancer cell vulnerabilities, and form a multi-institutional consortium to accelerate implementation of new strategies that could change the course of this deadly disease.

SPECIFIC AIMS
Aim 1. Characterize neoadjuvant vitamin D effects on the T-cell repertoire and immunologic milieu in human pancreatic cancer.

Aim 1.1. Understand the interplay of TCR diversity and neoepitopes in PDAC.

Aim 1.2. Characterize pancreatic cancer transcriptional response to immunomodulatory signals.

Aim 2. Conduct exploratory study of neoadjuvant chemoimmunotherapy in pancreatic cancer.
Aim 2.1. Phase I trial of neoadjuvant gemcitabine/nab-paclitaxel/paricalcitol/nivolumab. (Work on this Aim is continuing as an SU2C subproject.)

Aim 2.2. Perform T-cell repertoire analysis and in vitro characterization of neoantigen reactivity.

KEY ACCOMPLISHMENTS

Convergence Team scientists have developed a CLIA certified test employing paraffin embedded tissue sections and in situ hybridization that distinguishes between pancreatic cancer cells that were either of epithelial or mesenchymal morphologies. This work has demonstrated that tumor cells undergo changes between these different epigenetic cell types and showed that many tumors have both cell types, and that FOLFIRINOX preferentially kills one cell type and albumin-bound-paclitaxel treatment kills the other cell type. This test is now employed at several different cancer centers to provide prognostic information about these tumors.

CLINICAL TRIALS

Phase Ib Pharmacodynamic Study of Neoadjuvant Paricalcitol in Resectable Pancreatic Cancer; NCT03300921; Active, not recruiting

FUNDERS

Bristol Myers Squibb

NSF

U.S. National Science Foundation

Foundation
I stand up for myself...

and all those fighting cancer.

SURVIVOR: KELLY
Participants in the clinical trials supported by SU2C Catalyst have also been supported by the Lazarex Cancer Foundation (LCF) through their IMPACT Patient Reimbursement Program, which offers reimbursement to qualifying patients for certain out-of-pocket expenses associated with participation in the clinical trial.
SU2C CATALYST® RESEARCH GRANT PROGRAM WITH SUPPORT FROM ZENTALIS PHARMACEUTICALS CT6360
Therapeutically Targeting WEE1 in HPV+ Head and Neck Cancer
Grant Term: TBD

KEY PERSONNEL
Team Leader: Bruce Clurman, MD, PhD
Fred Hutchinson Cancer Center

Co-Leader: Devraj Basu, MD, PhD
University of Pennsylvania

Principal: Cristina Rodriguez, MD
University of Washington

Project Manager: Stephanie Boegeman
Fred Hutchinson Cancer Center
sboegema@fredhutch.org

PURPOSE
HPV oncogenes render HNSCC cells highly sensitive to premature mitosis and death following WEE1 inhibition, and preliminary data using a murine model of HPV+ HNSCC shows that WEE1 inhibition also remodels the tumor microenvironment by enhancing lymphangiogenesis thereby promoting robust antitumor immunity. The SU2C Catalyst Research Team with Support from Zentalis Pharmaceuticals is working to test if blocking lymphangiogenesis can maximize the antitumor efficacy of ZN-c3, a WEE1 inhibitor. They are also assessing rational ZNc3-based immunotherapy combinations as potential therapeutic strategies and working to exploit the replication stress failure induced by WEE1 inhibition in HPV+ cells to optimize less toxic chemotherapy combination regimens using HPV+ HNSCC patient-derived xenografts.

SPECIFIC AIMS
Aim 1. Test WEE1i-induced lymphangiogenesis as a driver of antitumor immunity.
Aim 2. Test the efficacy of WEE1i-based immunotherapy combinations.
Aim 3. Test the efficacy of low-dose GEM chemotherapy combined with WEE1i.

KEY PROGRESS
To be assessed at first review.

CLINICAL TRIALS
N/A

FUNDER

zentalis

SU2C CATALYST® RESEARCH TEAMS

CLURMAN BASU

SU2C CATALYST® RESEARCH TEAMS

SU2C CATALYST® RESEARCH TEAMS
The goal of the proposed study is to translate lurbinectedin to the clinic as an EWS-FLI1 targeted agent for patients with Ewing sarcoma. In addition, the Team seeks to determine if the compound is a targeted agent for any of the more than 18-tumors characterized by EWSR1 fusion proteins. If successful, this will lead to an exciting new agent for the treatment of Ewing sarcoma. In addition, it may yield an active compound for the 18 additional tumors characterized by EWSR1 translocation.

SPECIFIC AIMS

Aim 1. Determine the safety, tolerability, and pharmacokinetic profile of lurbinectedin in patients with FET-fusion tumors.

Aim 2. Determine if lurbinectedin inhibits EWS-FLI1 and/or shows antitumor activity in Ewing’s sarcoma.

KEY PROGRESS

To be assessed at first review.

CLINICAL TRIALS

Lurbinectedin in FET-Fusion Tumors (LiFFT); NCT05918640; Recruiting

FUNDER

Jazz Pharmaceuticals
SU2C CATALYST® RESEARCH TEAM WITH SUPPORT FROM JAZZ PHARMACEUTICALS CT6334

Identification of Combination Therapeutics Using JZP-815 for the Treatment of NSCLC
Grant Term: July 2022 – June 2025

KEY PERSONNEL

Team Leader: Fred R. Hirsch, MD, PhD
Icahn School of Medicine at Mount Sinai

Co-Leader: Kwok-Kin Wong, MD, PhD
New York University, Grossman School of Medicine

Project Manager: Benjamin Hopkins, PhD
Weill Cornell Medicine
beh2020@med.cornell.edu

Principal Investigator: Jiehui Deng, PhD
New York University Grossman School of Medicine

Principal Investigator: Rajwanth Veluswamy, MD
Icahn School of Medicine at Mount Sinai

SPECIFIC AIMS

Aim 1. Take functional genomics approach to identify JZP-815-based combinations for the treatment of KRAS mutant NSCLC.

Aim 2. Evaluate therapeutic potential of JZP-815-based combination in GEMM models of KRAS mutant NSCLC.

KEY PROGRESS

Using an automated drug screening platform, the scientists have compared JZP-815 as a single agent against a panel of standard of care regimens. They have conducted combination screens with JZP-815 in a panel of genetically defined murine Kras mutant cell lines and are investigating the relationship between drug induced changes in gene expression and tumor specific drug sensitivities.

CLINICAL TRIALS

N/A

FUNDER

SU2C CATALYST® RESEARCH TEAM

PURPOSE

To identify more effective treatment options for patients with KRAS-mutant NSCLC, this research is using a functional genomics approach to identify therapeutic agents that cooperate with the pan-RAF inhibitor JZP-815 and to evaluate the therapeutic potential of these combinations in clinically relevant mouse models of KRAS-mutant NSCLC.
SU2C CATALYST® RESEARCH TEAMS

LUNG CANCER HEALTH EQUITY SU2C CATALYST® RESEARCH TEAM CT6332
Technology-Enabled Immunotherapy Monitoring in NYC Minority NSCLC Patients
Grant Term: May 2022 – April 2025

KEY PERSONNEL
Team Leader: Vamsidhar Velcheti, MD
New York University Grossman School of Medicine

Co-Leader: Rajwanth Veluswamy, MD
Icahn School of Medicine at Mount Sinai

Principal: Balazs Halmos, MD, MS
Albert Einstein College of Medicine

Principal: Brian Henick, MD
Columbia University

Project Manager: Kristen Labbe, MPH
New York University Grossman School of Medicine
Kristen.Labbe@nyulangone.org

 Advocate: Alexandra Awad, RN
New York University Grossman School of Medicine

 Advocate: Sulaiha Mastan

PURPOSE
The Team is deploying a mobile health intervention application, ApricityRx™ and technology-enabled supportive care services, for monitoring and management of immunotherapy toxicities in patients with lung cancer. The key objective of this study will be to evaluate the impact of a contextually tailored tech-enabled remote monitoring framework on the quality of oncologic care in underserved minority patients with lung cancer.

SPECIFIC AIMS
Aim 1. Evaluate the barriers to adoption and optimal utilization of technology-enabled remote monitoring and adverse event management of underserved minority patients with non-small cell lung cancer (NSCLC) on immunotherapy.

Aim 2. Determine the impact of patient-reported outcome measures collected using ApricityRx™ and CARE service on the management of NSCLC patients receiving immunotherapy in a highly diverse New York City community.

Aim 3. Utilize technology-enabled monitoring to enhance the overall quality of care and translational research in underserved minority patients with NSCLC.

KEY PROGRESS
The study has received IRB approval across all sites. Additionally, the trial is activated and open to enrollment at Columbia, and soon will be activated and open to enrollment at NYU, Mount Sinai, and Montefiore. While anticipating study activation at the remaining sites, the team has focused on updating educational informational materials for patients and research teams, established an immune related adverse event (irAE) management consortium, and expanded community outreach and awareness through established community partnerships.

CLINICAL TRIALS
A Phase IV Study of Apricity C.A.R.E. Program for Cancer Adverse Events Rapid Evaluation to Improve Treatment Outcomes of Ethnic/Racial Minority Non-small Cell Lung Cancer (NSCLC) Patients Receiving Immunotherapy; NCT05812274; Not yet recruiting

FUNDER
Bristol Myers Squibb®
SU2C CATALYST® RESEARCH TEAM GRANT PROGRAM WITH SUPPORT FROM MIRATI THERAPEUTICS CT6331

Targeting Adaptive and Acquired Resistance to Direct KRAS Inhibition
Grant Term: February 2022 – January 2025

KEY PERSONNEL
Team Leader: Ryan B. Corcoran, MD, PhD
Massachusetts General Hospital

Co-Leader: Scott Kopetz, MD, PhD
The University of Texas MD Anderson Cancer Center

Principal: Rebecca Heist, MD
Massachusetts General Hospital

Principal: David Hong, MD
The University of Texas MD Anderson Cancer Center

Principal: Pasi A. Jänne, MD, PhD
Harvard Medical School and Dana-Farber Cancer Institute

Project Manager: Stephanie McQueen
Massachusetts General Hospital
smcqueen1@partners.org

Advocate: Bonnie Addario
GO2 Foundation for Lung Cancer

Advocate: Anjee Davis
Fight CRC

Advocate: Manju George
Colontown

PURPOSE
This team is working to better understand and overcome challenges that limit effectiveness of KRAS inhibitors. The team will aim to understand why some patients do not respond to KRAS inhibitors, develop strategies to increase the number of patients who benefit from therapy, and study tumor biopsies and circulating tumor DNA to determine why some patients only respond to therapy for a short period before developing resistance. The team is also proposing a clinical trial combining a KRASG12C inhibitor with an anti-EGFR and anti-PD1 antibody in KRASG12C colorectal cancer. Finally, the team will perform single cell sequencing of patient tumor biopsies and use novel mouse models with intact immune systems to understand how direct KRAS inhibition may potentiate the tumor immune response.

SPECIFIC AIMS
Aim 1. Elucidate mechanisms of adaptive resistance to direct KRAS inhibition and understand the drug-tolerant persister state.

Aim 2. Identify mechanisms of acquired resistance to KRASG12C inhibition and perform clinical trials to overcome resistance.

KEY PROGRESS
To be assessed at first review.

CLINICAL TRIALS
N/A

FUNDER
SU2C CATALYST® RESEARCH TEAMS
SU2C CATALYST® RESEARCH TEAM WITH SUPPORT FROM GENENTECH CT6181

Atezolizumab, Androgen Receptor (AR) targeted therapy, and SBRT in Hormone Sensitive Prostate Cancer
Grant Term: September 2019 - August 2024, administered by the American Association for Cancer Research

KEY PERSONNEL
Team Leader: Sean M. McBride, MD
Memorial Sloan Kettering Cancer Center

Clinical Lead: Dana E. Rathkopf, MD
Memorial Sloan Kettering Cancer Center

Principal: Matthew Dallos, MD
Memorial Sloan Kettering Cancer Center

Principal: Anuradha Gopalan, MD
Memorial Sloan Kettering Cancer Center

Principal: Mark Stein, MD
Columbia University Medical Center

Project Manager: Kevin DeRudder
Memorial Sloan Kettering Cancer Center
deruddek@mskcc.org

Advocate: Jan Manarite
Prostate Cancer International

Advocate: Joel Nowark
Cancer ABCs

PURPOSE
The Hormone Sensitive Prostate Cancer Team is conducting a single-arm phase II study of androgen receptor targeted therapy in combination with atezolizumab and SBRT in men with newly diagnosed metastatic hormone-sensitive prostate cancer (mHSPC). The goal is to capitalize upon potential synergy between SBRT and anti-PD-L1 immunotherapy to improve outcomes for mHSPC patients who will otherwise succumb to their disease.

SPECIFIC AIMS
Aim 1. Determine if the addition of SBRT and atezolizumab to abiraterone or enzalutamide + leuprolide improves failure-free survival (FFS) at two years relative to the FFS in the STAMPEDE trial.

Aim 2. Evaluate potential immunologic biomarkers of response.

Aim 3. Evaluate whether noninvasive blood-based and imaging-based biomarkers can be used to monitor and/or predict treatment response.
KEY PROGRESS
Despite an administrative hold soon after opening to enrollment due to a safety concern, 28 of the target 44 patients were enrolled in this study. Twenty of those patients were enrolled to fill Cohort 1 and the additional eight were subjects on hormone therapy at the time of registration and enrolled to Cohort 2. The trial was ultimately closed to enrollment in July 2023 due to a safety event. At the time of the safety event, active patients were reconsented to the trial and elected to continue on treatment.

Significant progress has been made toward correlative objectives. To date, all subjects have had IMPACT (next-gen tissue sequencing) run on baseline tissue samples as well as genome sequencing on the baseline ctDNA samples using the MSK ACCESS platform. Cytokine analyses were also completed on baseline, Cycle 4 (pre-RT), and Cycle 6 (post-RT) plasma samples using the Immune core lab at MSK. Over the course of the next year, the study team plans to review clinical data as well as expand on correlative analyses.

CLINICAL TRIALS
SAABR: Single-Arm Phase II Study of Androgen Receptor (AR) Targeted Therapy + Atezolizumab + GnRH Analog and Stereotactic Body Radiotherapy (SBRT) to the Prostate in Men With Newly Diagnosed Hormone-Sensitive Metastatic Prostate Cancer; NCT04262154; Active, not recruiting

FUNDER
Genentech
A Member of the Roche Group
Combination Sacituzumab Govitecan and Atezolizumab to Prevent Recurrence in Triple Negative Breast Cancer (TNBC)
Grant Term: July 2019 - December 2022, administered by the American Association for Cancer Research

KEY PERSONNEL
Team Leader: Elizabeth A. Mittendorf, MD, PhD
Dana-Farber Cancer Institute

Clinical Lead: Angela M. DeMichele, MD
University of Pennsylvania

Principal: Vandana Abramson, MD
Vanderbilt University Medical Center

Principal: Heather L. McArthur, MD
Cedars-Sinai Medical Center

Principal: Rita Nanda, MD
University of Chicago

Principal: Ben Ho Park, MD, PhD
Vanderbilt University Medical Center

Principal: Hope S. Rugo, MD
University of California, San Francisco

Principal: Sara M. Tolaney, MD
Dana-Farber Cancer Institute

Project Manager: Michelle DeMeo
Dana-Farber Cancer Institute
Michelle_DeMeo@dfci.harvard.edu

Advocate: Caroline Abi-Khattar, JD
University of Pennsylvania

Advocate: Elizabeth S. Frank
Dana-Farber Cancer Institute

PURPOSE
The Team seeks to eradicate micrometastatic disease in patients with triple-negative breast cancer (TNBC) who have minimal residual disease, by conducting a clinical trial testing the combination of sacituzumab govitecan and atezolizumab.

SPECIFIC AIMS
Aim 1. Conduct a single-arm, phase II trial of sacituzumab govitecan in combination with atezolizumab, enrolling TNBC patients with residual disease and cfDNA following NACT.

Aim 2. Perform correlative studies to determine whether PD-L1 expression on CTCs has utility as a pharmacodynamic biomarker, and whether there is an association between molecular and immunobiological features in residual disease after NACT and response to sacituzumab govitecan plus atezolizumab

KEY PROGRESS
The Team has screened 18 patients and has enrolled one.

CLINICAL TRIALS
Single-Arm Phase II Trial of Atezolizumab With Sacituzumab Govitecan to Prevent Recurrence in Triple-Negative Breast Cancer (ASPRIA);
NCT04434040; Active, not recruiting
PURPOSE
This Team is exploring combinational immune-based therapies for the treatment of childhood hypermutant cancers. Their research builds upon promising preliminary results from the use of single-agent PD-1 inhibition in children with recurrent cancers, as documented in the clinical trial NCT02992964 and recently published by Das et al. (Das et al. Clinical Cancer Research, 2023). The study’s findings unveiled a two-year overall survival rate of 50%, a remarkable achievement especially for aggressive cancer types such as recurrent glioma, where such outcomes were previously considered unattainable. Now, the team is striving to identify new therapies that can be given in combination with PD-1 inhibition, to help treat those patients who do not respond or progress on PD-1 inhibition. Using patient derived cells and immunocompetent animal models, the team is screening promising new drug candidates for testing in combination with immunotherapy on preclinical mouse models. Results from these studies will directly feed into the development of a new clinical trial.

SPECIFIC AIMS
Aim 1. Perform a phase Ib clinical trial of combinational immune checkpoint inhibitor (ICI) therapies in childhood hypermutant cancers.

Aim 2. Determine the biological aspects and preclinical benefits of combined BMS lead compounds with ICI on replication repair deficiency (RRD) hypermutant immunocompetent mouse models.

Aim 3. Define immediately translatable tumor intrinsic molecular vulnerabilities in replication repair deficient (RRD) hypermutant cancers.
KEY PROGRESS
High-throughput drug screening performed on childhood and adult hypermutant and non-hypermutant glioma cell lines identified 23 common targets and additional unique vulnerabilities (Aim 3). Testing candidates developed by Bristol Myers Squibb for clinical use revealed that the best combination is anti-PD1 and anti-LAG3. We have now completed pre-clinical experiments on our hypermutant RRD animal models which convincingly show that the combination of anti-PD1 and anti-LAG3 result in improved response over PD1 or LAG3 inhibition alone, not only in ultra-hypermutant tumors, but also in tumors with lower mutational burden which are resistant to PD1 blockade (Aim 2). Interestingly, through analyzing the immune content in the tumor microenvironment, we found that treatment with anti-PD1 increases expression of LAG3 (a negative regulator of T cell activation), which may explain the synergy seen in combination anti-PD1 and anti-LAG3 immunotherapy. Importantly, similar results of the combination therapy were observed for ENU-induced mouse gliomas, (which mimic treatment related hypermutation) which are not responsive to anti-PD1 therapy alone. Because of these exciting results, a new combination clinical trial is currently in development with SU2C and BMS, which feeds into Aim1 of this research funding.

CLINICAL TRIALS
3CI Study: Childhood Cancer Combination Immunotherapy. Phase Ib and Expansion Study of Nivolumab Combination Immunotherapy in Children, Adolescent, and Young Adult (CAYA) Patients With Relapsed/Refractory Hypermutant Cancers; NCT04500548; Closed

FUNDER
Bristol Myers Squibb®
SU2C CATALYST® RESEARCH TEAMS

PEDIATRIC SU2C CATALYST® RESEARCH TEAM WITH SUPPORT FROM BRISTOL MYERS SQUIBB CT6147
Immunomodulation to Treat Poor-Prognosis Pediatric Brain Tumors
Grant Term: February 2019 – August 2021

KEY PERSONNEL
Team Leader: Maryam Fouladi, MD
Nationwide Children's Hospital

Co-Leader: James Olson, MD, PhD
Fred Hutchinson Cancer Research Center

Principals:
Rachid Drissi, PhD
Nationwide Children's Hospital

Annie Huang, MD, PhD
The Hospital for Sick Children

Nada Jabado, MD, PhD
McGill University Health Centre

Project Manager: Sara Lawellin
Cincinnati Children’s Hospital Medical Center
Sara.Lawellin@cchmc.org

Advocate: Keith Desserich
Cure Starts Now

PURPOSE
The objectives of the Immunomodulation to Treat Poor-Prognosis Pediatric Brain Tumors Team are to: determine the extent to which 5-aza, ribociclib, or other non-cytotoxic FDA-approved drugs enhance T-cell mediated PBT cell death; assess the efficacy of 5-aza, ribociclib in combination with nivolumab, and establish a biomarker-based responder hypothesis.

SPECIFIC AIMS
Aim 1. Determine the extent to which 5-aza, ribo, or other non-cytotoxic FDA-approved drugs enhance T-cell mediated PBT cell death in vitro.

Aim 1B. Assess the efficacy of 5-aza, ribo, or a superior candidate in vivo.

Aim 2. Establish a biomarker-based responder hypothesis.

KEY ACCOMPLISHMENTS
Through this collaborative study, the team generated and/or evaluated several important syngeneic mouse models across a spectrum of rare pediatric brain tumors. Additionally, the team has overcome poor tumor penetrance and difficulties using luciferase markers in vivo. Drug efficacy studies have demonstrated improved survival with decitabine and 4H2 in a subset of models – specifically IUE-DIPG-24-C5 and ATRT SU2C_54_i_5. Quantitative IHC and CyTOF analyses is underway to profile immune cell infiltration in tumor models.

CLINICAL TRIALS
N/A

FUNDER
SU2C CATALYST® RESEARCH TEAMS

FOULADI

OLSON

SU2C CATALYST® RESEARCH TEAM WITH SUPPORT FROM BRISTOL MYERS SQUIBB CT6147
Immunomodulation to Treat Poor-Prognosis Pediatric Brain Tumors
Grant Term: February 2019 – August 2021

KEY PERSONNEL
Team Leader: Maryam Fouladi, MD
Nationwide Children's Hospital

Co-Leader: James Olson, MD, PhD
Fred Hutchinson Cancer Research Center

Principals:
Rachid Drissi, PhD
Nationwide Children's Hospital

Annie Huang, MD, PhD
The Hospital for Sick Children

Nada Jabado, MD, PhD
McGill University Health Centre

Project Manager: Sara Lawellin
Cincinnati Children’s Hospital Medical Center
Sara.Lawellin@cchmc.org

Advocate: Keith Desserich
Cure Starts Now

PURPOSE
The objectives of the Immunomodulation to Treat Poor-Prognosis Pediatric Brain Tumors Team are to: determine the extent to which 5-aza, ribociclib, or other non-cytotoxic FDA-approved drugs enhance T-cell mediated PBT cell death; assess the efficacy of 5-aza, ribociclib in combination with nivolumab, and establish a biomarker-based responder hypothesis.

SPECIFIC AIMS
Aim 1. Determine the extent to which 5-aza, ribo, or other non-cytotoxic FDA-approved drugs enhance T-cell mediated PBT cell death in vitro.

Aim 1B. Assess the efficacy of 5-aza, ribo, or a superior candidate in vivo.

Aim 2. Establish a biomarker-based responder hypothesis.

KEY ACCOMPLISHMENTS
Through this collaborative study, the team generated and/or evaluated several important syngeneic mouse models across a spectrum of rare pediatric brain tumors. Additionally, the team has overcome poor tumor penetrance and difficulties using luciferase markers in vivo. Drug efficacy studies have demonstrated improved survival with decitabine and 4H2 in a subset of models – specifically IUE-DIPG-24-C5 and ATRT SU2C_54_i_5. Quantitative IHC and CyTOF analyses is underway to profile immune cell infiltration in tumor models.

CLINICAL TRIALS
N/A

FUNDER
SU2C CATALYST® RESEARCH TEAMS
SU2C CATALYST® RESEARCH TEAMS

PEDiatric SU2C CATALYST® RESEARCH TEAM WITH SUPPORT FROM BRISTOL MYERS SQUIBB CT6143

Targeting Epigenetic Dysregulation in Pediatric Cancer
Grant Term: January 2019 - June 2024

KEY PERSONNEL

Team Leader: Kimberly Stegmaier, MD
Dana-Farber Cancer Institute

Co-Leader and Clinical Lead: Steven DuBois, MD
Dana-Farber Cancer Institute

Principal: Peter Dirks, MD, PhD
The Hospital for Sick Children

Principal: David Kirsch, MD, PhD
Princess Margaret Cancer Centre

Principal: Elizabeth Lawlor, MD, PhD
Seattle Children’s Research Institute

Project Manager: Jennifer Perry, PhD
Dana-Farber Cancer Institute
Jennifer_perry@dfci.harvard.edu

Advocate: Kathleen Malcolmson

PURPOSE

The Targeting Epigenetic Dysregulation in Pediatric Cancer Team was assembled to understand the potential role of BET bromodomain inhibition in pediatric cancer and to identify new targeted agents for a variety of pediatric cancers. If successful, these studies should have a major impact on cancer treatment and outcomes for patients, improving both survival and long-term outcomes.

SPECIFIC AIMS

Aim 1. Conduct a phase I clinical trial testing the BMS BETi BMS-986158 in children with cancer.

Aim 2. Test rational drug combinations with BMS-986158 in preclinical models of pediatric cancer.

Aim 3. Identify novel drug combinations with BMS-986158 through genome-scale CRISPR-Cas9 synergy screens.

KEY PROGRESS

The first-in-child clinical trial of the BET bromodomain inhibitor BMS-986158 is completing an expansion cohort at six sites in the United States and Canada. The trial is now also evaluating a new CNS-penetrant BET inhibitor known as CC-90010 specifically for children with brain tumors or brain metastasis. The Team is also assessing the efficacy of combinations with BET inhibition on pediatric cancer cell line and mouse models of soft tissue sarcoma, Ewing sarcoma, neuroblastoma, and medulloblastoma. Among the successes to date, researchers have demonstrated in vitro synergy with FAK inhibitors in Ewing sarcoma, CBP/P300 inhibitors in neuroblastoma, and HDAC inhibition in soft tissue sarcoma, Ewing sarcoma, and neuroblastoma.

CLINICAL TRIALS

Study of the Bromodomain (BRD) and Extra-Terminal Domain (BET) Inhibitors BMS-986158 and BMS-986378 in Pediatric Cancer; NCT03936465; Recruiting

FUNDER

Bristol Myers Squibb®
SU2C CATALYST® RESEARCH TEAM WITH SUPPORT FROM GENENTECH CT6054

Neoadjuvant Therapy for Patients With High-Risk Stage III Melanoma
Grant Term: June 2018 – November 2024, administered by the American Association for Cancer Research

KEY PERSONNEL
Team Leader: Matthew S. Block, MD, PhD
Mayo Clinic

Clinical Lead: Tina J. Hieken, MD
Mayo Clinic

Principal: Jun Chen, PhD
Mayo Clinic

Principal: Evidio Domingo-Musibay, MD
University of Minnesota

Principal: Roxana S. Dronca, MD
Mayo Clinic

Principal: Thomas J. Flotte, MD
Mayo Clinic

Principal: Rachel L. Maus, PhD
Mayo Clinic

Principal: Vera J. Suman, PhD
Mayo Clinic

Project Manager: Jill Schimke
Mayo Clinic
schimke.jill@mayo.edu

Advocate: Alisha Birgin

Advocate: Skylar Starling
Mayo Clinic

Advocate: Emalie Marion
University of Minnesota

PURPOSE
The purpose of the Neoadjuvant Therapy for Patients With High-Risk Stage III Melanoma Team’s clinical trial is to study how well drug therapies given prior to surgery work in treating participants with high-risk stage III melanoma. In the first two treatment arms of the study, patients received either the combination of cobimetinib and atezolizumab or the combination of vemurafenib, cobimetinib, and atezolizumab; followed by surgery; followed by atezolizumab treatment. The team has added a third treatment arm to test the combination of atezolizumab and tiragolumab.
SPECIFIC AIMS

Aim 1. Test the safety and efficacy of the neoadjuvant combination of vemurafenib/cobimetinib/atezolizumab followed by surgery followed by adjuvant atezolizumab in patients with BRAFm high-risk stage III melanoma.

Aim 2. Test the safety and efficacy of neoadjuvant combination of cobimetinib/atezolizumab followed by surgery followed by adjuvant atezolizumab in patients with BRAFwt high-risk stage III melanoma.

Aim 3. Test the safety and efficacy of the neoadjuvant combination of tiragolumab/atezolizumab followed by surgery and adjuvant atezolizumab in patients with high-risk stage III melanoma.

KEY PROGRESS

Accrual is complete for Arms A and B. A promising rate (54%) of pCR/ncCR has been observed, with 75% showing <50% tumor viability at operation post-neoadjuvant treatment. Accrual to Arm C approaches 60% of target accrual.

CLINICAL TRIALS

Neoadjuvant Therapy for Patients With High-Risk Stage III Melanoma: A Pilot Clinical Trial; NCT03554083, Recruiting

FUNDER

[Genentech](https://www.genentech.com)
A Member of the Roche Group
SU2C CATALYST® RESEARCH TEAM WITH SUPPORT FROM GENENTECH CT6053

Immunotherapy Combination Strategies in ER-Positive Metastatic Breast Cancer
Grant Term: May 2018 – December 2019, administered by the American Association for Cancer Research

KEY PERSONNEL

Team Leader: Ingrid A. Mayer, MD
Vanderbilt University

Co-Leader: Justin M. Balko, PharmD, PhD
Vanderbilt University

Principal: Rita Nanda, MD
University of Chicago

Principal: Hope S. Rugo, MD
University of California, San Francisco

Principal: Melinda E. Sanders, MD
Vanderbilt University

Principal: Yu Shyr, PhD
Vanderbilt University

Project Manager: Catherine Weir
Vanderbilt University

Advocate: Lynn Cargen

Advocate: Linda J. Horton

PURPOSE
The Team proposed new treatment combination strategies, within a clinical trial for ER+ BC, that sought to increase the presence of specific immune system cells (T-cells) around the tumor and increase the presence of immune proteins (MHC and PD-L1) in the surface of the cancer cell, which would allow T-cells to recognize the tumor as “foreign.” This should therefore render immunotherapies much more effective against ER+ BC.

SPECIFIC AIMS

Aim 1. Perform preclinical assays to determine the functional effect of MDM2 inhibition on T cells.

Aim 2. Perform preclinical studies to model the molecular and therapeutic effects of MDM2 inhibition with anti-PD-L1 therapy in breast cancer.

Aim 3. Perform a multicenter, open-label, two-arm phase Ib/II clinical trial that will evaluate the antitumor effect of atezolizumab (ATEZ, an anti-PD-L1 mAb) in combination with cobimetinib (COBI, a MEK inhibitor) in patients with TP53-mutated ER+ mBC (metastatic breast cancer), or idasanutlin (IDASA, an MDM2 antagonist) in patients with TP53-wt ER+ mBC.

Aim 4. Determine whether IDASA or COBI enhances T-cell infiltration and activation in ER+ breast tumors, and whether this effect is associated with patient-specific clinical response to ATEZ. In addition, molecular correlates both intra-tumoral and in the peripheral blood of patients will be tested as correlative analyses.
Aim 5. Perform active monitoring of T-cell populations in PBMCs from IDASA-treated patients. To ensure that treatment for two weeks with IDASA does not eliminate peripheral effector T-cell populations, we will perform CyTOF to identify expanded or eliminated T-cell populations in the peripheral blood in the phase I portion of the IDASA arm.

KEY ACCOMPLISHMENTS
Twelve patients were enrolled in the trial (5 in the atezolizumab + cobimetinib arm, and 7 in the atezolizumab + idasanutlin arm). Tumor biopsies and blood were collected before treatment initiation and 2 weeks after treatment initiation to perform molecular analysis for better understanding on why these combinations of drugs will be effective in ER+ BC. No unexpected side effects were seen with either combination. The trial was closed due to low accrual.

CLINICAL TRIALS
BRE 17107: Phase Ib/II Trial of Atezolizumab (an Anti-PD-L1 Monoclonal Antibody) With Cobimetinib (a MEK1/2 Inhibitor) or Idasanutlin (an MDM2 Antagonist) in Metastatic ER+ Breast Cancer; NCT03566485; Terminated

FUNDER
Genentech
A Member of the Roche Group
SU2C CATALYST® RESEARCH TEAM WITH SUPPORT FROM GENENTECH CT6052

Overcoming Urothelial Cancer Atezolizumab Resistance by Epigenetic Therapy
Grant Term: November 2017 - April 2021, administered by the American Association for Cancer Research

KEY PERSONNEL

Team Leader: Peter A. Jones, PhD, DSc (hon)
Van Andel Institute

Co-Leader: Elizabeth R. Plimack, MD
Fox Chase Cancer Center

Principal: Stephen B. Baylin, MD
Johns Hopkins University

Principal: Noah M. Hahn, MD
Johns Hopkins University

Principal: Jean-Pierre J. Issa, MD
Coriell Institute for Medical Research

Principal: David I. Quinn, MD
USC Norris Comprehensive Cancer Center

Project Manager: Ryan Burgos
Van Andel Institute
Ryan.Burgos@vai.org

Project Manager: Revathi Penumatsa
Van Andel Institute
Revathi.Penumatsa@vai.org

Advocate: Rick Bangs

PURPOSE
Extensive preliminary data from the Team has shown that epigenetic modifiers can dramatically affect the immune microenvironment and promote an inflamed phenotype in tumors. A large number of urothelial cancer (UC) patients are or become resistant to immune checkpoint antibodies. The Team explored the therapeutic potential of combining the epigenetic agent called guadecitabine with anti-PDL1 antibody atezolizumab.

SPECIFIC AIMS

Aim 1. Dose selection: Identify a safe, biologically active dose of concurrent guadecitabine and atezolizumab for patients with advanced UC in the safety run-in portion of our phase II study.

Aim 2. Dose expansion: Determine the efficacy (ORR) of the combination in patients with advanced UC who progressed after immune checkpoint therapy in a single-arm phase II expansion cohort.

Aim 3. Correlative science: Use paired pre- and post-treatment biopsies and peripheral blood to explore genomes, genome-wide expression, pathway alterations, and epigenomes in tumor and immune cells.
KEY ACCOMPLISHMENTS
The Team identified a safe, biologically active dose for concurrent guadecitabine and atezolizumab for patients with advanced urothelial cancer. Although the trial was closed for futility, a small subset of patients experienced stable disease with prolonged survival of greater than 17 months. Correlative analysis involving tumor transcriptomics, whole exome sequencing, DNA methylome, immunohistochemistry, and flow cytometry revealed that patient survival associated with immune activation of circulating immune cells and pre-existing levels of CD8 T cells within the tumor. These results suggest that further studies to target the reprogramming of T cells with alternative methodologies may be of benefit in this disease setting.

CLINICAL TRIALS
GU-114: Overcoming Checkpoint Inhibitor Resistance With Epigenetic Therapy in Urothelial Cancer; NCT03179943; Completed

FUNDER
Genentech
A Member of the Roche Group
SU2C CATALYST® RESEARCH TEAM WITH SUPPORT FROM BRISTOL MYERS SQUIBB CT6048

Tumor Infiltrating Lymphocyte Adoptive T-Cell Therapy for Non-small Cell Lung Cancer (NSCLC)

Grant Term: June 2017 – May 2020, administered by the American Association for Cancer Research

KEY PERSONNEL
Team Co-Leader: Eric B. Haura, MD
H. Lee Moffitt Cancer Center & Research Institute

Team Co-Leader: Scott J. Antonia, MD, PhD
Duke University

Clinical Lead: Benjamin C. Creelan, MD
H. Lee Moffitt Cancer Center & Research Institute

Investigator: Frederic J. Kaye, MD
University of Florida

Investigator: John M. Koomen, PhD
H. Lee Moffitt Cancer Center & Research Institute

Project Manager: Carol Ulge
H. Lee Moffitt Cancer Center & Research Institute
Carol.Ulge@moffitt.org

Advocate: Rosalynne I. Miller
Advocate: Joan Tashbar

PURPOSE
The Tumor Infiltrating Lymphocyte Adoptive T-Cell Therapy Team’s goals were to conduct a clinical trial combining (TIL) therapy with anti-PD1 therapy and to use advanced proteogenomic technologies to characterize the TILs obtained from patients who have clinical response. These efforts can contribute to the optimization of TIL therapy for lung cancer.

SPECIFIC AIMS
Aim 1. Conduct a trial of TIL ACT and α-PD-1 in advanced-stage NSCLC patients.
Aim 2. Characterize tumor and TIL features associated with response using proteogenomics.

KEY ACCOMPLISHMENTS
The Team’s work demonstrated that: 1) TIL therapy was logistically feasible and safe in stage 4 lung cancer patients; 2) TIL could provide meaningful and durable responses in stage 4 lung cancer patients; 3) infused TILs therapy could target neoantigens in the tumors of patients with non-small cell lung cancer (NSCLC) and could persist over time; and 4) antigen loss may be a potential cause of acquired resistance.

CLINICAL TRIALS
A Phase I Clinical Trial Combining Nivolumab and Tumor Infiltrating Lymphocytes (TIL) for Patients With Advanced Non-small Cell Lung Cancer; NCT03215810; Completed

FUNDER
"Bristol Myers Squibb"
SU2C CATALYST® RESEARCH TEAM WITH SUPPORT FROM BRISTOL MYERS SQUIBB CT6049

Immunotherapy to Prevent Progression in Multiple Myeloma
Grant Term: May 2017 – October 2021, administered by the American Association for Cancer Research

KEY PERSONNEL
Team Leader and Clinical Lead: Irene M. Ghobrial, MD
Dana-Farber Cancer Institute

Principal: Viktor A. Adalsteinsson, PhD
Broad Institute

Principal: Mark W. Bustoros, MD
Weill Cornell Medical College

Principal: Marzia Capelletti, PhD
Dana-Farber Cancer Institute

Principal: Jihye Park, PhD
Dana-Farber Cancer Institute

Principal: Romanos Sklavenitis Pistofidis, MD
Dana-Farber Cancer Institute

Principal: Yujia Shen, PhD
Dana-Farber Cancer Institute

Principal: Oksana Zavidij, PhD
Dana-Farber Cancer Institute

Project Manager: Alexandra Savell
Dana-Farber Cancer Institute
asavell@partners.org

Advocate: Jenny Ahlstrom
Myeloma Crowd

PURPOSE
This Team’s research was based on the idea that treating a precursor state of multiple myeloma called smoldering multiple myeloma (SMM) with immunotherapy can activate the immune system and trigger a response to the tumor to delay or prevent progression to myeloma.

SPECIFIC AIMS
Aim 1. Define the immune-oncogenomic landscape of smoldering multiple myeloma (SMM) in response to immunotherapy.

Aim 2. Characterize somatic aberrations present in cell-free DNA (cfDNA) and circulating tumor cells (CTCs) as biomarkers of response/resistance in SMM enrolled in the trial.

Aim 3. Define markers of the permissive bone marrow microenvironment that characterize risks of progression in SMM patients enrolled in the trial.
KEY ACCOMPLISHMENTS
The Team completed accrual on their phase II trial. They have found that early treatment with elotuzumab, lenalidomide, and dexamethasone is safe and effective, and in patients. They showed that the similarity of a patient’s immune cell composition to that of healthy donors may have prognostic relevance at diagnosis and after treatment. They also uncovered similarities between immune alterations observed in the bone marrow and blood, suggesting that blood-based immune profiling may have diagnostic and prognostic utility.

CLINICAL TRIALS
Phase II Trial of Combination of Elotuzumab, Lenalidomide, and Dexamethasone in High-Risk Smoldering Multiple Myeloma; NCT02279394; Completed

FUNDER
Bristol Myers Squibb®
SU2C CATALYST® RESEARCH TEAM WITH SUPPORT FROM MERCK CT6032

Pembrolizumab and Radiation Therapy to Improve Outcome in High-Risk Sarcoma

Grant Term: May 2017 - February 2024, administered by the American Association for Cancer Research

KEY PERSONNEL

Team Leader and Clinical Lead (May 2017 - April 2023): David G. Kirsch, MD, PhD
Duke University Medical School

Team Leader and Clinical Lead (May 2023 - February 2024): Kent J. Weinhold, PhD
Duke University Medical School

Principal: Kent J. Weinhold, PhD
Duke University Medical Center

Principal: Steven Young
Sarcoma Alliance for Research Through Collaboration

Early Career Investigator: Everett Moding,
MD, PhD
Stanford University

Early Career Investigator: Yvonne Mowery,
MD, PhD
Duke Cancer Institute

Project Manager: Erin Kozlowski
Sarcoma Alliance for Research Through Collaboration
ekozlowski@sarctrials.org

Project Manager: Lindsay Overman
Sarcoma Alliance for Research Through Collaboration
leoverman@sarctrials.org

Advocate: Corrie A. Painter, PhD
Broad Institute

PURPOSE

The High-Risk Sarcoma Team is conducting a clinical trial to test the safety and efficacy of pembrolizumab combined with preoperative radiotherapy to reduce the development of metastatic disease in sarcoma patients.
SPECIFIC AIMS

Aim 1. Test the safety and efficacy of pembrolizumab combined with preoperative radiotherapy to reduce the development of metastatic disease in sarcoma patients.

Aim 2. Characterize immune response to radiotherapy with or without pembrolizumab and identify predictors of pembrolizumab response in patients with soft-tissue sarcoma.

KEY PROGRESS
The clinical trial is enrolling 126 patients at eleven US sites and five international sites (three in Australia, one in Milan, and one in Montreal). Using a method called CAPP-Seq, the Team has observed in an initial cohort of 45 patients, approximately 40% have detectable circulating tumor DNA three months after surgery. This data set is the first of its kind in a sarcoma study and may reveal opportunities for clinical follow-up and stratification-selection for adjuvant therapies.

CLINICAL TRIALS
SU2C-SARC032: Phase II Randomized Controlled Trial of Neoadjuvant Pembrolizumab With Radiotherapy and Adjuvant Pembrolizumab in Patients With High-Risk, Localized Soft-Tissue Sarcoma of the Extremity; NCT03092323; Recruiting

FUNDER
MERCK
SU2C CATALYST® RESEARCH TEAM WITH SUPPORT FROM BRISTOL MYERS SQUIBB CT6050

Reversing Primary Anti-PD-1 Resistance with Ipilimumab and Nivolumab
Grant Term: May 2017 - October 2022, administered by the American Association for Cancer Research

KEY PERSONNEL

Team Leader: Antoni Ribas, MD, PhD
University of California, Los Angeles

Clinical Lead: Ari M. Vanderwalde, MD
West Cancer Center and Research Institute

Principal: Kenneth F. Grossmann, MD, PhD
Huntsman Cancer Institute, University of Utah

Principal: Siwen Hu-Lieskovan, MD, PhD
Huntsman Cancer Institute, University of Utah

Principal: Jeffrey A. Sosman, MD
Northwestern University

Project Manager: Jia M. Chen, PhD
University of California, Los Angeles
JiaChen@mednet.ucla.edu

Advocate: Samantha Guild
AIM at Melanoma Foundation

PURPOSE
The Team set out to test the hypothesis that adding ipilimumab to continued nivolumab will reverse primary resistance to anti-PD-1/L1 blockade therapy in patients with metastatic melanoma. They tested this hypothesis within a phase II trial at Southwest Oncology Group (SWOG), conducting multiple biopsy analyses to provide mechanistic understanding of the effects of ipilimumab added to nivolumab.

SPECIFIC AIMS

Aim 1. Conduct a phase II study of ipilimumab and nivolumab in patients with metastatic melanoma progressing on prior anti-PD-1 therapy.

Aim 2. Investigate cellular and genomic changes in biopsies when adding ipilimumab to continued PD-1 inhibition.

KEY ACCOMPLISHMENTS
The clinical trial met its accrual target of 94 patients (enrolled across 19 states). Progression Free Survival (PFS) was significantly improved with the combination treatment of nivolumab + ipilimumab compared to ipilimumab alone. Although the number of high-grade adverse events was higher with the nivolumab + ipilimumab combination, most high-grade events were in line with the known safety profile. Overall, the data supports the combination of nivolumab + ipilimumab as an appropriate next-line treatment for patients with advanced melanoma who do not respond to anti-PD-1 alone.

CLINICAL TRIALS

Phase II Randomized Study of Nivolumab (NSC-748726) With Ipilimumab (NSC-732442) or Ipilimumab Alone in Advanced Melanoma Patients Refractory to an Anti-PD1 or Anti-PD-L1 Agent; NCT03033576; Active, not recruiting

FUNDER

Bristol Myers Squibb
SU2C CATALYST® RESEARCH TEAM WITH SUPPORT FROM MERCK CT6031
Targeting VDR to Make Pancreatic Cancer Competent for Immunotherapy
Grant Term: May 2017 – June 2020, administered by the American Association for Cancer Research

KEY PERSONNEL
Team Leader and Clinical Lead: Daniel D. Von Hoff, MD
Translational Genomics Research Institute

Principal: Haiyong Han, PhD
Translational Genomics Research Institute

Principal: Anup Kasi, MD
University of Kansas Medical Center

Principal: Ronald L. Korn, MD, PhD
Imaging Endpoints, LLC

Principal: Winnie Liang, PhD
Translational Genomics Research Institute

Principal: Andrew M. Lowy, MD
University of California, San Diego

Principal: Hitendra P. Patel, MBBS
UCSD Moores Cancer Center

Principal: Paul S. Ritch, MD
Medical College of Wisconsin

Project Manager: Jatan Clark
Translational Genomics Research Institute
jclark@tgen.org

Advocate: Roger E. Magowitz
Seena Magowitz Foundation

Advocate: Howard E. Young
General Wholesale Beer Company
PURPOSE
The overall goal of the Targeting the Vitamin D receptor (VDR) to Make Pancreatic Cancer Competent for Immunotherapy Team was to see if targeting VDR would unlock the potential of immunotherapies to keep patients in remission after their chemotherapy.

SPECIFIC AIMS
Aim 1. Determine the synergy between the VDR agonist paricalcitol and the PD-1 inhibitor pembrolizumab in effecting an antitumor immune response in clinical trials.

Aim 2. Define the impact of paricalcitol and pembrolizumab combination therapy on the mutational landscapes and transcriptional programs of pancreatic tumors.

Aim 3. Identify cellular and molecular VDR targets in the immune microenvironment that synergize with PD-1 blockade.

KEY ACCOMPLISHMENTS
By conducting a double-blind placebo-controlled clinical trial, the Team demonstrated that maintenance trials can be conducted in stage IV pancreatic cancer patients who have received induction chemotherapy. However, they did not observe an improvement in percentage of patients who were progression-free at 6 months, in patients who were treated with a combination of paricalcitol and pembrolizumab versus those who were treated with pembrolizumab alone.

CLINICAL TRIALS
SU2C Catalyst® Randomized Phase II Trial of the PD1 Inhibitor Pembrolizumab With or Without Vitamin D Receptor Agonist Paricalcitol in Patients With Stage IV Pancreatic Cancer Who Have Been Placed in Best Possible Response; NCT03331562; Completed

FUNDER
MERCK
SU2C CATALYST® RESEARCH TEAM WITH SUPPORT FROM MERCK CT6030

Combined Epigenetic Therapy and Pembrolizumab for Advanced Non-small Cell Lung Cancer (NSCLC)

Grant Term: April 2017 – June 2022, administered by the American Association for Cancer Research

KEY PERSONNEL
Team Leader: Stephen B. Baylin, MD
Johns Hopkins University

Co-Leader: Kathryn C. Arbour, MD
Memorial Sloan Kettering Cancer Center

Principal: Hossein Borghaei, DO
Fox Chase Cancer Center

Principal: Peter A. Jones, PhD, DSc (hon)
Van Andel Institute

Principal: Kristen A. Marrone, MD
Johns Hopkins University

Principal: Jarushka Naidoo, MBBCCh
Johns Hopkins University

Principal: Charles M. Rudin, MD, PhD
Memorial Sloan Kettering Cancer Center

Principal: Hui Shen, PhD
Van Andel Institute

Principal: E. John Wherry, PhD
University of Pennsylvania

Project Manager: Penny Berger
Van Andel Institute
Penny.Berger@vai.org

Project Manager: Ryan Burgos
Van Andel Institute
Ryan.Burgos@vai.org

Project Manager: Kerri Muenkel Calderone
Memorial Sloan Kettering Cancer Center
muenkelk@mskcc.org

Project Manager: Revathi Penumatsa
Van Andel Institute
Revathi.Penumatsa@vai.org

Advocate: Beth Flory
Van Andel Institute

PURPOSE
The goal of the Combined Epigenetic Therapy and Pembrolizumab Team was to conduct a Phase 1b clinical trial to examine the synergy that can be achieved in NSCLC patients by combining epigenetic (mocetinostat and guadecitabine) and immune (pembrolizumab) therapies.

SPECIFIC AIMS
Aim 1. Dose selection: Identify a safe, biologically active dose of concurrent combination pembrolizumab, guadecitabine, and mocetinostat for patients with advanced NSCLC in a Phase I study.
Aim 2. Dose expansion: Determine the efficacy of this triplet combination in patients with advanced NSCLC as part of a Phase Ib dose expansion, in the context of tumor PD-L1 expression.

Aim 3. Use paired pre-and post-treatment biopsies and serial peripheral blood to explore (in collaboration with Merck) the attraction of immune cells to the tumor microenvironment and genome-wide changes in expression, pathway alterations, and epigenome in tumor and host immune cells.

KEY ACCOMPLISHMENTS
The Team identified that patients can be safely treated with 200mg pembrolizumab, 70mg mocetinostat (with options of dose reduction to 45mg if patients did not tolerate), and 24mg/m² guadecitabine. Out of 23 patients, two experienced partial responses and one experienced a complete response. The patient who experienced a complete response has now remained on trial without progression for 25+ months. Three patients with stable disease are currently in follow up 25+ months after treatment initiation. The Team is finalizing genome-wide data analysis, in collaboration with Merck, which includes methylation, flow cytometry, whole exome sequencing, spatial transcriptomics (Nanostring DSP), and RNA-sequencing. Their overall present goal is to finalize a molecular signature for the best outcome in patients, allowing for a personalized, precision medicine approach for these individuals.

CLINICAL TRIALS
Phase I/Ib Study of Combined Pembrolizumab Plus Guadecitabine and Mocetinostat for Patients With Advanced NSCLC (dose selection); NCT03220477; Active, not recruiting

FUNDER

MERCK
SU2C CATALYST® RESEARCH TEAM WITH SUPPORT FROM BRISTOL MYERS SQUIBB CT6051

Combined Approaches by Immune Checkpoint Inhibition for Hypermutant Cancers
Grant Term: April 2017 – March 2020, administered by the American Association for Cancer Research

KEY PERSONNEL

Team Leader: Uri Y. Tabori, MD
The Hospital for Sick Children

Investigator: John M. Maris, MD
Children’s Hospital of Philadelphia

Principal: Eric Bouffet, MD
The Hospital for Sick Children

Principal: Michael J. Fisher, MD
Children’s Hospital of Philadelphia

Project Manager: Melissa Edwards, PhD
The Hospital for Sick Children
melissa.edwards@sickkids.ca

Advocate: Denise Bebenek
Meagan’s HUG: Creating a Circle of Hope

SPECIFIC AIMS

Aim 1. Determine the prevalence and type of hypermutant human cancers.

Aim 2. Test three types of combinational ICI therapies using hypermutant cancer mouse models.

Aim 3. Perform pilot case studies of ICI combinational therapies on recurrent hypermutant human cancers.

KEY ACCOMPLISHMENTS

The Team characterized the prevalence of hypermutation in 80,000 adult and pediatric cancers and identified characteristics that can help detect replication repair deficiency in normal cells and predict response to immunotherapy. These findings can improve the diagnosis and treatment of individuals with hypermutant cancers. The Team also developed the first animal models for replication repair deficiency and completed a registry study where they treated patients with 46 different tumor types with immunotherapy as single agents or in combination.

CLINICAL TRIALS

Pilot Study of Nivolumab in Pediatric Patients With Hypermutant Cancers; NCT02992964; Active, not recruiting

FUNDER

SU2C CATALYST® RESEARCH TEAMS

PURPOSE

The Team tested their hypotheses that: a) childhood cancer patients with a hypermutant tumor phenotype can be identified, and b) tumors in these patients are highly sensitive to immune checkpoint inhibition with rationally selected combination therapy.
SU2C CATALYST® RESEARCH TEAM WITH SUPPORT FROM MERCK CT5978
DNA Repair Therapies for Ovarian Cancer
Grant Term: July 2016 - December 2020, administered by the American Association for Cancer Research

KEY PERSONNEL
Team Leader: Alan D. D’Andrea, MD
Dana-Farber Cancer Institute

Co-Leader: Elizabeth M. Swisher, MD
University of Washington

Principal: Panagiotis (Panos) A. Konstantinopoulos, MD, PhD
Dana-Farber Cancer Institute

Project Manager: Donald R. Watson
Dana-Farber Cancer Institute
donald_watson@dfci.harvard.edu

Advocate: Jamie Crase
University of Washington

Advocate: Sue Friedman
FORCÉ: Facing Our Risk of Cancer Empowered

Advocate: Kathleen Gavin
Minnesota Ovarian Cancer Alliance

Advocate: Deborah Polinsky (deceased)
FORCÉ: Facing Our Risk of Cancer Empowered

SPECIFIC AIMS
Aim 1. Collect and distribute tumor samples and blood samples from TNBC (triple-negative breast cancer) and HGSOC (high-grade serous ovarian cancer) patients enrolled in this joint Tesaro/Merck/SU2C clinical trial.

Aim 2. Complete the indicated biomarker studies, from multiple industry-sponsored and academic laboratories, and analyze the collected data.

KEY ACCOMPLISHMENTS
Three important achievements by the team are: i) demonstration that a combination of PARP inhibitor plus anti-PD1 antibody can result in an improved overall response rate, compared to monotherapy with either agent, for patients with recurrent, heavily treated ovarian cancer, ii) identification of predictive biomarkers which identify the patients with an improved response, and iii) use of CyCIF to identify the tumor cell and immune cell architecture which is most likely, or least likely, to respond. The team continued working towards additional funding and secured a SPORE grant in ovarian cancer.

CLINICAL TRIALS
Phase I/II Clinical Study of Niraparib in Combination With Pembrolizumab (MK-3475) in Patients With Advanced or Metastatic Triple-Negative Breast Cancer and in Patients With Recurrent Ovarian Cancer; NCT02657889; Completed

FUNDER

PurPOSE
The DNA Repair Therapies for Ovarian Cancer Team was assembled to conduct correlative studies related to the TOPACIO clinical trial with a combination of the PARP inhibitor, niraparib plus the anti-PD1 antibody, pembrolizumab, for ovarian cancer patients with recurrent disease.
SU2C INNOVATIVE RESEARCH GRANTS

CLASS OF 2017
The 2017 class is specifically focused on immuno-oncology, supported by a grant from Bristol Myers Squibb.

HARNESSING Dipeptidyl Peptidase Inhibition for Cancer Immunotherapy
Daniel A. Bachovchin, PhD, Memorial Sloan Kettering Cancer Center

Rescuing T-Cell Function for Immunotherapy of Pediatric Malignancies
David M. Barrett, MD, PhD, Children’s Hospital of Philadelphia

Targeting the Pro-Metastatic Niche in the Liver for Cancer Immunotherapy
Gregory L. Beatty, MD, PhD, University of Pennsylvania

T-Cell Immunotherapy for Core Binding Factor Acute Myeloid Leukemia
Marie E. Bleakley, MD, PhD, Fred Hutchinson Cancer Research Center

Imaging CAR T Cells with a Dual-Function PET Reporter Gene
Michael D. Farwell, MD, University of Pennsylvania

Identifying and Targeting Mechanisms of Resistance to Immunotherapy
Rizwan Haq, MD, PhD, Dana-Farber Cancer Institute

Reworking Negative Receptor Signals for Improved Anti-Glioma T-Cell Therapy
Meenakshi G. Hegde, MD, Baylor College of Medicine

Potentiating Novel Engineered Cellular Therapies for Solid Tumors
Marcela V. Maus, MD, PhD, Massachusetts General Hospital

Delineating the Role of the Microbiome in Modulating Tumor and Host Immunity
Jennifer A. Wargo, MD, The University of Texas MD Anderson Cancer Center

Reprogramming Tumor Immunogenicity with Sting-Activating Nanoparticles
John T. Wilson, PhD, Vanderbilt University

CLASS OF 2016
Targeting Cellular Plasticity in Individual Basal-Type Breast Cancer Cells
John G. Albeck, PhD, University of California, Davis

Uncovering How RAD51 Paralog Mutations Contribute to Cancer Predisposition
Kara A. Bernstein, PhD, University of Pittsburgh

Phospholipid Messengers as Drivers of Dendritic Cell Dysfunction in Cancer
Juan R. Cubillos-Ruiz, PhD, Weill Cornell Medicine

Metabolic Reprogramming Using Oncolytic Viruses to Improve Immunotherapy
Greg M. Delgoffe, PhD, University of Pittsburgh

“Weak Links” in Cancer Proteostasis Networks as New Therapeutic Targets
Martin Kampmann, PhD, University of California, San Francisco

American Association for Cancer Research
FINDING CURES TOGETHER
Scientific Partner of Stand Up To Cancer
SU2C INNOVATIVE RESEARCH GRANTS

ALGORITHMICALLY DRIVEN QUANTITATIVE COMBINATION CANCER THERAPY ENGINEERING
Dan A. Landau, MD, PhD, Weill Cornell Medicine

DEUBIQUITINATING ENZYMES AS NOVEL ANTICANCER TARGETS
Li Ma, PhD, The University of Texas MD Anderson Cancer Center

IMAGING CELL-LEVEL HETEROGENEITY IN SOLID TUMORS FOR PERSONALIZED TREATMENT
Melissa C. Skala, PhD, Morgridge Institute for Research

DEFINING THE METABOLIC DEPENDENCIES OF TUMORS
Matthew Vander Heiden, MD, PhD, Massachusetts Institute of Technology

DEFINING THE MECHANISTIC CONNECTIONS BETWEEN INJURY, REGENERATION, AND CANCER
Hao Zhu, MD, The University of Texas Southwestern Medical Center

CLASS OF 2011
TARGETING MLL IN ACUTE MYELOID LEUKEMIA
Yali Dou, PhD, University of Michigan

TARGETING GENETIC AND METABOLIC NETWORKS IN T-ALL
Adolfo A. Ferrando, MD, PhD, Columbia University

TARGETING PROTEIN QUALITY CONTROL FOR CANCER THERAPY
Estela Jacinto, PhD, Rutgers University

TARGETING PP2A AND THE GLUTAMINE-SENSING PATHWAY AS CANCER TREATMENT
Mei Kong, PhD, Beckman Research Institute, City of Hope

CHIMERIC RNAs GENERATED BY TRANS-SPlicing AND THEIR IMPLICATIONS IN CANCER
Hui Li, PhD, University of Virginia

ALLAN H. (BUD) AND SUE SELIG STAND UP TO CANCER MELANOMA INNOVATIVE RESEARCH GRANT
EXOME SEQUENCING OF MELANOMAS WITH ACQUIRED RESISTANCE TO BRAF INHIBITORS
Roger S. Lo, MD, PhD, University of California, Los Angeles

IDENTIFICATION AND TARGETING OF NOVEL REARRANGEMENTS IN HIGH-RISK ALL
Charles G. Mullighan, MD, St. Jude Children’s Research Hospital

A SYSTEMS APPROACH TO UNDERSTANDING TUMOR-SPECIFIC DRUG RESPONSE
Dana Pe’er, PhD, Columbia University

TARGETING SLEEPING CANCER CELLS
Sridhar Ramaswamy, MD, Massachusetts General Hospital

INHIBITING INNATE RESISTANCE TO CHEMOTHERAPY IN LUNG CANCER STEM CELL
Eric Alejandro Sweet-Cordero, MD, Stanford University

DEVELOPING NEW THERAPEUTIC STRATEGIES FOR SOFT-TISSUE SARCOMA
Amy J. Wagers, PhD, Joslin Diabetes Center

FRAMING THERAPEUTIC OPPORTUNITIES IN TUMOR-ACTIVATED GAMETOGENIC PROGRAMS
Angeliague W. Whitehurst, PhD, UT Southwestern Simmons Comprehensive Cancer Center

SU2C INNOVATIVE RESEARCH GRANTS ADMINISTERED BY AACR
SCIENTIFIC PARTNER OF STAND UP TO CANCER

THE SU2C SCIENTIFIC SUMMIT
CORONADO, CALIFORNIA JANUARY 26-29 2024
SU2C INNOVATIVE RESEARCH GRANTS

COUPLED GENETIC AND FUNCTIONAL DISSECTION OF CHRONIC LYMPHOCYTIC LEUKEMIA
Catherine J. Wu, MD, Dana-Farber Cancer Institute

CLASS OF 2009
AN EMERGING TUMOR SUPPRESSOR PATHWAY IN HUMAN CANCER
Fernando D. Camargo, PhD, Boston Children’s Hospital

MODELING EWING TUMOR INITIATION IN HUMAN NEURAL CREST STEM CELLS
Elizabeth R. Lawlor, MD, PhD, University of Michigan

CANCER CELL–SPECIFIC, SELF-DELIVERING PRODRUGS
Matthew Levy, PhD, Albert Einstein College of Medicine of Yeshiva University

TARGETED INHIBITION OF BCL6 FOR LEUKEMIA STEM CELL ERADICATION
Markus Müschen, MD, PhD, Children’s Hospital Los Angeles

IDENTIFYING SOLID TUMOR KINASE FUSIONS VIA EXON CAPTURE AND 454 SEQUENCING
William Pao, MD, PhD, Vanderbilt University

THERAPEUTICALLY TARGETING THE EPIGENOME IN AGGRESSIVE PEDIATRIC CANCERS
Charles M. Roberts, MD, PhD, Dana-Farber Cancer Institute

ENDOGENOUS SMALL MOLECULES THAT REGULATE SIGNALING PATHWAYS IN CANCER CELLS
Rajat Rohatgi, MD, PhD, Stanford University

GENETIC APPROACHES FOR NEXT GENERATION OF BREAST CANCER TAILORED THERAPIES
Jose M. Silva, PhD, Columbia University

MODULATING TRANSCRIPTION FACTOR ABNORMALITIES IN PEDIATRIC CANCER
Kimberly Stegmaier, MD, Dana-Farber Cancer Institute

NONINVASIVE MOLECULAR PROFILING OF CANCER VIA TUMOR-DERIVED MICROPARTICLES
Muneesh Tewari, MD, PhD, Fred Hutchinson Cancer Research Center

A TRANSFORMATIVE TECHNOLOGY TO CAPTURE AND DRUG NEW CANCER TARGETS
Loren D. Walensky, MD, PhD, Dana-Farber Cancer Institute

FUNCTIONAL ONCOGENE IDENTIFICATION
David M. Weinstock, MD, Dana-Farber Cancer Institute

PROBING EBV-LMP-1’S TRANSMEMBRANE ACTIVATION DOMAIN WITH SYNTHETIC PEPTIDE
Hang Hubert Yin, PhD, University of Colorado
PHILLIP A. SHARP INNOVATION IN COLLABORATION AWARDS

CLASS OF 2023

THERAPEUTIC BIPARATOPIC ANTIBODIES TARGETING FGFR2 IN GASTRIC CANCER
William Sellers, MD, and Sandra Ryeom, PhD

DEFINING IMMUNOTHERAPY POTENTIAL IN GENOME INSTABILITY-DRIVEN SQUAMOUS CELL CARCINOMAS
Agata Smogorzewska, MD, PhD, and Benjamin Greenbaum, PhD

THE PHILLIP A. SHARP - LAURA ZISKIN INNOVATION IN COLLABORATION AWARD
DEVELOPMENT OF MICROFLUIDIC BLOOD EXCHANGE AS A NEXT-GENERATION PARABIOSIS FOR TUMOR/MICROBIOTA IMMUNOLOGY
Raby Upadhyay, MD, and Scott Manalis, PhD

CLASS OF 2020

GENOMIC AND THERAPEUTIC IMPLICATIONS OF SELECTIVE BACTERIAL AND FUNGAL COLONIZATION OF GASTROINTESTINAL MALIGNANCIES
Luis A. Diaz Jr., MD, and Florencia McAllister, MD

UTILIZING TUMOR ORGANOIDS TO FACILITATE THE DEVELOPMENT OF EFFECTIVE STRATEGIES TO TARGET PANCREATIC CANCER WITH ENGINEERED T CELLS
Philip D. Greenberg, MD, Tyler E. Jacks, PhD, and William A. Freed-Pastor, MD, PhD

HARNESSING NK CELLS TO TREAT PEDIATRIC CANCERS
David G. Kirsch, MD, PhD, and Michal Sheffer, PhD

CLASS OF 2019

RESISTANCE TO PARP INHIBITOR PLUS ANTI-PD1 THERAPY DRIVEN BY ER STRESS AND BIOACTIVE LIPIDS IN OVARIAN CANCER
Juan R. Cubillos-Ruiz, PhD, and Alan D. D’Andrea, MD

UNCOVERING MUTANT TP53 DEPENDENCIES IN SPONTANEOUSLY ARISING TRIPLE-NEGATIVE BREAST CANCER
Denada Dibra, PhD, and Peter P. Lee, MD

NONINVASIVE MONITORING OF TUMOR PHENOTYPE BY INTERROGATION OF PLASMA CELL FREE RNA
Maximilian Diehn, MD, PhD, and Aaron N. Hata, MD, PhD

PRECISION COMBINATORIAL IMMUNOTHERAPEUTIC TARGETING OF THYMIC STROMAL LYMPHOPOIETIN RECEPTOR (TSLPR) SIGNALING IN PEDIATRIC AND YOUNG ADULT CRLF2-REARRANGED ALL
Sarah K. TASIAN, MD, and Kimberly Stegmaier, MD

ANTIGENICITY OF MUTANT KRAS AND IMPACT ON CANCER EVOLUTION
Robert H. Vonderheide, DPhil, MD, and Vinod P. Balachandran, MD

CAN SCR NASEQ- DERIVED GENE PROGRAMS PREDICT ANTI-PD1 RESPONSE IN HIGH TMB CRC AND NSCLC PATIENTS?
Karin Pelka, PhD, and Matthew D. Hellmann, MD

ENHANCING FERROPTOSIS TO BLOCK EWING SARCOMA METASTATIC CAPACITY
Poul H. B. Sorenson, MD, PhD, and Elizabeth Lawlor, MD, PhD

ADMINISTERED BY
American Association for Cancer Research
FINDING CURES TOGETHER
SCIENTIFIC PARTNER OF STAND UP TO CANCER
PHILLIP A. SHARP INNOVATION IN COLLABORATION AWARDS

CLASS OF 2018
DEFINING EFFECTIVE T-CELL RESPONSE IN VIRAL AND NONVIRAL GYNECOLOGIC CANCERS
Claire F. Friedman, MD, and Marta J. Luksza, PhD

CUPID-SEQ-HIGH THROUGHPUT TRANSCRIPTOMIC SPATIAL MAPPING OF IMMUNE-TUMOR INTERACTIONS IN THE MICROENVIRONMENT
Dan Landau, MD, PhD, and Raul Rabadan, PhD

CHARACTERIZING IMMUNE VARIABILITY IN CHILDREN FOLLOWING STANDARD-OF-CARE TREATMENT TO ENABLE PRECISION
Trevor J. Pugh, PhD, and David M. Barrett, MD, PhD

STUDIES OF COLORECTAL CANCER PATIENT-DERIVED ORGANOIDS TO VALIDATE CANDIDATE BIOMARKERS OF RESISTANCE TO NATURAL KILLER CELLS
Michal Sheffer, PhD, and Hugo J. Snippert, PhD

INTERROGATING IMPACT OF EPIGENETIC MODIFIERS ON DURABLE REPROGRAMMING OF EXHAUSTED CD8 T CELLS IN PATIENTS WITH NSCLC TREATED WITH PD-1 BLOCKADE
E. John Wherry, PhD, and Matthew D. Hellmann, MD

CLASS OF 2017
INTERROGATION OF RESISTANCE MECHANISMS TO CHECKPOINT INHIBITORS USING FUNCTIONAL GENOMICS
Siwen Hu-Lieskovan, MD, PhD, and René Bernards, PhD

DISSECTING THE EPIGENETIC MECHANISMS OF REPEAT RNA REGULATION IN CANCER
David T. Ting, MD, and Shelley L. Berger, PhD

PROBING THE METABOLIC INTERACTIONS BETWEEN TUMOR AND STROMA IN PANCREATIC CANCER
Matthew G. Vander Heiden, MD, PhD, and Melissa C. Skala, PhD

APTAMER-BASED DETECTION AND BINDING OF PEPTIDE-MHC COMPLEXES
Cassian Yee, MD, and Bruce A. Sullenger, PhD

CLASS OF 2016
DEFINING THE ROLE OF EPIGENETICS IN CHIMERIC ANTIGEN RECEPTOR T-CELL THERAPY FOR CLL
Shelley L. Berger, PhD, Carl H. June, MD, and Junwei Shi, PhD

TOWARDS PREDICTIVE MODELS OF IMMUNOTHERAPY RESPONSE
Benjamin D. Greenbaum, PhD, and Jedd D. Wolchok, MD, PhD

CHECKPOINT INHIBITION IN CHILDREN WITH ULTRA- MUTATED CANCER DUE TO BIALLELIC MISMATCH REPAIR DEFICIENCY (BMMRD)
Crystal L. Mackall, MD, and Patrick M. Forde, MD

FINGERPRINTING THE SYSTEMIC MICROBIOME IN PLASMA TO PREDICT IMMUNOTHERAPY OUTCOMES IN MELANOMA
Muhammed Murtaza, MBBS, PhD, and Antoni Ribas, MD, PhD

FUNCTIONAL VERIFICATION OF DNA REPAIR MUTATIONS IN PROSTATE AND OVARY TUMORS
Eliezer M. Van Allen, MD, and Maria Jasin, PhD
CLASS OF 2015

DEVELOPMENT OF A HIGH-THROUGHPUT METHOD TO SCREEN DRUGS WITH ORGANOIDS
Hans Clevers, MD, PhD, and David A. Tuveson, MD, PhD

CROSS-TALK BETWEEN HISTONE H3K4 MONO-METHYLATION AND CANCER METABOLISM TO EXPLORE NEW THERAPEUTIC STRATEGIES
Yali Dou, PhD, and Mei Kong, PhD

TARGETING EPigenetic PLASTICITY And DRUG RESISTANCE IN PEDIATRIC CANCER
Adolfo Ferrando, MD, PhD, and Kimberly Stegmaier, MD

IDENTIFICATION AND ANALYSIS OF PROSTATE REACTIVE TCRs FOR T-CELL MEDIATED ADOPTIVE CELLULAR IMMUNOTHERAPY OF METASTATIC PROSTATE CANCER
Owen N. Witte, MD, and Padmanee Sharma, MD, PhD

CLASS OF 2014

THE INTERSECTION OF EPigenetic AND IMMUNE CHECKPOINT THERAPY
Stephen B. Baylin, MD, and James P. Allison, PhD

DETERMINANTS OF SENSITIVITY AND RESISTANCE TO MEK-BASED TARGETED THERAPIES IN NRAS MUTANT MELANOMAS
Roger S. Lo, MD, PhD, and Jeffrey A. Sosman, MD

ANALYSIS OF HIGH-DIMENSION SINGLE-CELL DATA FROM CANCER IMMUNOTHERAPY CLINICAL TRIALS
Dana Pe’er, PhD, and Padmanee Sharma, MD, PhD

CLINICAL DEVELOPMENT OF CFI-400945, A PLK4 INHIBITOR, IN BREAST CANCER
Dennis J. Slamon, MD, PhD, and Tak W. Mak, PhD

CBIOPORTAL FOR STAND UP TO CANCER
David B. Solit, MD, and Nikolaus Schultz, PhD
ADDITIONAL AWARDS AND PRIZES

THE ZISKIN PRIZE

The Ziskin Prize is named for Laura Ziskin, legendary Hollywood producer, who cofounded SU2C and lived with breast cancer for seven years before she died in 2011.

- The prize provides a one-year, $250,000 grant.
- The grant is shared by two scientists at different institutions.
- Funds are used to collaborate on high-risk, high reward breast cancer research.

RECIPIENTS:
2012: Stephen B. Baylin, MD, and Feyruz V. Rassool, PhD
2014: Taru E. Muranen, PhD, and Gordon B. Mills, MD, PhD
2015: Matthew J. Ellis, PhD, and Charles Swanton, PhD
2018: Jos Jonkers, PhD, and Helen Piwnica-Worms, PhD
2019: Silvia C. Formenti, MD, and Heather L. McArthur, MD, MOH
2020: Leisha A. Emens, MD, PhD, and Xiang Zhang, PhD
2022: Jane E. Visvader, PhD, and Geoffrey J. Lindeman, MBBS (Hon.), PhD

THE JIM TOTH SR. BREAKTHROUGH LUNG CANCER RESEARCH AWARD

This award is named in honor of Jim Toth Sr., who passed away from lung cancer. It provides funding for highly innovative, clinically focused lung cancer research.

Two awards, covering the period 2014 - 2017

LEADERS:
Stephen B. Baylin, MD, and Peter A. Jones, PhD

PEGGY PRESCOTT EARLY CAREER SCIENTIST AWARD

The SU2C-Peggy Prescott Early Career Scientist Award in Colorectal Cancer Research supports a novel cancer research project with significant potential for advancing key questions in colorectal cancer research.

RECIPIENT:
2019: Karin Pelka, PhD

GOLDEN ARROW EARLY CAREER SCIENTIST AWARD

The SU2C Golden Arrow Early Career Scientist Award supports a novel cancer research project that, through collaboration with a current SU2C project, has significant potential for advancing key questions in cancer research.

RECIPIENT:
2019: William Freed-Pastor, MD, PhD
ADDITIONAL AWARDS AND PRIZES

SU2C SHARP TANK EARLY CAREER SCIENTIST AWARD

The SU2C Sharp Tank Early Career Scientist Award supports an early-career investigator with a novel cancer research proposal incorporating cutting-edge, high-risk ideas and offering the greatest potential impact for cancer patients.

RECIPIENT:
2020: Catherine Marinac, PhD

PHILLIP A. SHARP CHALLENGE AWARD

The Pancreatic Cancer Collective Phillip A. Sharp Challenge Award supports a novel cancer research project that explores synergistic and innovative collaborations exploring pancreatic cancer interception.

RECIPIENTS:
2021: Alec Kimmelman, MD, PhD, and Benjamin Greenbaum, PhD

SU2C MAVERICK AWARD

The SU2C Maverick Award supports an early-career investigator with a novel cancer research proposal incorporating cutting-edge, high-risk ideas and offering the greatest potential impact for cancer patients.

RECIPIENTS:
2022: Anirban Das, MD
2023: Alexander T. Pearson, MD, PhD

EMPEROR SCIENCE AWARDS

From 2016 to 2018 the Emperor Science Award program encouraged high school students to explore careers in cancer research through a unique mentoring opportunity. This education initiative was inspired by the Ken Burns documentary Cancer: The Emperor of All Maladies and supported with grants from Genentech, Bristol-Myers Squibb, and Novartis. Three hundred students were selected in national competitions and received a $1,500 stipend, a laptop computer, and the opportunity to work alongside an esteemed scientist on a multi-week cancer research project.
SU2C KIMMEL SCHOLARS

SU2C Kimmel Scholars were supported in 2009-2011 through a collaboration with the Sidney Kimmel Foundation which provided administration. The program provided funding ($50,000 or more) to each of forty-three grantees as a bridge in the funding gap for gifted early cancer researchers at the initial outset of their careers. Applicants were required to hold an MD, PhD, or equivalent degree, be appointed at the assistant professor level, and be engaged in basic, clinical, or translational cancer research. In addition, applicants must not have had current R01 funding or a concurrent award for the same project.

Nabeel Bardeesy, PhD
Valerie Brown, MD, PhD
Barbara Buttin, MD
Paul Chang, PhD
Clark Chen, MD, PhD
Lara Collier, PhD
Maximilian Diehn, MD, PhD
Muller Fabbri, MD, PhD
Danica Galonic Fujimori, PhD
Matthew Gamble, PhD
Richard Gardner, PhD
Michela Garofalo, PhD
Zev Gartner, PhD
Ramiro Garzon, MD
Suzanne Gaudet, PhD
Rani George, MD, PhD
Roger Greenberg, MD, PhD
Geraldine Guasch, PhD
Min Guo, PhD
A. McGarry Houghton, MD
Erich Huang, MD, PhD
Patrick Hwu, MD

Dimitrios Iliopoulos, PhD
Antoine Karnoub, PhD
Tae Hoon Kim, PhD
Alec Kimmelman, MD, PhD
Mei Kong, PhD
Terry Lechler, PhD
Karen Liby, PhD
Roger Lo, MD, PhD
Ivan Maillard, MD, PhD
Christine Mayr, MD, PhD
Alexander Minella, MD
Stephen Oh, MD, PhD
Dinesh Rao, MD, PhD
Sohail Tavazoie, MD, PhD
Andrea Ventura, MD, PhD
Narendra Wajapeyee, PhD
Bin Wang, PhD
Zefeng Wang, PhD
Catherine Yan, PhD
Eddy Yang, MD, PhD
Hongwu Zheng, PhD

ADDITIONAL AWARDS AND PRIZES
SU2C’s groundbreaking research programs are made possible because of the dedicated efforts of dozens of scientific reviewers. We thank them for their commitment and hard work.

James L. Abbruzzese, MD
Christina Alewine, MD, PhD
Stephen M. Ansell, MD, PhD
Scott A. Armstrong, MD, PhD
Carlos L. Arteaga, MD
Kimlin T. Ashing, PhD
Gurinder Singh (Mickey) Atwal, PhD
LeAnn Bailey, MBBS, Ph.D., M.S.
Dafna Bar-Sagi, PhD
Charles Baum, MD, PhD
Stephen B. Baylin, MD
David G. Beer, PhD
Stacey L. Berg, MD
Shelley L. Berger, PhD
Jordan D. Berlin, MD
Nina Bhardwaj, MD, PhD
Elizabeth H. Blackburn, PhD
Krastan B. Blagoev, PhD
Jeffrey A. Boyd, PhD
Cynthia Brogdon, RN, PhD
Howard S. Brown
Regina Brown, MD
Kevin Bunker, PhD
Steve J. Burakoff, MD
Barbara Burtness, MD
Lauren A. Byers, MD, MS
Curtis Callan, Jr., PhD
Steven J. Burakoff, MD
Barbara Burtness, MD
Lauren A. Byers, MD, MS
Curtis Callan, Jr., PhD

Jessica Donington, MD
Bettina Drake, PhD, MPH
Steven M. Dubinett, MD
Raymond N. DuBois, MD, PhD
Gail Eckhardt, MD
Matthew J. Ellis, MD, PhD
Tariq Enver, PhD
Meira Epelstein, PhD
Awny Farajallah, MD
David Feltquate, MD, PhD
Leslie G. Ford, MD
Margaret Foti, PhD, MC (hc)
Moni N. Fouda, MD, MPH
David Alan Frank, MD
Justin F. Gainor, MD
Shiridar Ganesan, MD, PhD
Judy E. Garber, MD
Chris Garcia, PhD
Levi Garraway, MD, PhD
Richard B. Gaynor, MD
Eloise Ghedin, PhD
Kathy Giusti
John Glaspy, MD, MPH
Nancy F. Goodman, JD
Jennifer Grandis, MD
Benjamin D. Greenbaum, PhD
Philip D. Greenberg, MD
James L. Gulley, MD, PhD
William C. Hahn, MD, PhD
William N. Hait, MD, PhD
Raj Harveszszak, MD
Erich Haura, MD
Ernest T. Hawk, MD
Adrian Hayday, PhD
James R. Heath, PhD
Elizabeth M. Hecht, MD
William C. Hahn, MD, PhD
William N. Hait, MD, PhD
Raj Harveszszak, MD
Erich Haura, MD
Ernest T. Hawk, MD
Adrian Hayday, PhD
James R. Heath, PhD
Elizabeth M. Hecht, MD
Matthew Hellman, MD
Lee J. Helman, MD
Kathy J. Helzlsouer, MD, MPH
Candace Henley
Helen E. Heslop, MD
Eric C. Holland, MD, PhD
Michael A. Hollingsworth, PhD
Nancy Hopkins, PhD
A. McGarry Houghton, MD
Shawna Hudson, PhD
Patrick Hwu, MD
Elizabeth M. Jaffe, MD
Lee James, MD, PhD
Nancy Jenkins, PhD
Michael B. Kastan, MD, PhD
Kimberly A. Kelly, PhD
Mark Kieran, MD, PhD
Edward Kim, MD, MBA
Ann S. LaCasce, MD
Marikki K. Laiho, MD, PhD
Mark Lackner, PhD
Suzanne Lentzsch, MD, PhD
Caryn Lerman, PhD
Caleb Leavel, MA
Arnold J. Levine, PhD
Lisa Lewis, MPH
Sean Lin, PhD
Scott M. Lippman, PhD
Jeffrey M. Lipton, MD, PhD
Andrew M. Lowy, MD
Guillemina Lozano, PhD
Rishi Manchanda, MD, MPH
Richard M. Marais, PhD
Ingrid A. Mayer, MD, MSCI
Ira Mellman, PhD
Ari M. Melnick, MD
Gordon B. Mills, MD, PhD
Lee M. Nadler, MD
Cherie-Ann Nathan, MD
William G. Nelson, MD, PhD
Andre Nussenzweig, PhD
Olufunmilayo Olopade, MD
Eileen M. O'Reilly, MD
William Pao, MD, PhD
Prema Patel, PhD, MD
Dana Pe'er, PhD
Edith A. Perez, MD
Cecil Pickett, PhD
Lawrence D. Piro, MD
Hidde L. Ploegh, PhD
Scott Pomeroy, MD, PhD
Mark Powers, PhD
Carol L. Prives, PhD
Scott K. Pruitt, MD
Ellen Puré, PhD
Raul Rabada, PhD
Timothy Rebbeck, PhD
Karen Reckamp, MD
James W. Rocco, MD, PhD
David P. Ryan, MD
Sandra W. Ryeom, PhD
Lynn M. Schuchter, MD
Padmanee Sharma, MD, PhD
Arlene H. Sharpe, MD, PhD
Reuben Shaw, PhD
Dennis Slamon, MD, PhD
Jodi Smith, PhD
Agata Smogorzewska, MD, PhD
Poul Sorensen, MD, PhD
Kimberly Stegmaier, MD
William D. Tap, MD
Margaret A. Tempero, MD
Kim Thiboldeaux
Jeffrey M. Trent, PhD
David A. Tuveson, MD, PhD
Kees Verhoef, PhD
Seleyin Vickers, MD
Victor Villalobos, MD, PhD
Marc Wouik, PhD
H. Josef Vormoor, MD
Tony Wagner, PhD
Scott A. Waldman, MD, PhD
Ru-Amir Walker, MD
Katherine E. Warren, MD
Lesley Watson, PhD
Jolle Wesseling, MD, PhD
Raymond M. Williams, JD
Karen Winkfield, MD, PhD
Jordan M. Winter, MD
Jedd Wolchok, MD, PhD
Brian M. Wolpin, MD, MPH
Kwok-Kin Wong, MD, PhD
Susan Yang, PharmD
Nancy Yao, MD
Jen Jen Yeh, MD
Benjamin A. Youngblood, PhD
Kenneth H. Yu, MD
Jianda Yuan, MD
Stergios Zacharoulis, MD
Jen Jen Yeh, MD
Benjamin A. Youngblood, PhD
Kenneth H. Yu, MD
Jianda Yuan, MD, PhD
Stergios Zacharoulis, MD
Stand Up To Cancer thanks the generous collaborators, donors, and organizations that have helped fund our groundbreaking programs, including:

- American Airlines
- American Head and Neck Society
- American Lung Association
- Amgen
- Arte & Carole Moreno, Angels Baseball Foundation
- Bob Judelson
- Bristol Myers Squibb
- Bud & Sue Selig
- Cancer Research UK
- Chicago White Sox Charities
- Cless Family Foundation
- David Alden & Dina Al-Sabah
- Exact Sciences
- Fanconi Anemia Research Fund
- Farrah Fawcett Foundation
- Fisher Family
- Genentech
- Head and Neck Cancer Alliance
- Jazz Pharmaceuticals
- Jerry & Martyl Reinsdorf
- Jim Toth
- Johnson & Johnson
- Kari Wolff
- Laura Ziskin Family Trust
- Lew & Jean Wolff
- LUNGevity Foundation
- Lustgarten Foundation
- Major League Baseball - Founding Donor
- Mastercard
- Merck
- Mirati Therapeutics
- Pancreatic Cancer Canada
- Pancreatic Cancer North America
- Peter & Sheel Seidler
- Providence
- Sara Schottenstein Foundation
- St. Baldrick’s Foundation
- The Estate of Barbara Hanania
- The Marcus Corporation Foundation
- Thermo Fisher Scientific
- Torrey Coast Foundation
- Trebek Family Foundation
- Van Andel Institute
- Visit Myrtle Beach
- Zentalis
People with Fanconi anemia and some types of HPV have a greater risk of developing head and neck cancers. These cancers are difficult to treat and even successful treatment can cause significant side effects resulting in low quality of life. Scientists are developing three approaches to treat these cancers.

AIM 1: COMPARING FANCONI ANEMIA- AND HPV-RELATED CANCERS
Find therapies that may be effective for both.

AIM 2: IDENTIFY AND TEST NOVEL THERAPEUTIC APPROACHES IN HPV-RELATED CANCER
Better understand underlying biology of HPV-related cancers leading to new therapies.

AIM 3: FIND MOLECULAR AND GENETIC TARGETS FOR FANCONI ANEMIA-ASSOCIATED CANCERS AND ASSESS TOXICITY OF CANDIDATE DRUGS
Develop therapeutic and preventive strategies.

SU2C AND FOUR ORGANIZATIONS are exploring ways to help patients for whom traditional treatments would be too toxic or debilitating. New understandings of the biology of these cancers will pave the way to improve the lives of people at risk for and diagnosed with head and neck cancers.
SU2C HEALTH EQUITY BREAKTHROUGH TEAM

DISRUPT(ing) Clinical Trials

Diversity & Inclusion in Research Underpinning Prevention & Therapy Trials

Despite Black, Indigenous, and people of color (BIPOC)-experiencing worse cancer outcomes, most research in the U.S. is done using primarily white participants. Stand Up To Cancer’s four-year program will work to increase the number of BIPOC participants in clinical trials. The program targets four communities in New York City with high cancer mortality rates and will provide important new models for cancer clinical trials nationally.

CANCER MORTALITY RATES IN TARGETED NEIGHBORHOODS

Rates per 100,000 people

- Bronx
- East Harlem
- Central Harlem
- Washington Heights
- U.S.

85% of the population in these four New York City neighborhoods, which are overly impacted by cancer, are Hispanic/Latino or Black.

THE BRONX

THE BRONX

NEW JERSEY

CENTRAL HARBOR

EAST HARLEM

MANHATTAN

AIM 1: CREATE OPTIONS FOR LOCAL CANCER PATIENTS

Engage with community and faith-based organizations in targeted neighborhoods in The Bronx and Manhattan to understand local barriers to clinical trial participation, create more options for cancer patients as early as possible, and help patients to see clinical trials as a viable option for treating cancer.

AIM 2: CHANGE APPROACHES TO CANCER CARE

Using research gathered with the community, organize hospital and health agency leaders, doctors, nurses, and other community health influencers to consistently discuss clinical trials as an initial treatment option for cancer patients and their families.

- Survey patients and health care practitioners to create more data-based solutions
- Provide training for health care practitioners to prioritize clinical trial options for cancer patients
- Create culturally relevant educational videos and resources for patients and families

AIM 3: RETHINK CLINICAL TRIALS

The team works with scientists to design clinical trials accessible to more patients by:

- Developing educational programs for four health institutions
- Developing training programs for scientists, citizen scientists, and medical students
- Creating a better database with help from community organizations
- Creating a network of citizen scientists within the community

THIS PROGRAM is leading a change in cancer research to put patients and their families first when new treatments are created and tested. When doctors and scientists incorporate considerations of socioeconomic factors, race, and ethnicity at the outset of their work, we can create cancer treatment strategies and clinical trials that benefit all patients and their families.
An international collaboration of scientists is working to understand how cancer convinces the body’s organs and tissues to support tumor growth. Cancer’s interaction with the micro-environments that exist within the human body is a special focus of the work. Four teams will seek to learn more about the communication between the body and the tumor on a cellular level—and how the microbiome has both positive and negative implications for the effectiveness of cancer therapies.

TEAM 1
Identify and define the mechanisms regulating tumor-host interactions, seeking to find molecular and biophysical markers across cancer cells, normal cells, and associated microbiota.

TEAM 2
Understand how cancer interplays with microbiomes in a person’s gut, with a focus on identifying specific microorganisms that cause or facilitate the treatment of tumors.

TEAM 3
Reconstruct cancer in organoids to analyze how microbiomes interact with tumors to increase the effectiveness of immunotherapy treatments.

TEAM 4
Design therapies that can moderate tumor growth and cancer development using gene expression studies to understand communications between the microbiome and a tumor.

TEAM 5
A fifth group will work to create a laboratory tool that can grow gut tumor organoids complete with the surrounding tissue and microbiome. This engineering feat will be a dramatic advance in scientists’ ability to model human cancer so new treatments can be more quickly and effectively tested.

Microbiome: The collection of fungi, bacteria, viruses and other microorganisms that live in the human body.

Organoids: Tissue cultures derived from actual cancer samples and human stem cells.

Mouse models: A way to test microbiome, cancer, and drug interactions in real-life conditions.

Chemostats: Devices that support the growth of exceptionally complex cell cultures.

CONVERGENCE 3.1416 MISSION
By better understanding how microbiomes affect the support the human body provides to tumors, these teams of scientists will help accelerate research and treatments across a wide range of cancers and provide tools to spur the next generation of cancer research.
Pancreatic Cancer: The Hunt for Precision Therapies

With a five-year survival rate of 10%, the need to find an effective treatment for pancreatic cancer is critical. Currently, there are two leading chemotherapy combinations, but doctors don’t have enough knowledge about the different types of pancreatic cancer to know which will be best for an individual patient. A Dream Team is testing ways to use the molecular characteristics of the tumor to predict which medicines should be prescribed, and develop tests to distinguish specific tumor sub-types.

WHAT IS PRECISION THERAPY? Precision therapy matches proposed treatments to the cancer’s DNA and expressed proteins.

1. The patient undergoes one or two biopsies.
 - **Tumor:** A sample of the tumor is taken and analyzed.
 - **Blood** is drawn.

2. The team analyzes the DNA and key proteins of the cancer to predict useful ways to categorize individual tumors.

3. For up to a year, a patient is given one of the chemotherapies. Indicators within the body, called biomarkers, are measured using lab tests or scans to determine if the treatment is working or not, and what biomarkers seem to correspond to the treatment response.

4. More biopsies and blood samples may be taken to try to understand why the treatment is working or not, and what biomarkers seem to correspond to the treatment response.

5. Tumor sub-types based on the study results and measured with the biomarkers developed along the way will help doctors choose the best treatment for each patient.

Sources: SU2C Canada-Lustgarten Foundation-Pancreatic Cancer Canada, PASS Convergence Dream Team research, seer.cancer.gov/statfacts/html/pancreas.html

UNDERSTANDING TUMOR SUB-TYPES can help doctors and patients make better treatment decisions, as well as guide further development of precision therapies to combat pancreatic cancer. This is a vital step towards getting the right treatment to the right patient at the right time.
THIS PROGRAM SEEKS TO INCREASE AWARENESS AND SCREENINGS OF COLORECTAL CANCER in three regions of the United States with significant Black, Hispanic, or Native American populations, developing strategies to help people choose screening options that work best for them and access appropriate follow-up care when needed.
SU2C DIVERSITY IN EARLY DEVELOPMENT CLINICAL TRIALS RESEARCH TEAMS

Increasing Diversity in Cancer Clinical Trials

Cancer clinical trials need to be available to all potential patients to make new medicines available as widely as possible. SU2C and Janssen Research & Development are supporting teams in Chicago, Dallas, Los Angeles and Philadelphia to increase accessibility for patients of all racial and ethnic backgrounds and/or living in medically underserved locations. The widest possible participation in clinical trials will help bring access to the latest treatments to all patients and help power the studies that will lead to breakthroughs in future cancer treatments.

The teams will focus on specific neighborhoods and cities to increase diversity among participants in Phase 1 and Phase 2 cancer clinical trials, the early trials that often determine whether a potential treatment is tested in large and expensive randomized clinical trials for widespread use by clinicians. Each team is independent but the four groups will come together to share strategies and learnings.

1. CREATE A RANDOMIZED RECRUITMENT STUDY
- Randomly recruit Black patients for a special clinical trial.
- Keep patients informed about progress through emails, text messages and other electronic messaging systems.
- Work with doctors to use more culturally appropriate communication methods.
- Work with community organizations and hospitals to build a patient database.

2. IMPLEMENT A PROGRAM FOR SCREENING, RECRUITING, AND ENROLLING PATIENTS
- Work with local universities, health centers and community outreach programs to create a program.
- Impact and efficiency of trial enrollment procedures will be studied, and patients will be surveyed and interviewed to find areas of improvement.

3. EXAMINE EXISTING STRUCTURES TO FIND IMPROVEMENTS
- Work with the county hospital system to enhance referral and enrollment of minority patients.
- Work to address systemic barriers for patients and current early phase cancer clinical trials recruitment.
- Study the demographics, financial and social burdens, geographical barriers, and impact of remote trials on participation in early cancer clinical trials.

4. IDENTIFY AND OVERCOME SPECIFIC BARRIERS
- Work to address all barriers patients may have to access a clinical trial.
- Work with community outreach programs to help educate patients.
- Information and data gathered will be shared on a public website.

CREATING MORE OPPORTUNITIES FOR MINORITIES TO ACCESS CLINICAL TRIALS is the ultimate goal for this initiative. By working in underserved communities in four major metropolitan areas, the teams will be able to reach, educate, better understand, and serve a large population that is historically less engaged in cancer research and treatment. The result will be better outcomes for cancer patients and their families and communities.
Detecting Gastric Cancer

The SU2C Gastric Cancer Interception Research Team is pursuing two strategies to develop more effective screening methods so that pre-cancer or early stages of the disease can be found in patients.

ADVANCED IMAGING

The team is developing a more advanced way to use a camera capsule to detect and identify cancer cells in a patient.

The camera capsule is swallowed, and an infrared detectable dye is injected in patients.

The dye sticks to biomarkers on the surface of cancer and pre-cancer cells, and glows under the camera’s infrared light.

BLOOD BIOMARKERS

Cancer cells, DNA, and cell components circulate in the blood at very low concentrations, and finding them is like looking for a needle in a haystack.

Three different tests are being developed to find evidence of cancer or pre-cancer cells.

The team is also working in the lab to identify additional biomarkers.

ONCE VALIDATED, one or more of these tests could be used to help doctors find the beginning of a cancer before a tumor even forms.
Pediatric New Discoveries Challenge

Three teams of scientists in both the UK and the US work to improve targeted therapies by studying some of the rarest and deadliest cancers for kids. One or two of these first-round teams will be selected to receive a second round of funding based on progress and potential impact.

CREATING BETTER TARGETED THERAPIES
is an important step for curing childhood cancers. Three transatlantic teams working on new ways to use gene therapies and radiation against pediatric cancers have promising solutions that could soon change the way these cancers are treated.

Pediatric brain cancers are the deadliest form of cancers. Precision radiotherapy is one type of treatment but causes lifelong side effects including cognition and hormone production.

The team will study the paths radiation beams make through tumors, and map out the long-term side effects in the brain. The goal is to create more precise radiotherapy to avoid the most sensitive brain regions.

Leader: Martin McCabe, MB/BChir, PhD, University of Manchester
Co-Leader: Thomas Merchant, BS, DO, PhD, St. Jude Children’s Research Hospital

Combination Targeting of Oncogene-driven Childhood Cancer

Immunotherapies, while increasingly successful with adults, have so far not been as successful at treating childhood cancers.

The team will study the immune system of patients with two types of brain cancer: neuroblastoma or medulloblastoma. They plan to design special CAR-T cells that can boost a child’s immune system to overcome tumor growth and other immunity barriers.

Leader: Alexander Bishop, DPhil, UT Health San Antonio
Co-Leader: Kevin Hiom, PhD, University of Dundee

Targeting R-loop stability in Ewing Sarcoma

Ewing sarcoma is a type of bone cancer that is poorly understood, with limited treatment. A gene alteration causes a strong increase in the formation of “R-loops,” which can cause cancer. The team noticed a higher number of R-loops than usual in Ewing sarcoma patients.

The team will investigate this unique biological hallmark to create a drug. The long-term goal is to develop new ways to target this unusual gene mutation with novel or existing compounds.

Leader: John Anderson, BA, MBBS, MRCP, PhD, University College London
Co-Leader: Louis Chesler, MD, PhD, FRCPCH, Institute of Cancer Research
GIVE FOR LOVE, GIVE FOR LIFE

With your support, we can realize our goal of turning all cancer patients into long-term survivors.

Donate now at StandUpToCancer.org/Donate.